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on the submanifolds in order to attain curvature inequalities, which we use to study the
(non-)immersibility of manifolds as Lagrangian submanifolds.
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Abstract

In this thesis, we study Lagrangian submanifolds. These submanifolds play a fundamental
role in symplectic geometry as well as in (complex) Riemannian geometry. A major
difference is that where a local classification is trivial in symplectic geometry, it is not in
Riemannian geometry. Such classification, however, is far from complete.

Preliminaries

In the first two chapters of this thesis we give some preliminaries that we will use through-
out. We have opted to give the reader an elaborate reminder of the most important no-
tions, structures and their properties in Riemannian geometry and submanifold theory.
Special focus was placed on the so-called complex space forms, manifolds with a complex
structure J that has several nice properties, and constant holomorphic sectional curva-
ture. They play the role of ambient manifold in this thesis. In particular, we will always
be working in one of three complete, simply connected complex space forms: the complex
Euclidean space Cn, the complex projective space CP n or the complex hyperbolic space
CHn.

The objects of study are the Lagrangian submanifolds of these complex space forms.
They are the totally real submanifolds of maximal dimension, i.e. the submanifolds for
which J provides an isometry between the tangent and normal bundle. We give their
basic properties, define a canonical basis of the tangent space which we will need further
in the thesis, and investigate the Cartan structure equations.

Part I

The first part of this thesis is devoted to parallelity conditions. The first chapter introduces
the notions of parallelity we work with, in a global setting as well as in a Lagrangian
setting. We impose these conditions on three important notions: the mean curvature H,
the second fundamental form h and the cubic form C. We study conditions common
in submanifold theory, such as being totally geodesic, totally umbilical, parallel, . . . .
However, we also study newer conditions more suitable for Lagrangian submanifolds that
have previously not been investigated: the condition of having pseudo-parallel cubic form,
which was suggested in [DVV09], and we introduce a completely new condition, that of
H-pseudo-parallelity.

The second chapter of part I uses the canonical basis to give a decomposition of the
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tangent space at a point. We base ourselves on techniques that were applied in [Eji82] to
study minimal Lagrangian submanifolds of constant sectional curvature, and in [Dil+12]
to classify parallel Lagrangian submanifolds in CP n, to name a few examples.

In the third and final chapter of the first part, we give some classification results
that were achieved in the domain of Lagrangian submanifolds: the classification of La-
grangian surfaces of constant curvature, the H-umbilical submanifolds and the parallel
submanifolds in CP n.

Part II

The second part of this thesis is about Chen’s δ-invariants. These are obtained by taking
the scalar curvature τ of a manifold and “throwing away” some sectional curvatures.
The first chapter of part II introduces these invariants, gives an interpretation for some
special cases, and gives a general optimal inequality between the δ-invariants and the
squared mean curvature. In particular, we find a nice inequality which holds for totally
real submanifolds of complex space forms, and thus for Lagrangian submanifolds. Some
corollaries obtained from this inequality are given, mostly in relation with the scalar
curvature τ and the Ricci curvature Ric.

The second chapter is about the inequality restricted to Lagrangian submanifolds.
Whereas the inequality was optimal when considering all submanifolds, it is no longer
optimal when we only look at Lagrangian submanifolds: if equality is satisfied, then the
submanifold is minimal. We have worked out the proof of an improved, optimal inequality
for Lagrangian submanifolds given in [Che+13] in full detail.

The last chapter is a collection of corollaries of this improved optimal inequality. Using
concepts from topology, we give a vanishing theorem for the mean curvature of certain
compact Lagrangian submanifolds, and combined with δ-invariants this leads to a non-
immersibility theorem. We also provide improvements of inequalities given in the first
chapter of part II.
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Introduction

The study of Lagrangian submanifolds originates from symplectic geometry. A 2n-
dimensional manifold M̃2n is called symplectic if it admits a closed, nondegenerate 2-form
ω, the symplectic form. An n-dimensional submanifold Mn of a symplectic manifold
(M̃2n, ω) is called Lagrangian if ω|M ≡ 0. Due to Givental’s theorem, a local classification
of Lagrangian submanifolds is trivial from the symplectic point of view [Arn90; DS01;
DS04].

Symplectic manifolds and their Lagrangian submanifolds appear naturally in many
aspects of physics. For example, in classical mechanics and mathematical physics [Arn89;
HZ11], but also in string theory [Wit95] and in supersymmetric field theories [GJ00].

From the Riemannian point of view, a local classification is far from trivial. The study
of totally real submanifolds was initiated in the 70’s [Bla75; CHL77; CO74a; Hou73;
Kon76; LOY75a; LOY75b; Yan76; YK76a; YK76b]. It was quickly noticed that “when
[they have half the dimension of the ambient space], totally real submanifolds have many
interesting properties” [YK76a], which are exactly the Lagrangian submanifolds.

However, since research of Lagrangian manifolds has started, there is still no complete
classification. We can approach the study of Lagrangian submanifolds in two ways: on
the one hand, one can put additional constraints (in addition to being Lagrangian) on
a manifold and attempt the classify these submanifolds. On the other hand, one can
study when a given Riemannian manifold admits a Lagrangian isometric immersion. The
structure of this thesis reflects this twofold approach.

In the first part of this thesis we study constraints involving the second fundamental
form h. Concretely we will work with parallelity conditions on h itself and on its nor-
malised trace H, the mean curvature. We will give the definitions of these constraints,
explain the properties that follow and show how these condition interact.

The second part of this thesis deals with curvature inequalities. We give the definition
of the (intrinsic) δ-invariants introduced by Chen [Che93; Che94; Che95] and their relation
with the (extrinsic) mean curvature. We will focus on the optimal general inequality for δ-
invariants. Once we restrict ourselves to Lagrangian submanifolds again, we show that the
aforementioned inequality is no longer optimal [Che00a] but can be improved [Che+13].
Finally, we will give some corollaries of the improved inequality.
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Chapter 1

Riemannian manifolds, complex
manifolds and their submanifolds

This chapter serves as an introduction to Riemannian geometry, complex manifolds and
submanifold theory. It is meant to remind the reader of the notions and the properties
that are commonly used, as well as to provide the framework for this thesis. Special
attention is given to complex space forms, as these will be the ambient spaces containing
Lagrangian submanifolds we work with.

The contents of this chapter are based on standard works such as [Che11; DC92; Gra65;
Mor01; YK85], as well as the lecture notes on Riemannian geometry and submanifold
theory [Vraa; Vrab] by Luc Vrancken.

1.1 Riemannian manifolds and complex manifolds

Before we introduce the “Riemannian” aspect, let us first recall what a differentiable
manifold and its tangent space are and how vectors and vector fields come in play.

Definition 1.1.1. A differentiable manifold Mn of dimension n consists of a set M ,
together with a collection of injective maps φα : Uα ⊂ Rn → M (where Uα is an open
subset of Rn) such that

(i)
⋃
α φ(Uα) = M ,

(ii) for every pair α, β with V = φα(Uα)∩φβ(Uβ) 6= ∅, we have that φ−1
α (V ) and φ−1

β (V )

are open subset of Rn and the maps φ−1
α ◦ φβ and φ−1

β ◦ φα are differentiable,

(iii) the family (Uα, φα) is maximal with respect to properties (i) and (ii).

We will call the family (Uα, φα) an atlas, and an element of the atlas is called a chart.

Definition 1.1.2. Let Mn be a differentiable manifold. A differentiable map α : I →M is
called a curve in M . Suppose that α(t0) = p and let F(M) denote the set of differentiable
functions on M . The tangent vector to the curve α in t = t0 is the map

α′(t0) : F(M)→ R : f 7→ d(f ◦ α)

dt

∣∣∣∣
t=t0

.

3



4 Chapter 1. Riemannian manifolds, complex manifolds and their submanifolds

A tangent vector at a point p is the tangent vector to a curve α in t0 where α(t0) = p.
We identify two tangent vectors if they work in the same way on all locally differentiable
functions. We denote the collection of all tangent vectors at a point p by TpM , the tangent
space to M at the point p. The (disjoint) union of the tangent spaces TpM at all points
p of M is called the tangent bundle TM .

Definition 1.1.3. A vector field X on a manifold M is a map that associates with every
point p of M a tangent vector at the point p. We call X differentiable in a neighbourhood
of p if and only if the map X : M → TM is differentiable in a neighbourhood of p.
Moreover, we define

(i) X(f)(p) = X(p)(f),

(ii) (X + Y )(p) = X(p) + Y (p),

(iii) (fX)(p) = f(p)X(p),

for any differentiable function f on a neighbourhood of p.

Property 1.1.4. Let X be a vector field an f and g differentiable functions on a neigh-
bourhood of p. Then we have that

(i) X(fg) = fX(g) + gX(f),

(ii) X(af + bg) = aX(f) + bX(g).

Proposition 1.1.5. If X and Y are differentiable vector fields, then there exists a unique
differentiable vector field Z such that

Z(p)(f) = X(p)(Y f)− Y (p)(Xf).

This vector field is called the Lie bracket of X and Y and is denoted by [X, Y ] = XY −Y X.

Property 1.1.6. Let X, Y, Z be differentiable vector fields, let f, g, h be differentiable
functions and let a, b be real numbers. Then

(i) [X, Y ] = −[Y,X],

(ii) [aX + bY, Z] = a[X,Z] + b[Y, Z],

(iii) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ],

(iv) [fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X.

We now make the step from differential geometry to Riemannian geometry, by intro-
ducing Riemannian metrics and the Levi-Civita connection.

Definition 1.1.7. A Riemannian metric on a differentiable manifold Mn is a map that
assigns to each p ∈ M a positive definite, symmetric bilinear form 〈., .〉p on TpM such
that for vector fields X, Y , the function 〈X, Y 〉(p) = 〈X(p), Y (p)〉p is differentiable. If a
differentiable manifold is equipped with a Riemannian metric, it is called a Riemannian
manifold.
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Remark 1.1.8. If X is a tangent vector, we will often write ‖X‖ for the length of the
vector X, i.e. ‖X‖2 = 〈X,X〉. Because the metric is positive definite, the norm is a
positive function.

Definition 1.1.9. An affine connection ∇ on a differentiable manifold M is a map which
associates to two differentiable vector fields X, Y a differentiable vector field ∇XY such
that

(i) ∇fX+gYZ = f∇XZ + g∇YZ,

(ii) ∇X(Y + Z) = ∇XY +∇XZ,

(iii) ∇X(fY ) = X(f)Y + f∇XY ,

where X, Y, Z are differentiable vector fields and f, g are real functions on M .

Proposition 1.1.10. On a Riemannian manifold, there exists a unique affine connection
that satisfies the following properties:

(i) X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 (compatible),

(ii) ∇XY −∇YX = [X, Y ] (symmetric),

which is called the Levi-Civita connection.

From now on, the symbol∇ will always be the Levi-Civita connection unless mentioned
otherwise. We now let the Levi-Civita connection work on tensors rather than vector
fields.

We say that a tensor T is of type (n,m) if it takes n vectors as arguments and returns
m vectors.

Definition 1.1.11. If T is a tensor of type (n, 1), we can define a tensor ∇T of type
(n+ 1, 1), the “derivative” of T , by

(∇XT )(Y1, . . . , Yn) = ∇XT (Y1, . . . , Yn)−
n∑
i=1

T (Y1, . . . ,∇XYi, . . . , Yn),

and similarly for a tensor T of type (n, 0) we define the tensor ∇T of type (n+ 1, 0) by

(∇XT )(Y1, . . . , Yn) = X(T (Y1, . . . , Yn))−
n∑
i=1

T (Y1, . . . ,∇XYi, . . . , Yn).

We can then define the k-th order derivative by

(∇k
X1,...,Xk

T ) = (∇X1(∇k−1
X2,...,Xk

T )).

Remark 1.1.12. This differentiation behaves well with respect to the metric: if T is a
(n, 1)-tensor and we define the (n+ 1, 0)-tensor

T ′(Y1, . . . , Yn+1) = 〈T (Y1, . . . , Yn), Yn+1〉,

then we find that

〈(∇k
X1,...,Xk

T )(Y1, . . . , Yn), Yn+1〉 = (∇k
X1,...,Xn

T ′)(Y1, . . . , Yn, Yn+1).
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Definition 1.1.13. The Riemann curvature tensor R is defined by

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]

= ∇X∇Y −∇Y∇X −∇∇XY +∇∇YX
= ∇2

X,Y −∇2
Y,X ,

and we interpret R(X, Y )Z as a tensor of type (3,1).

Property 1.1.14. The curvature tensor R has the following properties:

(i) R(X, Y ) = −R(Y,X),

(ii) 〈R(X, Y )Z,W 〉 = −〈R(X, Y )W,Z〉,

(iii) 〈R(X, Y )Z,W 〉 = 〈R(Z,W )X, Y 〉,

(iv) Ξ
X,Y,Z

R(X, Y )Z = 0 (first Bianchi identity),

(v) Ξ
X,Y,Z

(∇XR)(Y, Z) = 0 (second Bianchi identity),

where Ξ denotes the cyclic sum over its indices.

A important operator closely related to the curvature operator is the following:

Definition 1.1.15. We define the wedge operator ∧ as

(X ∧ Y )Z = 〈Y, Z〉X − 〈X,Z〉Y.

It satisfies all of the properties of the Riemannian curvature tensor mentioned above.

Definition 1.1.16. The sectional curvature K is defined by

K(X, Y ) =
〈R(X, Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2
.

If π is a 2-dimensional subspace of TpM spanned by vectors X, Y , we will also write
K(π) = K(X, Y ). In fact, K(π) is independent of the chosen basis.

For a surface S, the tangent space TpS is 2-dimensional at every point. The sectional
curvature K(TpM) equals the Gaussian curvature K(p) at every point p ∈ S, hence they
are both denoted by K. As a consequence, for a surface we have that the curvature
operator takes the following form:

R(X, Y ) = K(p)(X ∧ Y ).

Definition 1.1.17. The Ricci tensor is defined as

Ric(X, Y ) =
n∑
i=1

〈R(ei, X)Y, ei〉,

and the Ricci curvature of a unit vector X is defined as

Ric(X) = Ric(X,X) =
n∑
i=1

K(ei, X),

where {e1, . . . , en} is an orthonormal basis of TpM .



1.1. Riemannian manifolds and complex manifolds 7

Definition 1.1.18. The scalar curvature is defined by

τ =
∑
i<j

K(ei, ej) =
1

2

∑
i,j

K(ei, ej) =
1

2

n∑
i=1

Ric(ei),

where {e1, . . . , en} is an orthonormal basis of TpM .

Definition 1.1.19. If Ric(X, Y ) is a multiple of 〈X, Y 〉 for each X, Y ∈ TpM and at
every point p ∈M , then we say that M is an Einstein manifold.

Definition 1.1.20. If K(X, Y ) = c with c ∈ R, for all X, Y ∈ TpM and at every point
p ∈M , then we call M a real space form which we denote by M(c). The curvature tensor
of a real space form is of the form

R(X, Y ) = c(X ∧ Y ).

We say that M is a flat manifold when it is of constant sectional curvature c = 0.

Lemma 1.1.21 (Schur’s Lemma). Let Mn be a Riemannian manifold of dimension n ≥
3. Suppose that there is a function c ∈ F(M) such that at any point p and for any
X, Y ∈ TpM we have that K(X, Y ) = c(p). Then c is actually a constant function, i.e.
M is a real space form.

We now turn towards Riemannian manifolds with complex structures.

Definition 1.1.22. A Riemannian manifold M is called an almost complex manifold if
and only if it admits an almost complex structure J , i.e. for any p ∈M , there exists a map
Jp : TpM → TpM such that J2

p = − Id and for any X, JX(p) := JpX(p) is a differentiable
vector field.

Remark 1.1.23. For M to have an almost complex structure, it is necessarily of even
dimension. Because of this, when talking about an almost complex manifold Mn, n
denotes the complex dimension rather than the real dimension.

Definition 1.1.24. Given a tensor field of type (1, 1) on M , the Nijenhuis tensor of A
is a tensor of type (2, 1) given by

NA(X, Y ) = −A2[X, Y ] + A[AX, Y ] + A[X,AY ]− [AX,AY ].

Definition 1.1.25. We say that an almost complex manifold M is a complex manifold if
the Nijenhuis tensor NJ of the almost complex structure J vanishes everywhere.

Definition 1.1.26. An almost complex manifold M for which J is compatible with the
metric, i.e.

〈X, Y 〉 = 〈JX, JY 〉,
is called an almost Hermitian manifold. If M is moreover a complex manifold, it is called
a Hermitian manifold.

Note that this compatibility is equivalent to 〈X, JX〉 = 0. So we can see J as a
rotation by 90 degrees: by repeatedly applying J to a vector, we obtain the sequence
X, JX,−X,−JX,X, JX, . . .. All these vectors lie in the plane spanned by the orthogonal
vectors X and JX.
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Definition 1.1.27. An almost Hermitian manifold M is called a Kähler manifold if
∇J = 0, i.e. for all X, Y ∈ TpM ,

(∇XJ)Y = ∇XJY − J∇XY = 0.

Remark 1.1.28. This conditions implies that NJ vanishes. Thus Kähler manifolds are
always Hermitian manifolds.

1.2 Complex space forms

We ended the previous section by introducing Kähler manifolds. Suppose we want more
symmetry on the manifold, then we could require that a Kähler manifold has constant
sectional curvature c. However, the only Kähler manifolds of constant sectional curvature
are either 2-dimensional or flat, which is too restrictive. Therefore we define the following
notion:

Definition 1.2.1. The holomorphic sectional curvature of a Kähler manifold M is defined
as K(X, JX).

Rather than requiring a Kähler manifold to have constant sectional curvature, we
impose that it must have constant holomorphic sectional curvature.

Definition 1.2.2. A Kähler manifold of constant holomorphic sectional curvature 4c is
called a complex space form, which we denote by Mn(4c).

The reason for the factor 4 is purely aesthetic, as will become clear soon. It is simply
there to prevent having to write division by 4 constantly, and serves as a good way to
distinguish real space forms and complex space forms. Analogous to real space forms, the
curvature tensor of complex space forms takes a special form:

R(X, Y ) = c ((X ∧ Y ) + (JX ∧ JY ) + 2〈X, JY 〉J) . (1.2.1)

Property 1.2.3. This curvature tensor R of a complex space form J interacts with the
complex structure J in the following ways:

(i) R(X, Y ) = R(JX, JY ),

(ii) R(X, JY ) = −R(JX, Y ),

(iii) R(X, Y )J = JR(X, Y ),

(iv) 〈R(X, Y )JZ, JW 〉 = 〈R(X, Y )Z,W 〉,

(v) 〈R(X, Y )JZ,W 〉 = −〈R(X, Y )Z, JW 〉.

Proposition 1.2.4. Let Mn(4c) be a complex space form. Then the Ricci tensor of M is
given by

Ric(X, Y ) = 2c(n+ 1)〈X, Y 〉, (1.2.2)

and therefore M is an Einstein manifold.
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Proof.

Ric(X, Y ) =
2n∑
i=1

〈R(ei, X)Y, ei〉

= c
2n∑
i=1

(〈(ei ∧X)Y, ei〉+ 〈(Jei ∧ JX)Y, ei〉+ 2〈ei, JX〉〈JY, ei〉)

= c
2n∑
i=1

(〈X, Y 〉〈ei, ei〉 − 〈ei, Y 〉〈ei, X〉+ 〈JX, Y 〉〈Jei, ei〉

−〈Jei, Y 〉〈ei, JX〉+ 2〈ei, JX〉〈JY, ei〉)

= c

(
2n〈X, Y 〉 −

2n∑
i=1

(〈X, 〈Y, ei〉ei〉+ 〈JX, 〈JY, ei〉ei〉+ 〈JX, 〈JY, ei〉ei〉)

)
= c (2n〈X, Y 〉 − 〈X, Y 〉+ 〈JX, JY 〉+ 2〈JX, JY 〉)
= 2c(n+ 1)〈X, Y 〉,

which proves the proposition.

A simply connected complete complex space form can be identified with a complex
projective space CP n, a Euclidean space Cn or a complex hyperbolic space CHn according
as c > 0, c = 0 or c < 0.

The complex Euclidean space Cn is always given the Euclidean metric:

〈Xp, Yp〉 = Re(x1ȳ1 + x2ȳ2 + · · ·+ xnȳn).

Definition 1.2.5. The complex projective space CP n can be defined as follows:

CP n = Cn+1\{0}/{p ∼ λp | λ ∈ C\{0}}.

Now, let Π : Cn+1\{0} → CP n be the natural projection, and consider its restriction to
S2n+1(1). From now on Π will always be the restriction map. This restriction is surjective
and two points p, q have the same image if and only if p = eitq for some t ∈ R. We
give Cn+1\{0} the Euclidean metric. Note that the position vector field P restricted to
S2n+1(1) is a unit normal vector field on S2n+1(1), and thus ξ = iP is a globally defined
unit vector field on S2n+1(1). We obtain that (dΠ)p is surjective and has kernel span{ξp}
for any p ∈ S2n+1(1).

Now for any vector field X on CP n, there is a unique vector field X̃ on S2n+1(1) such
that (dΠ)(X̃) = X and X̃ is everywhere orthogonal to ξ. We will call this vector field the
horizontal lift of X. This allows us to put a metric on CP n:

Definition 1.2.6. The Fubini-Study metric on CP n is the metric 〈., .〉FS defined by

〈Xp, Yp〉FS = 〈X̃q, Ỹq〉S2n+1(1),

where 〈., .〉S2n+1(1) is the metric on S2n+1(1) induced by the Euclidean metric of Cn+1, and
q ∈ Π−1(p).
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Note that this definition is independent of the point q, because the map p 7→ eit on
S2n+1(1) is an isometry which preserves ξ and horizontal lifts from vectors fields on CP n.

The complex hyperbolic space CHn can be defined in a similar way. We consider the
space Cn+1

1 , which is the set Cn+1 with metric

〈Xp, Yp〉 = −x0ȳ0 + x1ȳ1 + · · ·+ xnȳn.

Instead of the sphere S2n+1(1), we consider the anti-de Sitter space

H2n+1
1 = {p ∈ Cn+1

1 | 〈p, p〉 = −1}.

We define the complex hyperbolic space CHn as the set of equivalence classes of H2n+1
1

under the action p 7→ λp. Thus we find a projection Π : H2n+1
1 → CHn, and we may

define a metric on CHn in the same way we did for the complex projective space.

1.3 Submanifold theory

In this section we will explain the idea of a submanifold and discuss the basic tools we have.
We will also give commonly used constraints on submanifolds. For notational purposes,
everything with a tilde ∼ will be related to the ambient manifold, e.g. M̃, R̃, ∇̃, . . .

Let M and M̃ be differentiable manifolds and let φ : M → M̃ be a differentiable map.
However, this map only works on points of the manifold, but not on its tangent vectors.
Therefore we have the derivative map:

Definition 1.3.1. Let φ : M → M̃ be a differentiable map between differentiable mani-
folds. Then at any point p ∈M , consider the map

dφp : TpM → Tφ(p)M̃ : v 7→ d

dt
(φ ◦ γ)

∣∣∣∣
t=0

,

where γ is a curve in M such that γ(0) = p and γ′(0) = v.

Definition 1.3.2. Let φ : M → M̃ be a differentiable map between differentiable mani-
folds. We say that

(i) φ is an immersion if and only if dφp is injective for all p ∈M ,

(ii) φ is an embedding if and only if φ : M → φ(M) is a homeomorphism,

(iii) if φ is an immersion, then we will say (M,φ) is a submanifold of M̃ .

In Riemannian geometry we require something stronger than an immersion.

Definition 1.3.3. Let (M, 〈., .〉M) and (M̃, 〈., .〉M̃) be Riemannian manifolds and φ :
M → M̃ an immersion. We call φ an isometric immersion if and only if

〈X, Y 〉M = 〈dφ(X), dφ(Y )〉M̃ , (1.3.1)

for every X, Y ∈ TpM at every point p ∈M .
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On the one hand, we can start with M and M̃ both having their own metric, and
verifying if a given immersion between them is isometric. On the other hand we could
also take M to be a differentiable manifold immersed by φ in a Riemannian manifold
(M̃, 〈., .〉M̃) and give M the metric defined by (1.3.1), which we call the induced met-
ric. Then M becomes a Riemannian manifold (M, 〈., .〉M) and φ becomes an isometric
immersion between (M, 〈., .〉M) and (M̃, 〈., .〉M̃).

Because dφ is injective, we will simply “forget” to write the dφ, by identifying dφ(TpM)
with TpM . We will also write TpM̃ rather than Tφ(p)M̃ since an immersion is locally an
embedding.

We can split up the tangent space of M̃ as TpM̃ = TpM ⊕ T⊥p M . Thus we can denote
by X̄

⊥

and X̄⊥ the tangent and normal components of a vector field X̄ respectively. This
decomposition is unique. We shall denote elements of TpM with Roman letters (e.g. X,
Y , . . . ) and elements of T⊥p M with Greek letters (e.g. ξ, η, . . . ).

The first tools to study submanifolds are the formulas of Gauss and Weingarten. Let
∇ be the Levi-Civita connection of M and ∇̃ the Levi-Civita connection of M̃ , let X, Y
be tangent vector fields and ξ a normal vector field. We can decompose the vector fields
∇̃XY and ∇̃Xξ into tangent and normal components as follows:

∇̃XY = ∇XY + h(X, Y ), (1.3.2)

∇̃Xξ = −AξX +∇⊥Xξ. (1.3.3)

Definition 1.3.4. We call h is the second fundamental form of the immersion, A is the
shape operator and ∇⊥ is the normal connection. Note that both the second fundamental
form and the shape operator are tensorial.

Property 1.3.5. These have the following properties:

(i) h(X, Y ) = h(Y,X),

(ii) 〈AξX, Y 〉 = 〈AξY,X〉,

(iii) 〈h(X, Y ), ξ〉 = 〈AξX, Y 〉,

(iv) ∇⊥ has the usual properties of a connection.

Definition 1.3.6. Since ∇⊥ is a connection we can define its associated curvature, the
normal curvature R⊥ by

R⊥(X, Y ) = [∇⊥X ,∇⊥Y ]−∇⊥[X,Y ].

We will define another connection:

Definition 1.3.7. The Van der Waerden-Bortolotti connection ∇̄ is defined as

∇̄ = ∇⊕∇⊥.

This simply means we apply the Levi-Civita connection of M on a tangent vector field,
and we apply the normal connection on a normal vector field. For a vector Ỹ ∈ TpM̃ this
would mean that

∇̄X(Ỹ ) = ∇XY

⊥

+∇⊥XY ⊥.
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Its differentiation works similarly, for example when used on the second fundamental
form we obtain

(∇̄Xh)(Y, Z) = ∇⊥Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

Denote by R and R̃ the curvature tensors of M and M̃ respectively, and by R⊥ the
normal curvature. The equations of Gauss, Codazzi and Ricci are then given by

(R̃(X, Y )Z)

⊥

= R(X, Y )Z − Ah(Y,Z)X + Ah(X,Z)Y, (1.3.4)

(R̃(X, Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X,Z), (1.3.5)

(R̃(X, Y )ξ)⊥ = R⊥(X, Y )ξ + h(AξX, Y )− h(X,AξY ), (1.3.6)

or equivalently by

〈R̃(X, Y )Z),W 〉 = 〈R(X, Y )Z,W 〉 − 〈h(Y, Z), h(X,W )〉+ 〈h(X,Z), h(Y,W )〉, (1.3.7)

〈R̃(X, Y )Z, ξ〉 = 〈(∇̄Xh)(Y, Z), ξ〉 − 〈(∇̄Y h)(X,Z), ξ〉, (1.3.8)

〈R̃(X, Y )ξ, η〉 = 〈R⊥(X, Y )ξ, η〉 − 〈[Aξ, Aη]X, Y 〉. (1.3.9)

Since 〈R̃(X, Y )ξ, Z〉 = −〈R̃(X, Y )Z, ξ〉, we omit (R̃(X, Y )ξ)

⊥

as it would be equivalent
to the equation of Codazzi.

Definition 1.3.8. The mean curvature H is defined as the normalised trace of the second
fundamental form, i.e.

H =
1

n
traceh =

1

n

n∑
i=1

h(ei, ei),

where {e1, . . . , en} is an orthonormal basis of TpM
n.

Based on the second fundamental form, shape operator and mean curvature, we can
define the following constraints:

Definition 1.3.9. A submanifold M is called

• totally geodesic if h ≡ 0,

• totally umbilical if Aξ is a multiple of the identity for any ξ,

• minimal if H = 0.

If M̃ is an almost complex manifold, we can define constraints related to the almost
complex structure J :

Definition 1.3.10. A submanifold M of an almost complex manifold M̃ is called

• holomorphic if J(TpM) ⊂ TpM and therefore J(TpM) = TpM ,

• totally real if J(TpM) ⊂ T⊥p M , i.e. 〈JX, Y 〉 = 0 for all X, Y tangent to M .

And finally if M̃ is a Kähler manifold, we have:

Definition 1.3.11. A submanifold Mn of a Kähler manifold M̃m is called

• Kähler if it is holomorphic, then M is itself a Kähler manifold,

• Lagrangian if it is totally real and n = m, or equivalently J(TpM) = T⊥p M .
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1.4 Forms and cohomology

In this section, we define forms on a differentiable manifold, and show how they induce a
cohomology.

Definition 1.4.1. We define the set of k-forms Λk
pM at p ∈M as

Λk
pM = {ωp : (TpM)k → R | ω multilinear and alternating}.

Property 1.4.2. We have the following properties:

(i) Λ0
pM
∼= R,

(ii) Λ1
pM = (TpM)∗, the dual space of TpM ,

(iii) Λn
pM
∼= R,

(iv) Λk
pM
∼= {0} for all k > n,

(v) Λk
pM is a real vector space of dimension

(
n
k

)
.

Definition 1.4.3. The exterior product ∧ of forms works as follows:

∧ : Λk
pM × Λl

pM → Λk+l
p M : (ωp, ηp) 7→ (ω ∧ η)p,

where

(ω ∧ η)p(v1, . . . , vn) =
∑

σ∈Sk+l

sign(σ)ωp(vσ(1), . . . , vσ(k)) · ηp(vσ(k+1), . . . , vσ(k+l)).

However, we want to work with forms on the entire manifold rather than just in a
point.

Definition 1.4.4. We define the set of all k-forms on a differentiable manifold M as

ΛkM =
⋃
p∈M

Λk
pM,

and we restrict this set to the forms that are smooth:

Ωk(M) = {ω : M → ΛkM : p 7→ ωp | ωp ∈ Λk
pM and ω smooth},

where smoothness means that for any vector fields X1, . . . , Xk, ω(X1, . . . , Xk)(p) : M → R
is a smooth function.

Remark 1.4.5. A 0-form ω ∈ Ω0(M) is just a smooth function M → R, so Ω0M = F(M).

Definition 1.4.6. We define the exterior derivative d as

d : Ωk(M)→ Ωk+1(M) : ω 7→ dω,

where

dω(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1Xi(ω(X1, . . . , Xi−1, Xi+1, . . . , Xk+1))

+
∑
i<j

(−1)i+jω([Xi, Xj], X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xk+1).
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Property 1.4.7. This exterior derivative has the following properties:

(i) if ω ∈ Ω0(M) = F(M), then dω(X) = X(ω),

(ii) d ◦ d = 0,

(iii) If ω ∈ Ωk(M), then d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

Definition 1.4.8. We call a k-form closed if dω = 0, and well call it exact if there is a
(k − 1)-form η such that dη = ω. Then we define the sets

Zk(M) = ker(d : Ωk(M)→ Ωk+1(M)) (closed k-forms),

Bk(M) = im(d : Ωk−1(M)→ Ωk(M)) (exact k-forms).

Note that an exact form is always closed: if ω = dη ∈ Bk(M), then dω = d2η = 0,
thus we find that Bk(M) ⊂ Zk(M).

Definition 1.4.9. We call the quotient

Hk
dR(M) =

Zk(M)

Bk(M)
,

the k-th de Rham cohomology group of a differentiable manifold M . We denote its dimen-
sion as a real vector space by

bk(M) = dimRH
k
dR(M),

the k-th Betti number.

Property 1.4.10. Let M be a differentiable manifold. Then

(i) b0(M) is the number of connected components of M ,

(ii) M is connected if and only if b0(M) = 1,

(iii) If b1(M) = 0, then M is simply connected. The converse does not hold in general.

We now introduce some forms on a Riemannian manifold M which will be useful later
in this thesis.

Definition 1.4.11. The dual forms to an orthonormal basis {e1, . . . , en} are the 1-forms
ωi such that

ωi(ej) = δij.

Definition 1.4.12. The connection forms of a Riemannian manifold M are the 1-forms
ωji such that

ωji (ek) = 〈∇ekei, ej〉,

and the curvature forms are the 2-forms Ωj
i defined as

Ωi
j = dωij +

∑
k

ωik ∧ ωkj .
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Property 1.4.13. These forms have the following properties:

(i) ωji = −ωij,

(ii) ωii = 0,

(ii) Ωi
j = −Ωj

i ,

(iv) Ωi
i = 0,

(v) Ωi
j = 1

2

∑
k,l〈R(ei, ej)ek, el〉ωk ∧ ωl.

We will now apply these forms to submanifold theory. Let Mn be a Riemannian
submanifold of a Riemannian manifold M̃m. Let {e1, . . . , en, en+1, . . . , em} be a local
orthonormal frame such that {e1, . . . , en} are tangent to M and {en+1, . . . , em} are normal.
Let {ω1, . . . , ωn} be the dual frame of {e1, . . . , en}.

We shall make use of the following convention on the ranges of indices unless mentioned
otherwise:

1 ≤ α, β, γ, . . . ≤ m; 1 ≤ i, j, k, l ≤ n;n+ 1 ≤ r, s, t, . . . ,≤ m.

We denote by ω̃αβ the connection forms of ∇̃, the Levi-Civita connection of M̃ , and we

define the curvature 2-forms of M̃ , restricted to M , as

Ω̃α
β =

1

2

∑
k,l

〈R̃(eα, eβ)ek, el〉ωk ∧ ωl.

Theorem 1.4.14. The Cartan structure equations are given by

dωi = −
∑
j

ω̃ij ∧ ωj, (1.4.1)

dω̃ji = 2
∑
r

ω̃ir ∧ ω̃rj +
∑
k

ω̃ik ∧ ω̃kj + Ω̃j
i , (1.4.2)

dω̃ri =
∑
j

ω̃ij ∧ ω̃jr +
∑
s

ω̃is ∧ ω̃sr + Ω̃r
i , (1.4.3)

dω̃sr = 2
∑
i

ω̃ri ∧ ω̃is +
∑
t

ω̃rt ∧ ω̃ts + Ω̃s
r. (1.4.4)





Chapter 2

Lagrangian submanifolds

This chapter is devoted to give properties that hold for Lagrangian submanifolds of com-
plex space forms in general. We apply formulas of Gauss and Weingarten and the Gauss,
Codazzi and Ricci equations to Lagrangian submanifolds, give an appropriate basis of the
tangent space at a point which will prove very useful in proving certain theorems and
propositions, and finally apply the Cartan structure equations to Lagrangian submani-
folds. This chapter is based on [Che01; Che11; CO74a].

2.1 Properties

Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c̃). Let us start by
noting that the “power” of a Lagrangian submanifold comes from the property J(TpM) =
T⊥p M . This means that TpM and T⊥p M are in fact isomorphic, where the isomorphism
is given by the almost complex structure J . This implies that any normal vector can be
written as the image under J of a tangent vector, and vice versa.

Note that we will from now on assume that n ≥ 2. If n = 1, then every 1-dimensional
submanifold of a complex space form is Lagrangian.

As mentioned before, the main tools of submanifold theory are the formulas of Gauss
and Weingarten and the fundamental equations of Gauss, Codazzi and Ricci. There-
fore it is natural to see what happens to these formulas and equations for a Lagrangian
submanifold.

Property 2.1.1. For a Lagrangian submanifold of a complex space form, we have that:

JAJYX = h(X, Y ), (2.1.1)

∇⊥XJY = J∇XY, (2.1.2)

AJXY = AJYX. (2.1.3)

Proof. Consider the Kähler condition ∇̃J ≡ 0. We apply the formulas of Gauss and
Weingarten:

0 = ∇̃XJY − J∇̃XY = −AJYX +∇⊥XJY − J∇XY − Jh(X, Y ).

17
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The first two properties now follow by taking the tangent and normal components respec-
tively. The third property follows from the first, since the second fundamental form h is
symmetric in X and Y .

The following (3, 0)-tensor will be very important and will be one of the main tools to
study Lagrangian submanifolds.

Definition 2.1.2. We define the cubic form C on TpM as

C(X, Y, Z) = 〈h(X, Y ), JZ〉.

Remark 2.1.3. If we are working with an orthonormal basis {e1, . . . , en} of TpM , we will
often write

Cijk = C(ei, ej, ek).

Property 2.1.4. The cubic form C is totally symmetric.

Proof. We can prove that C is symmetric in its first two components by using the sym-
metry of h:

C(X, Y, Z) = 〈h(X, Y ), JZ〉 = 〈h(Y,X), JZ〉 = C(Y,X,Z).

Using (2.1.1) we find

C(X, Y, Z) = 〈AJXY, Z〉 = 〈AJXZ, Y 〉 = C(X,Z, Y ),

so C is also symmetric in its last two components and is therefore totally symmetric.

Let us now take a look at the curvature tensor R̃ of M̃ .

Property 2.1.5. The curvature tensor R̃ of the complex space form M̃(4c̃) is

R̃(X, Y ) = c̃ ((X ∧ Y ) + (JX ∧ JY )) . (2.1.4)

In particular, we have that

R̃(X, Y )Z = c̃(X ∧ Y )Z, (2.1.5)

R̃(X, Y )JZ = c̃(JX ∧ JY )JZ. (2.1.6)

Proof. All of these equations follow from the fact that a Lagrangian submanifold is totally
real.

Next, we want to study equations of Gauss, Codazzi and Ricci for Lagrangian sub-
manifolds. The equation of Gauss will give us information about the curvature tensor R
of the Lagrangian submanifold:

Property 2.1.6. Let M be a Lagrangian submanifold of a complex space form M̃(4c̃).
Then the curvature tensor R of M is

R(X, Y ) = c̃(X ∧ Y ) + [AJX , AJY ]. (2.1.7)
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Proof. Consider the equation of Gauss (1.3.7). We have that

〈h(Y, Z), h(X,W )〉 = 〈JAJYZ, JAJXW 〉 = 〈AJYZ,AJXW 〉 = 〈AJXAJYZ,W 〉, (2.1.8)

and similarly we have

〈h(X,Z), h(Y,W )〉 = 〈AJYAJXZ,W 〉. (2.1.9)

So applying (2.1.4), (2.1.8) and (2.1.9) to the equation of Gauss, we end up with

c̃〈(X ∧ Y )Z,W 〉 = 〈R(X, Y )Z,W 〉 − 〈AJXAJYZ,W 〉+ 〈AJYAJXZ,W 〉,

which proves the property.

Next, we consider the equation of Codazzi.

Property 2.1.7. For a Lagrangian submanifold M of a complex space form M̃(4c), we
have that ∇̄h is totally symmetric.

Proof. Consider the equation of Codazzi (1.3.5). We know that R̃(X, Y )Z has no normal
components, so we end up with

(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z),

which means that (∇̄Xh)(Y, Z) is symmetric in X and Y . But (∇̄Xh)(Y, Z) is always
symmetric in Y and Z, so ∇̄h is actually totally symmetric.

Due to equations (2.1.2), (2.1.6) and (2.1.8), the equation of Ricci (1.3.6) for La-
grangian submanifolds is equivalent to the equation of Gauss.

2.2 Canonical basis

In this section, we introduce a canonical basis for the tangent space TpM [Dil+12; Eji81;
LV05; LW09; MU88], which will prove very useful in analysing the tangent space.

Let T be an n-dimension real vector space and C a totally symmetric (3, 0)-tensor on
T . Let us define

U = {X ∈ T | ‖X‖ = 1},

which is simply the unit hypersphere in T . We choose the vector

e1 = argmax
X∈U

C(X,X,X), (2.2.1)

Since the (2, 0)-tensor C(e1, X, Y ) is symmetric in X and Y , it can be diagonalised. We
show that e1 is an eigenvector:

Lemma 2.2.1. The vector e1 defined in (2.2.1) is an eigenvector of the (2, 0)-tensor
C(e1, X, Y ).
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Proof. We have to prove that C(e1, e1, X) is zero for any vector X orthogonal to e1. Take
the curve

γ(t,X) : [0, 2π]× {X ∈ U | X ⊥ e1} → U : (t,X) 7→ cos(t)e1 + sin(t)X.

Now, we have that

C(γ(t,X), γ(t,X), γ(t,X)) = cos3(t)C(e1, e1, e1) + 3 cos2(t) sin(t)C(e1, e1, X)

+ 3 cos(t) sin2(t)C(e1, X,X) + sin3(t)C(X,X,X).

Differentiating this with respect to t gives

d

dt
C(γ(t,X), γ(t,X), γ(t,X))

= −3 cos2(t) sin(t)C(e1, e1, e1) + (3 cos3(t)− 6 cos(t) sin2(t))C(e1, e1, X)

+ (6 cos2(t) sin(t)− 3 sin3(t))C(e1, X,X) + 3 cos(t) sin2(t)C(X,X,X).

By definition of e1, we know that C(γ(t,X), γ(t,X), γ(t,X)) reaches a maximum at t = 0.
We evaluate the derivative in t = 0, so

0 =
d

dt
C(γ(t,X), γ(t,X), γ(t,X))

∣∣∣∣
t=0

= 3C(e1, e1, X),

so we find that C(e1, e1, X) must be zero and thus e1 is an eigenvector.

Definition 2.2.2. A canonical basis of T for a totally symmetric (3, 0)-tensor C is an or-
thonormal basis {e1, . . . , en} such that e1 is defined as in (2.2.1) and all ei are eigenvectors
of the (2, 0)-tensor C(e1, X, Y ).

Now that we have a suitable basis of eigenvectors {e1, . . . , en}, we can study their
eigenvalues {λ1, . . . , λn}.

Property 2.2.3. A canonical basis {e1, . . . , en} with eigenvalues {λ1, . . . , λn} satisfies
the following:

(i) C1ij = λiδij,

(ii) λ1 ≥ 2λi for 2 ≤ i ≤ n and if λ1 = 2λi, then Ciii = 0,

(iii) if λ1 = 0, then C ≡ 0.

Proof. Item (i) follows directly from the fact that the ei are all mutually orthogonal
eigenvectors of the tensor C(e1, X, Y ).

To prove item (ii), note that the second derivative to t of C(γ(t,X), γ(t,X), γ(t,X))
must be nonpositive since we have a maximum at t = 0. So we calculate this derivative

d2

dt2
C(γ(t,X), γ(t,X), γ(t,X)) = (−3 cos3(t) + 6 cos(t) sin2(t))C(e1, e1, e1)

+ (−21 cos2(t)sin(t) + 6 sin3(t))C(e1, e1, X)

+ (6 cos3(t)− 21 cos(t)) sin2(t)C(e1, X,X)

+ (6 cos2(t) sin(t)− 3 sin3(t))C(X,X,X).
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Evaluating at t = 0 gives us

0 ≥ d2

dt2
C(γ(t,X), γ(t,X), γ(t,X))

∣∣∣∣
t=0

= −3C(e1, e1, e1) + 6C(e1, X,X),

so if we choose X = ei with i ∈ {2, . . . , n} we indeed find that λ1 ≥ 2λi. Now suppose that

equality is attained for some i: λi = λ1/2. Then d2

dt2
C(γ(t, ei), γ(t, ei), γ(t, ei))

∣∣∣
t=0

= 0.

But C(γ(t, ei), γ(t, ei), γ(t, ei)) reaches a maximum at t = 0 so the third derivative must
then be zero too. We calculate the third derivative:

d3

dt3
C(γ(t, ei), γ(t, ei), γ(t, ei)) = (21 cos2(t) sin(t)− 6 sin3(t))C111

+ (−21 cos3(t) + 60 cos(t) sin2(t))C11i

+ (−60 cos2(t) sin(t) + 21 sin3(t))C1ii

+ (6 cos3(t)− 21 cos(t) sin2(t))Ciii.

So evaluating at t = 0, we get

0 =
d3

dt3
C(γ(t, ei), γ(t, ei), γ(t, ei))

∣∣∣∣
t=0

= 6Ciii,

so indeed Ciii is zero.

For item (iii), note that if λ1 = 0, then C(X,X,X) = 0 for all X ∈ T . By linearity
we obtain C ≡ 0.

Remark 2.2.4. If λ1 = 2λi for some i ∈ 2, . . . , n, we also know that the fourth derivative of
C(γ(t, ei), γ(t, ei), γ(t, ei)) must be nonpositive. However, calculating the fourth derivative
gives us that 60λi ≥ 21λ1, which is obviously the case.

Remark 2.2.5. In general there is no “unique” canonical basis. For example, if V is the
m-dimensional eigenspace for an eigenvalue λV spanned by {ei, . . . , ei+m−1}, then for any
v ∈ V we find that C(e1, v, v) = λV . So any orthonormal basis {f1, . . . , fm} of V satisfies
C(e1, fi, fj) = λV δij, and we can replace {ei, . . . , ei+m−1} by {f1, . . . , fm} in the canonical
basis without changing any of its properties.

Definition 2.2.6. Let M be a Lagrangian submanifold of a complex space form. A
canonical basis for the vector space TpM and the cubic form C will simply be called a
canonical basis of TpM .

Remark 2.2.7. Note that this basis forms a frame, i.e. the ei all form local vector fields
[Sza82]. If this were not the case, a vector field of the form ∇eiej would not be differen-
tiable.

2.3 Cartan structural equations

We have introduced the Cartan structural equations before. In this section, we study
how these equations behave when applied to a Lagrangian submanifold M of a complex
space form. We shall denote by {e1, . . . , en} a basis for TpM , thus T⊥p M is spanned by
{Je1 = en+1, . . . , Jen = e2n}. We find the following properties:
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Property 2.3.1. Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c̃).
Denote by ω̃ the connection forms of ∇̃ and by Ω̃ the curvature forms restricted to M .
Then

(i) ω̃ji = ω̃j+ni+n ,

(ii) ω̃j+ni = −ω̃ji+n,

(iii) Ω̃i
j = Ω̃i+n

j+n,

(iv) Ω̃i+n
i = −Ω̃i

j+n.

Proof. All properties follow from straightforward calculation:

ω̃ji (eα) = 〈∇̃eαei, ej〉 = 〈J∇̃eαei, Jej〉 = 〈∇̃eαJei, Jej〉 = 〈∇̃eαei+n, ej+n〉 = ω̃j+ni+n (eα),

ω̃j+ni (eα) = 〈∇̃eαei, ej+n〉 = −〈J∇̃eαJei, Jej〉 = −〈∇̃eαei+n, ej〉 = −ω̃ji+n(eα),

Ω̃i
j =

1

2

∑
k,l

〈R̃(ei, ej)ek, el〉ωk ∧ ωl =
1

2

∑
k,l

〈R̃(Jei, Jej)ek, el〉ωk ∧ ωl

=
1

2

∑
k,l

〈R̃(ei+n, ej+n)ek, el〉ωk ∧ ωl = Ω̃i+n
j+n,

Ω̃i+n
i =

1

2

∑
k,l

〈R̃(ei, ej+n)ek, el〉ωk ∧ ωl =
1

2

∑
k,l

〈R̃(ei, Jej)ek, el〉ωk ∧ ωl

= −1

2

∑
k,l

〈R̃(Jei, ej)ek, el〉ωk ∧ ωl = −1

2

∑
k,l

〈R̃(ei+n, ej)ek, el〉ωk ∧ ωl = −Ω̃i
j+n,

so all properties check out.

Using these symmetries, we may rewrite the Cartan structure equations for Lagrangian
submanifolds:

Theorem 2.3.2. The Cartan structure equations for a Lagrangian submanifold of a com-
plex space form are as follows:

dωi = −
∑
j

ω̃ij ∧ ωj, (2.3.1)

dω̃ji = 2
∑
k

ω̃ik+n ∧ ω̃k+n
j +

∑
k

ω̃ik ∧ ω̃kj + Ω̃j
i , (2.3.2)

dω̃j+ni =
∑
k

ω̃ik ∧ ω̃kj+n +
∑
k

ω̃jk ∧ ω̃
k
i+n + Ω̃j+n

i , (2.3.3)

Proof. These equations follow from writing every normal index r, s, t as a tangent index
plus n in the Cartan structure equations, and applying the above properties.

Remark 2.3.3. Since ω̃ji = ω̃j+ni+n , the Lagrangian equivalent of (1.4.4) is already given by
(2.3.2).
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Chapter 3

Parallelity conditions

Up till now, there does not exist a complete classification of Lagrangian submanifolds
of complex space forms. Therefore it seems useful to study and attempt to classify La-
grangian submanifolds with additional constraints. We will study constraints related to
the mean curvature, the second fundamental form and the cubic form.

3.1 Notions of parallelity

In this section we introduce different notions of parallelity for a tensor T . Much of this
section is based on [Dil+13].

One of the ways we can put a constraint on a Riemannian manifold M is to have
a condition on a certain tensor T (U1, . . . , Un) on TpM . The most symmetric condition
would be to demand the tensor vanishes, however, in many cases this is too strict. A
weaker condition is the following:

Definition 3.1.1. Let T be a (n, 0)- or (n, 1)-tensor on a Riemannian manifold M . We
call T parallel when ∇T ≡ 0.

We could produce weaker conditions by taking higher-order derivatives, i.e. ∇kT ≡ 0
for some k ∈ N. However, a different option exists. We could make the curvature tensor
R act as a differentiation on a tensor, similar to how we defined differentiation by the
Levi-Civita connection:

Definition 3.1.2. Consider a Riemannian manifold M . Then:

(i) if T (U1, . . . , Un) is a (n, 0)-tensor on M , we define:

R(X, Y ) · T (U1, . . . , Un) = −T (R(X, Y )U1, U2, . . . , Un)
− · · · − T (U1, . . . , Un−1, R(X, Y )Un),

(ii) if T (U1, . . . , Un) is a (n, 1)-tensor on M , we define:

R(X, Y ) · T (U1, . . . , Un) = R(X, Y )T (U1, . . . , Un)− T (R(X, Y )U1, U2, . . . , Un)
− · · · − T (U1, . . . , Un−1, R(X, Y )Un).

25
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Definition 3.1.3. Let T be a (n, 0)- or (n, 1)-tensor on a Riemannian manifold M . We
call T semi-parallel when R · T ≡ 0.

This is a strictly weaker condition than ∇2T ≡ 0, as implied by the following theorem:

Theorem 3.1.4 (Ricci identity). Let T be a (n, 1)-tensor. Then we have that

R(X, Y ) · T (U1, . . . , Un) = (∇2
X,Y T )(U1, . . . , Un)− (∇2

Y,XT )(U1, . . . , Un).

Proof. Simply by expanding, we have

(∇2
X,Y T )(U1, . . . , Un) = ∇X(∇Y T )(U1, . . . , Un)− (∇∇XY T )(U1, . . . , Un)

−
n∑
i=1

(∇Y T )(U1, . . . ,∇XUi, . . . , Un)

= ∇X∇Y T (U1, . . . , Un)−
n∑
i=1

∇XT (U1, . . . ,∇YUi, . . . , Un)

−∇∇XY T (U1, . . . , Un) +
n∑
i=1

T (U1, . . . ,∇∇XYUi, . . . , Un)

−
n∑
i=1

∇Y T (U1, . . . ,∇XUi, . . . , Un)

+
n∑
i=1

T (U1, . . . ,∇Y∇XUi, . . . , Un)

+
∑
i 6=j

T (U1, . . . ,∇XUi, . . . ,∇YUj, . . . , Un),

and similarly we have

(∇2
Y,XT )(U1, . . . , Un) = ∇Y∇XT (U1, . . . , Un)−

n∑
i=1

∇Y T (U1, . . . ,∇XUi, . . . , Un)

−∇∇YXT (U1, . . . , Un) +
n∑
i=1

T (U1, . . . ,∇∇YXUi, . . . , Un)

−
n∑
i=1

∇XT (U1, . . . ,∇YUi, . . . , Un)

+
n∑
i=1

T (U1, . . . ,∇X∇YUi, . . . , Un)

+
∑
i 6=j

T (U1, . . . ,∇YUi, . . . ,∇XUj, . . . , Un).
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Taking the difference between these two derivatives of T gives

(∇2
X,Y T )(U1, . . . , Un)− (∇2

Y,XT )(U1, . . . , Un)

= ∇X∇Y T (U1, . . . , Un)−∇Y∇XT (U1, . . . , Un)

−∇∇XY T (U1, . . . , Un) +∇∇YXT (U1, . . . , Un)

−
n∑
i=1

T (U1, . . . ,∇X∇YUi, . . . , Un) +
n∑
i=1

T (U1, . . . ,∇Y∇XUi, . . . , Un)

−
n∑
i=1

T (U1, . . . ,∇∇YXUi, . . . , Un) +
n∑
i=1

T (U1, . . . ,∇∇XYUi, . . . , Un)

= R(X, Y )T (U1, . . . , Un)−
n∑
i=1

T (U1, . . . , R(X, Y )Ui, . . . , Un)

= R(X, Y ) · T (U1, . . . , Un),

which proves the Ricci identity.

Similarly, for (n, 0)-tensors we have the following:

Theorem 3.1.5 (Ricci Identity). Let T be a (n, 0)-tensor. Then we have that

R(X, Y ) · T (U1, . . . , Un) = (∇2
X,Y T )(U1, . . . , Un)− (∇2

Y,XT )(U1, . . . , Un).

Proof. The proof is identical to the previous Ricci identity, by replacing derivatives of the
form ∇XT (U1, . . . , Un) by the directional derivatives X(T (U1, . . . , Un)).

We can produce an even weaker condition by using the wedge operator ∧, which
behaves like a curvature tensor.

Definition 3.1.6. Consider a Riemannian manifold M . Then:

(i) if T (U1, . . . , Un) is a (n, 0)-tensor on M , we define:

(X ∧ Y ) · T (U1, . . . , Un) = −T ((X ∧ Y )U1, U2, . . . , Un)
− · · · − T (U1, . . . , Un−1, (X ∧ Y )Un),

(ii) if T (U1, . . . , Un) is a (n, 1)-tensor on M , we define:

(X ∧ Y ) · T (U1, . . . , Un) = (X ∧ Y )T (U1, . . . , Un)− T ((X ∧ Y )U1, U2, . . . , Un)
− · · · − T (U1, . . . , Un−1, (X ∧ Y )Un).

We now define a new operator R− φ∧ as

(R− φ∧)(X, Y ) · T (U1, . . . , Un) = R(X, Y ) · T (U1, . . . , Un)− φ(X ∧ Y ) · T (U1, . . . , Un),

where φ ∈ F(M).

Definition 3.1.7. Let T be a (n, 0)- or (n, 1)-tensor on a Riemannian manifold M . We
call T pseudo-parallel when (R− φ∧) · T ≡ 0, for any φ ∈ F(M).
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Note that for this condition to be useful, we will often require that the function φ is
unique in a certain sense. This will become clear later in this thesis.

All of these notions of symmetry have been applied in an intrinsic context, by choosing
T = R. The Riemannian manifolds with most symmetry are the flat ones, i.e. R ≡ 0.
In the 1920’s Cartan introduced in [Car26] the notion of locally symmetric spaces, being
the Riemannian manifolds with ∇R = 0, and later classified these with help of an older
paper of his [Car14]. Later, he generalised these to the semi-symmetric manifolds having
R · R ≡ 0 [Car46], which were classified by Szabó [Sza82; Sza85]. Deszcz defined the
pseudo-symmetric manifolds as those satisfying (R− φ∧) ·R ≡ 0 [DG87].

It was proven in [DDV97] that for a Kähler manifold of (real) dimension n ≥ 4, the
only pseudo-symmetric Kähler manifolds are the semi-symmetric ones. For dimension
n = 2, an example of a non-semi-symmetric pseudo-symmetric Kähler manifold was given
in [Ols03].

Remark 3.1.8. In the definition of semi-symmetric manifolds, the second curvature tensor
in R ·R may be ambiguous: one can interpret it as a (3, 1)-tensor R(X, Y )Z, but often it
is also interpreted as a (4, 0)-tensor R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉. This confusion is
possible in general: an (n, 1)-tensor T (U1, . . . , Un) can be interpreted as a (n+1, 0)-tensor
T ′(U1, . . . , Un, Un+1) = 〈T (U1, . . . , Un), Un+1〉 by combining it with the metric. However,
the next proposition shows this doesn’t matter.

Proposition 3.1.9. Let T be a (n, 1)-tensor, and define T ′ as

T ′(U1, . . . , Un, Un+1) = 〈T (U1, . . . , Un), Un+1〉,

so it is a (n+ 1, 0)-tensor. Then

(i) 〈R(X, Y ) · T (U1, . . . , Un), Un+1〉 = R(X, Y ) · T ′(U1, . . . , Un, Un+1),

(ii) 〈(X ∧ Y ) · T (U1, . . . , Un), Un+1〉 = (X ∧ Y ) · T ′(U1, . . . , Un, Un+1).

Proof. Item (i) follows from a direct computation:

R(X, Y ) · T ′(U1, . . . , Un, Un+1) = −
n+1∑
i=1

T ′(U1, . . . , R(X, Y )Ui, . . . , Un+1)

= −
n∑
i=1

〈T (U1, . . . , R(X, Y )Ui, . . . , Un), Un+1〉

− 〈T (U1, . . . , Un), R(X, Y )Un+1〉

= −
n∑
i=1

〈T (U1, . . . , R(X, Y )Ui, . . . , Un), Un+1〉

+ 〈R(X, Y )T (U1, . . . , Un), Un+1〉
= 〈R(X, Y ) · T (U1, . . . , Un), Un+1〉.

Because the wedge has the same symmetries as a curvature tensor, item (ii) is proven in
the exact same way as item (i).
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In submanifold theory we look at extrinsic properties, e.g. the mean curvature H,
the second fundamental form h or the cubic form C. If we are considering a tensor that
returns a tangent vector or a scalar (e.g. the cubic form), we can naturally apply all the
previous notions of parallelity. However, in the case where we have a normal vector (e.g.
the second fundamental form or mean curvature) we will not use ∇ and R to differentiate.

Instead, we will use the Van der Waerden-Bortolotti connection ∇̄ and its associated
curvature tensor R̄ = R ⊕ R⊥. As the wedge operator ∧ does not have a “normal
counterpart” like ∇⊥ for ∇ and R⊥ for R, we cannot do something similar for it.

Definition 3.1.10. Let N(U1, . . . , Un) be a (n, 1)-tensor returning a normal vector. We
define:

(∇̄XN)(U1, . . . , Un) = ∇⊥XN(U1, . . . , Un)−N(∇XU1, U2, . . . , Un)

− · · · −N(U1, . . . , Un−1,∇XUn),

R̄(X, Y ) ·N(U1, . . . , Un) = R⊥(X, Y )N(U1, . . . , Un)−N(R(X, Y )U1, U2, . . . , Un),

− · · · −N(U1, . . . , Un−1, R(X, Y )Un),

(X ∧ Y ) ·N(U1, . . . , Un) = −N((X ∧ Y )U1, U2, . . . , Un)

− · · · −N(U1, . . . , Un−1, (X ∧ Y )Un).

We also name these conditions like before.

Definition 3.1.11. Let N be a (n, 1)-tensor on a Riemannian submanifold M . Then we
say that N is parallel if ∇̄N ≡ 0, that it is semi-parallel if R̄ ·N ≡ 0 and finally that it
is pseudo-parallel if (R̄− φ∧) ·N ≡ 0 for any φ ∈ F(M).

Similar properties as before hold. First, we have the Ricci identity for a (n, 1)-tensor
returning a normal vector:

Theorem 3.1.12 (Ricci Identity). Let N be a (n, 1)-tensor returning a normal vector
field. Then we have that [MU88]:

R̄(X, Y ) ·N(U1, . . . , Un) = (∇̄2
X,YN)(U1, . . . , Un)− (∇̄2

Y,XN)(U1, . . . , Un).

Proof. Again, the proof is identical to the first Ricci identity, by replacing the derivatives
of the form ∇XT (U1, . . . , Un) by ∇⊥XN(U1, . . . , Un).

Now, let us restrict ourselves to Lagrangian submanifolds. We have that J “commutes”
with the Levi-Civita connection ∇ and the curvature tensor R when these are used for
taking derivatives.

Theorem 3.1.13. Suppose we have a (n, 1)-tensor N returning a normal vector, then
JN is a (n, 1)-tensor returning a tangent vector field. We have that

(i) for any k ∈ N, J(∇̄k
X1,...,Xk

N)(U1, . . . , Un) = (∇k
X1,...,Xk

JN)(U1, . . . , Un),

(ii) J(R̄(X, Y ) ·N)(U1, . . . , Un) = R(X, Y ) · JN(U1, . . . , Un).
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Proof. The proof is quite straightforward using the definitions of the differentiations. For
item (i), let us work by induction. First consider the case k = 1.

J(∇̄XN)(U1, . . . , Un) = J∇⊥XN(U1, . . . , Un)− J
n∑
i=1

N(U1, . . . ,∇XUi, . . . , Un)

= ∇XJN(U1, . . . , Un)−
n∑
i=1

JN(U1, . . . ,∇XUi, . . . , Un)

= (∇XJN)(U1, . . . , Un).

Now suppose that

J(∇̄k−1
X1,...,Xk−1

N)(U1, . . . , Un) = (∇k−1
X1,...,Xk−1

JN)(U1, . . . , Un),

then we find

J(∇̄k
X1,...,Xk

N)(U1, . . . , Un)

= J∇⊥X1
(∇̄k−1

X2,...,Xk
N)(U1, . . . , Un)− J

n∑
i=1

(∇̄k−1
X2,...,Xk

N)(U1, . . . ,∇X1Ui, . . . , Un)

= ∇X1J(∇̄k−1
X2,...,Xk

N)(U1, . . . , Un)−
n∑
i=1

J(∇̄k−1
X2,...,Xk

N)(U1, . . . ,∇X1Ui, . . . , Un)

= ∇X1(∇k−1
X2,...,Xk

JN)(U1, . . . , Un)−
n∑
i=1

(∇k−1
X2,...,Xk

JN)(U1, . . . ,∇X1Ui, . . . , Un)

= (∇k
X1,...,Xk

JN)(U1, . . . , Un).

Item (ii) follows from taking k = 2 in item (i) and applying the Ricci identities.

We also find that ∇̄ and R̄ behave well with respect to the metric.

Theorem 3.1.14. Suppose we have a (n, 1)-tensor N returning a normal vector. Define
the (n+ 1, 0)-tensor N ′ as

N ′(U1, . . . , Un, Un+1) = 〈N(U1, . . . , Un), JUn+1〉.

Then we have that

(i) for any k ∈ N, 〈(∇̄k
X1,...,Xk

N)(U1, . . . , Un), JUn+1〉 = (∇k
X1,...,Xk

N ′)(U1, . . . , Un, Un+1),

(ii) 〈R̄(X1, X2) ·N(U1, . . . , Un), JUn+1〉 = R(X1, X2) ·N ′(U1, . . . , Un, Un+1).
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Proof. For item (i), let us work by induction. First consider the case k = 1:

〈(∇̄XN)(U1, . . . , Un), JUn+1〉 = 〈∇⊥XN(U1, . . . , Un), JUn+1〉

−
n∑
j=1

〈N(U1, . . . ,∇XUi, . . . , Un), JUn+1〉

= X〈N(U1, . . . , Un), JUn+1〉 − 〈N(U1, . . . , Un),∇⊥XJUn+1〉

−
n∑
j=1

N ′(U1, . . . ,∇XUi, . . . , Un, Un+1)

= X(N ′(U1, . . . , Un, Un+1))−N ′(U1, . . . , Un,∇XUn+1)

−
n∑
j=1

N ′(U1, . . . ,∇XUi, . . . , Un, Un+1)

= (∇XN
′)(U1, . . . , Un, Un+1).

Now assume that

〈(∇̄k−1
X1,...,Xk−1

N)(U1, . . . , Un), JUn+1〉 = (∇k−1
X1,...,Xk−1

N ′)(U1, . . . , Un, Un+1).

Then we find that

〈(∇̄k
X1,...,Xk

N)(U1, . . . , Un), JUn+1〉 = 〈∇⊥X1
(∇̄k−1

X2,...,Xk
N)(U1, . . . , Un), JUn+1〉

−
n∑
j=1

〈(∇̄k−1
X2,...,Xk

N)(U1, . . . ,∇X1Ui, . . . , Un), JUn+1〉

= X1〈(∇̄k−1
X2,...,Xk

N)(U1, . . . , Un), JUn+1〉
− 〈(∇̄k−1

X2,...,Xk
N)(U1, . . . , Un),∇⊥X1

JUn+1〉

−
n∑
j=1

(∇k−1
X2,...,Xk

N ′)(U1, . . . ,∇X1Ui, . . . , Un, Un+1)

= X1((∇k−1
X2,...,Xk

N ′)(U1, . . . , Un, Un+1))

− (∇k−1
X2,...,Xk

N ′)(U1, . . . , Un,∇X1Un+1)

−
n∑
j=1

(∇k−1
X2,...,Xk

N ′)(U1, . . . ,∇X1Ui, . . . , Un, Un+1)

= (∇k
X1,...,Xk

N ′)(U1, . . . , Un, Un+1).

Item (ii) follows from taking k = 2 in item (i) and applying the Ricci identities.

As mentioned before, the wedge operator ∧ does not have a “normal” counterpart.
Therefore the differentiation by the wedge does have these nice symmetries. However
one may wonder if it is possible to define, at least in the Lagrangian setting, a normal
counterpart ∧⊥?

The answer is yes. We can do this by imposing that the wedge and its normal coun-
terpart must behave similar to R and R⊥, which makes sense since the wedge operator
behaves like a curvature operator. Since R⊥J = JR or thus R⊥ = −JRJ , we can define
the normal wedge as follows:
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Definition 3.1.15. The normal wedge ∧⊥ is defined as

X ∧⊥ Y = −J(X ∧ Y )J = JX ∧ JY,

and we define the Lagrangian wedge as

∧̄ = ∧ ⊕ ∧⊥.

Since the Lagrangian wedge has the exact same symmetries as the Van der Waerden-
Bortolotti curvature, we find the following:

Theorem 3.1.16. Suppose we have a (n, 1)-tensor N returning a normal vector field, then
JN is a (n, 1)-tensor returning a tangent vector field. Moreover, define the (n + 1, 0)-
tensor N ′ as

N ′(Y1, . . . , Yn, Yn+1) = 〈N(Y1, . . . , Yn), JYn+1〉.
We have that

(i) J((X1 ∧̄ X2) ·N)(Y1, . . . , Yn)) = (X1 ∧X2) · JN(Y1, . . . , Yn),

(ii) 〈(X1 ∧̄ X2) ·N(Y1, . . . , Yn), JYn+1〉 = (X1 ∧X2) ·N ′(Y1, . . . , Yn, Yn+1).

Definition 3.1.17. Let N be a (n, 1)-tensor on a Riemannian submanifold M . Then we
say that N is Lagrangian pseudo-parallel if (R̄− φ∧̄) ·N ≡ 0 for any φ ∈ F(M).

This is again a weaker condition than semi-parallelity, but in general there is no
relation between pseudo-parallelity and Lagrangian pseudo-parallelity. In a certain sense
Lagrangian pseudo-parallelity is a more “logical” generalisation of semi-parallelity than
pseudo-parallelity.

One the one hand, we see that the Lagrangian wedge retains the symmetries that the
Van der Waerden-Bortolotti curvature has when used as a differentiation. On the other
hand, it seems unnatural that when M has constant sectional curvature, and thus the
curvature tensor R is a multiple of the wedge operator, R and ∧ act differently when used
to derive a tensor. For the Lagrangian wedge this is not the case. Moreover, we obtain
the nice identity that if M has constant sectional curvature c, R⊥ = c∧⊥.

3.2 Mean curvature

Often studied is the mean curvature H, which is the normalized trace of the second
fundamental form h. Most commonly known are the minimal submanifolds, who have
H = 0. By differentiating H in the ways mentioned in the previous section, we can
produce weaker conditions. We shall give the following definitions:

Definition 3.2.1. We define the following conditions related to the mean curvature H:

Name Condition
Totally geodesic h ≡ 0
Minimal H = 0
H-parallel / Parallel mean curvature ∇̄H = ∇⊥H ≡ 0
H-semi-parallel R̄ ·H = R⊥H ≡ 0
H-pseudo-parallel (R̄− φ∧̄) ·H = (R⊥ − φ∧⊥)H ≡ 0
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Proposition 3.2.2. Every condition in the above table implies the next:

h ≡ 0 =⇒ H = 0 =⇒ ∇⊥H ≡ 0 =⇒ R⊥H ≡ 0 =⇒ (R⊥ − φ∧⊥)H ≡ 0.

Remark 3.2.3. The condition of “R⊥H = 0” was first introduced by Deprez in [Dep85]
(with no specific name given), and was first named “H-parallel” in a preprint of [Dil+13].
However, this was rather unfortunate, as “parallel mean curvature” and “H-parallel”
would then be two different notions which could easily be confused with each other. In
the published version of [Dil+13], the condition of R⊥H = 0 was renamed to “H-semi-
parallel”. We will use “H-parallel” to denote ∇⊥H ≡ 0 and “H-semi-parallel” to denote
R⊥H ≡ 0.

Remark 3.2.4. We have defined the notion of H-pseudo-parallel using the Lagrangian
wedge instead of the standard one. The reason for this is that ∧ ·H is trivial. This would
have made the condition of H-pseudo-parallel equivalent to H-semi-parallel, which is not
very useful. The definition given here is in general not equivalent to H-semi-parallel.

The simplest kind of Lagrangian submanifolds are the totally geodesic ones, i.e. the
Lagrangian submanifolds with h ≡ 0.

Theorem 3.2.5. Let Mn be a Lagrangian submanifold. Then M is totally geodesic if and
only if M has constant sectional curvature c̃ and M is minimal.

Proof. If M is totally geodesic, the curvature tensor (2.1.7) becomes

R(X, Y ) = c̃(X ∧ Y ),

so M is a real space form of constant curvature c̃. Because H is the normalised trace of
h, clearly M is minimal.

Conversely, assume M has constant sectional curvature c̃ and H = 0. Then we know
that

〈R(X, Y )Z,W 〉 = 〈c̃(X ∧ Y )Z,W 〉 = 〈R̃(X, Y )Z,W 〉,
so the equation of Gauss (1.3.7) becomes

〈h(Y, Z), h(X,W )〉 − 〈h(X,Z), h(Y,W )〉 = 0.

Let {e1, . . . , en} be an orthonormal basis for TpM and choose X = Z = ei and Y = W =
ej, and take the sum over all 1 ≤ i, j ≤ n:

0 =
∑
i,j

(〈h(ei, ei), h(ej, ej)〉 − 〈h(ei, ej), h(ei, ej)〉)

=

〈
n∑
i=1

h(ei, ei),
n∑
j=1

h(ej, ej)

〉
−
∑
i,j

〈h(ei, ej), h(ei, ej)〉

= n2 〈H,H〉 −
n∑

i,j=1

‖h(ei, ej)‖2

= −
∑
i,j

‖h(ei, ej)‖2.

Since the norm is a positive function, we get h(ei, ej) = 0 for every 1 ≤ i, j ≤ n and
therefore M is totally geodesic.
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But what for minimal Lagrangian submanifolds of constant curvature c in general?
We first introduce the following lemma:

Lemma 3.2.6. Suppose there exists a positive constant α such that

α(〈X,Z〉〈Y,W 〉 − 〈X,W 〉〈Y, Z〉)
+
∑n

i=1C(X,Z, ei)C(Y,W, ei)−
∑n

i=1C(X,W, ei)C(Y, Z, ei) = 0,
(3.2.1)

and
n∑
i=1

C(X, ei, ei) = 0, (3.2.2)

where {e1, . . . , en} is an orthonormal basis of Rn. We take the basis {f1, . . . , fn} where
fi = argmaxX∈(UpM)i

C(X,X,X) with (UpM)i = {X ∈ UpM | X ⊥ f1, . . . , fi−1}. In
particular, f1 is the e1-vector from a canonical basis.

Then C has the following expression with respect to the basis {f1, . . . , fn}:

Ciii = (n− i)

√√√√√ α

n− i+ 1

 ∑
z∈Zi−1

2

i−1∏
a=1

1

(n− i+ 1 + a)za

,
Cijj = −

√√√√√ α

n− i+ 1

 ∑
z∈Zi−1

2

i−1∏
a=1

1

(n− i+ 1 + a)za

,
Cijk = 0,

where 1 ≤ i, j, k ≤ n and i < j < k [Eji82].

Proof. Let {e1, . . . , en} be a canonical basis. Choosing X = Z = e1 and Y = W = ei in
(3.2.1) where i > 1 we find

λ2
i − λ1λi − α = 0,

which has 2 solutions, being

λi =
1

2
λ1 ±

1

2

√
λ2

1 + 4α.

However, only the choice for minus satisfies λi ≤ λ1/2, which is required by the canonical
basis. Choosing X = e1 in (3.2.2) we have that

λ1 + λ2 + . . .+ λn = 0.

Since there is only one possible value for λ2, . . . , λn, they are all equal and in particular
we find

λ1 = (n− 1)

√
α

n
,

λ2 = . . . = λn = −
√
α

n
.
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We can now prove the lemma by induction. Let us first consider the case n = 2. Note
that in this case we may assume f2 = e2. We then know that

C111 = λ1 =

√
α

2
,

C122 = λ2 = −
√
α

2
.

By (3.2.2) and the properties of the canonical basis, we find

C222 = −C112 = 0.

Then all values for the case n = 2 check out. We now assume the form of the basis is true
for dimension ≤ n−1 and we consider the lemma for dimension n. Now, if {X ′, Y ′, Z ′,W ′}
are spanned by {e2, . . . , en}, then

C(e1, X
′, Y ′) = λ1〈X ′, Y ′〉,

and as a result we find that

α

(
1 +

1

n

)
(〈X ′, Z ′〉〈Y ′,W ′〉 − 〈X ′,W ′〉〈Y ′, Z ′〉)

+
n∑
i=2

C(X ′, Z ′, ei)C(Y ′,W ′, ei)−
n∑
i=2

C(X ′,W ′, ei)C(Y ′, Z ′, ei) = 0,

and
n∑
i=2

C(X ′, ei, ei) = 0.

Since α
(
1 + 1

n

)
is still a positive constant, by the induction hypothesis the subspace

spanned by e2, . . . , en has the required form (after a transformation of basis to f2, . . . , fn).
Remains to verify the values containing at least one index 1. But C111 = λ1 and C1ii with
2 ≤ n attain the correct values, since they equal the eigenvalues λ1 and λi respectively.
Finally, C11i and C1ij for 2 ≤ i 6= j ≤ n are all zero due to the properties of the canonical
basis. This proves the lemma.

Remark 3.2.7. The proof given above is much shorter than the original given by Ejiri
in [Eji82]. In said article the property λi ≤ λ1/2 was not used, resulting in a long and
complicated calculation to show that all eigenvalues λi (i ≥ 2) are equal.

Theorem 3.2.8. A minimal Lagrangian submanifold of constant sectional curvature c is
either flat or totally geodesic [Eji82].

Proof. The equation of Gauss and minimality imply the previous lemma applies, with
α = c̃− c. If α = 0, then by lemma 3.2.6, C ≡ 0 and M is totally geodesic. If α < 0, then
we could follow the steps of lemma 3.2.6 to find that λ1 ∈ C\R, which is impossible. So
we assume α > 0. We use the equation of Codazzi (1.3.5):

∇⊥e1h(ei, e1)− h(∇e1ei, e1)− h(ei,∇e1e1)−∇⊥eih(e1, e1) + 2h(∇eie1, e1) = 0.
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We split up the Levi-Civita connection ∇ of M in its connection forms ωji . We will
do this term by term:

∇⊥e1h(ei, e1) = ∇⊥e1
n∑
j=1

〈h(ei, e1), Jej〉Jej =
n∑
j=1

C(e1, ei, ej)J∇e1ej

= −
√
c̃− c
n

n∑
j=1

ωji (e1)Jej,

h(∇e1ei, e1) = h

(
n∑
j=1

ωji (e1)ej, e1

)
=

n∑
j=1

ωji (e1)h (ej, e1) ,

h(ei,∇e1e1) = h

(
ei,

n∑
j=1

ωj1(e1)ej

)
=

n∑
j=1

ωj1(e1)h (ei, ej) ,

∇⊥eih(e1, e1) = ∇⊥ei
n∑
j=1

〈h(e1, e1), Jej〉Jej =
n∑
j=1

C(e1, e1, ej)J∇eiej

= (n− 1)

√
c̃− c
n

n∑
j=1

ωj1(ei)Jej,

h(∇eie1, e1) = h

(
n∑
j=1

ωj1(ei)ej, e1

)
=

n∑
j=1

ωj1(ei)h (ej, e1) ,

so we end up with

−
√
c̃− c
n

n∑
j=1

ωji (e1)Jej −
n∑
i=j

ωji (e1)h (ej, e1)−
n∑
i=j

ωj1(e1)h (ei, ej)

− (n− 1)

√
c̃− c
n

n∑
j=1

ωj1(ei)Jej + 2
n∑
j=1

ωj1(ei)h (ej, e1) = 0.

We take the inner product of this with Je1, and using that ω is skew-symmetric in its
indices, we find

0 = −
√
c̃− c
n

ω1
i (e1)−

n∑
j=1

ωji (e1)C (e1, e1, ej)−
n∑
j=1

ωj1(e1)C (e1, ei, ej)

− (n− 1)

√
c̃− c
n

ω1
1(ei) + 2

n∑
j=1

ωj1(ei)C (e1, e1, ej)

=

√
c̃− c
n

ωi1(e1) + (n− 1)

√
c̃− c
n

ωi1(e1) +

√
c̃− c
n

ωi1(e1)

= (n+ 1)

√
c̃− c
n

ωi1(e1).
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Since c̃ 6= c, we find that ωi1(e1) = 0 for all i ∈ {1, . . . , n}. Likewise, take the inner
product with Jek (k 6= 1), using the previous result together with the properties of the
connection forms:

0 = −
√
c̃− c
n

ωki (e1)−
n∑
j=1

ωji (e1)C (e1, ek, ej)−
n∑
j=1

ωj1(e1)C (ei, ek, ej)

− (n− 1)

√
c̃− c
n

ωk1(ei) + 2
n∑
j=1

ωj1(ei)C (e1, ek, ej) = 0

= −
√
c̃− c
n

ωki (e1) +

√
c̃− c
n

ωki (e1)− (n− 1)

√
c̃− c
n

ωk1(ei) + 2

√
c̃− c
n

ωk1(ei)

= − (n+ 1)

√
c̃− c
n

ωk1(ei).

So ωk1(ei) = 0 for all i ∈ {1, . . . , n}, k ∈ {2, . . . , n}. Combining this with the previous
result, we obtain that ωj1(ei) = 0 for all i, j ∈ {1, . . . , n}. Now we have that for any
X ∈ TpM :

∇Xe1 =
n∑
i=1

〈X, ei〉∇eie1 =
n∑
i=1

〈X, ei〉
n∑
j=1

ωj1(ei)ej = 0.

Using the fact that the sectional curvature is constant, we find

c = K(ei, e1) = 〈R(ei, e1)e1, ei〉 = 〈∇ei∇e1e1 −∇e1∇eie1 −∇[ei,e1]e1, ei〉 = 0,

thus M is flat.

We may weaken the condition of M being minimal in theorem 3.2.8 to H-semi-parallel.

Corollary 3.2.9. Lagrangian submanifolds of constant sectional curvature c are H-semi-
parallel if and only if they are flat or totally geodesic.

Proof. First suppose that Mn is a H-semi-parallel Lagrangian submanifold of constant
sectional curvature c. Let X be a unit vector orthogonal to JH. We have that

0 = 〈R⊥(JH,X)H, JX〉 = −〈H, JR(JH,X)X〉 = −c〈H, J(JH ∧X)X〉 = c‖H‖2.

Thus have that M is flat or minimal, and by the previous theorem, it is flat or totally
geodesic.

Conversely, if M is flat then R⊥ ≡ 0, and if it is totally geodesic then H = 0, both
imply that R⊥H ≡ 0 and thus M is H-semi-parallel.

The function φ ∈ F(M) in the definition of H-pseudo-parallelity is unique in some
sense.

Theorem 3.2.10. Let M be a Lagrangian submanifold that is H-pseudo-parallel for func-
tions φ and psi. Then φ = ψ on the set M\{p ∈M | Hp ≡ 0}.
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Proof. If M is H-pseudo-parallel for both the functions φ and ψ, then we have that

(φ− ψ)(JX ∧ JY )H = 0,

for all X, Y ∈ TpM . Choose Y to be a unit vector such that JY is orthogonal to H and
choose X = JH, then we find that

(φ− ψ)‖H‖2 = 0.

Now let p ∈M such that φ(p) 6= ψ(p), then H(p) = 0. Consequently,

{p ∈M | φ(p) 6= ψ(p)} ⊂ {p ∈M | H(p) ≡ 0},

which proves the theorem.

We cannot weaken the condition of H-semi-parallel in theorem 3.2.8 any further to
being H-pseudo-parallel, because of the following proposition:

Proposition 3.2.11. Let M be a Lagrangian submanifold of constant sectional curvature
c. Then M is H-pseudo-parallel for the function φ = c.

Proof. Choose the function φ(p) = c for all p ∈ M . Since M has constant sectional
curvature, we find that (R⊥ − c∧⊥) ≡ 0 thus M is H-pseudo-parallel.

Finally, when we look at Lagrangian surfaces of complex space forms, we may locally
classify the H-semi-parallel Lagrangian surfaces.

Theorem 3.2.12. Let M2 be an H-semi-parallel surface. Then at every point p ∈ M ,
M is either minimal or flat [CL09].

Proof. Since we are working with n = 2, R⊥ = K∧⊥ with K the Gaussian curvature.
Thus choosing a unit vector X orthogonal to JH, we obtain:

0 = 〈R⊥(JH,X)H, JX〉 = −K〈(H ∧ JX)H, JX〉 = K‖H‖2,

thus at any point p ∈M either K(p) = 0 or H(p) = 0.

However, the notion of H-pseudo-parallelity is useless for Lagrangian surfaces.

Proposition 3.2.13. Let M2 be a Lagrangian surface. Then M is H-pseudo-parallel for
the function φ = K with K the Gaussian curvature.

Proof. A surface always has curvature tensor R = K∧. So (R−K∧) ≡ 0 and thus M is
H-pseudo-parallel for φ = K.



3.3. Umbilicity 39

3.3 Umbilicity

In general, the simplest kind of manifolds besides the totally geodesic ones are the totally
umbilical manifolds.

Definition 3.3.1. A submanifold is called totally umbilical if for any ξ ∈ T⊥p M , the shape
operator Aξ is a multiple of the identity. So there exists a constant λξ such that for any
X ∈ TpM , we have

AξX = λξX.

An equivalent definition in terms of the second fundamental form is that for any ξ ∈ T⊥p M ,
there is a constant λξ such that for any X, Y ∈ TpM ,

〈h(X, Y ), ξ〉 = λξ〈X, Y 〉.

We can easily determine this multiple:

Proposition 3.3.2. Let Mn be a totally umbilical submanifold. Then for any ξ ∈ TpM ,
the shape operator is a multiple of the identity, and this multiple is λξ = 〈H, ξ〉.

Proof. From the definition of totally umbilical, we find that

〈h(ei, ei), ξ〉 = λξ.

Taking the sum over all 1 ≤ i ≤ n and dividing by n gives us λξ = 〈H, ξ〉.

As it turns out, in the Lagrangian setting, being totally umbilical is equivalent to
being totally geodesic.

Theorem 3.3.3. Let Mn be a Lagrangian submanifold. Then M is totally umbilical if
and only if it is totally geodesic [CO74b].

Proof. Let us first assume M is totally umbilical, i.e. for any X, Y ∈ TpM ,

AJXY = 〈H, JX〉Y.

Let X be any vector and choose a unit vector Y orthogonal to JH. We find that

〈H, JX〉 = 〈H, JX〉〈Y, Y 〉 = 〈AJXY, Y 〉 = 〈AJYX, Y 〉 = 〈H, JY 〉〈X, Y 〉 = 0,

and thus AJX ≡ 0. This holds for any X ∈ TpM , so h(X, Y ) = JAJXY = 0 for any
X, Y ∈ TpM and thus M is totally geodesic.

For the converse, note that if M is totally geodesic, it is minimal and thus

AJXY = −Jh(X, Y ) = 0 = 〈H, JX〉Y,

for all X, Y ∈ TpM , so M is totally umbilical.

Probably the simplest Lagrangian submanifolds besides the totally geodesic ones, are
the H-umbilical submanifolds, which were introduced by Chen in [Che97a; Che97b].
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Definition 3.3.4. A Lagrangian H-umbilical submanifold is a Lagrangian submanifold
for which h takes the following form:

h(e1, e1) = λJe1 h(e2, e2) = . . . = h(en, en) = µJe1

h(e1, ei) = µJei h(ei, ej) = 0 2 ≤ i 6= j ≤ n,

for some suitable functions λ and µ, with respect to some suitable orthonormal local frame
field {e1, . . . , en}. An equivalent definition when H 6= 0 is given by

h(X, Y ) = (λ− 3µ)〈JX,H1〉〈JY,H1〉H1 + µ (〈X, Y 〉H1 + 〈JX,H1〉JY + 〈JY,H1〉JX) ,

where H1 = H/‖H‖ is the normalised mean curvature.

Property 3.3.5. If M is a non-minimal H-umbilical Lagrangian submanifold, then

(i) JH is an eigenvector of the shape operator AH ,

(ii) the restriction of AH to (JH)⊥ is a multiple of the identiy map,

(iii) if λ = µ, then AH is a multiple of the identity.

Proof. We start by pointing out that H = λ+(n−1)µ
n

Je1, and thus JH = 〈JH, e1〉e1. For
item (i), we calculate AHJH:

AHJH = Jh(JH, JH) = 〈JH, e1〉2Jh(e1, e1) = −λ〈JH, e1〉2e1 = −λ〈JH, e1〉JH.

For item (ii), let X ∈ (JH)⊥, then X ⊥ e1. We calculate AHX:

AHX = Jh(JH,X) = 〈JH, e1〉J
n∑
i=2

〈X, ei〉h(e1, ei) = −µ〈JH, e1〉
n∑
i=2

〈X, ei〉ei

= − µ〈JH, e1〉X.

Now, if λ = µ, then H = λJe1. By item (i) and (ii) we find that for any X ∈ TpM ,

AHX = −λ〈JH, e1〉X = ‖H‖2X,

so AH is a multiple of the identity.

Another notion of umbilicity weaker than totally umbilical exists:

Definition 3.3.6. A submanifold is called pseudo-umbilical if the shape operator AH is
a multiple of the identity. So there exists a constant λ such that for any X ∈ TpM , we
have

AHX = λX.

An equivalent definition in terms of the second fundamental form is that there is a constant
λ such that for any X, Y ∈ TpM ,

〈h(X, Y ), H〉 = λ〈X, Y 〉.

Again, we can easily determine this multiple:
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Proposition 3.3.7. Let Mn be a pseudo-umbilical submanifold. Then the shape operator
AH is a multiple of the identity, and this multiple is ‖H‖2.

Proof. From the definition of pseudo-umbilical, we find that

〈h(ei, ei), H〉 = λ.

Taking the sum over all 1 ≤ i ≤ n and dividing by n gives us λ = ‖H‖2.

Proposition 3.3.8. Let M be a minimal submanifold. Then M is pseudo-umbilical.

Proof. If M is minimal, then AHX = 0 = ‖H‖2X for all X ∈ TpM .

The following gives a relation between H-umbilicity and pseudo-umbilicity:

Proposition 3.3.9. Let Mn be a H-umbilical Lagrangian submanifold. Then M is
pseudo-umbilical if and only if at any point p, either H(p) = 0 or λ(p) = µ(p).

Proof. First assume M is pseudo-umbilical. If M is minimal at p there is nothing to
prove. So assume H(p) 6= 0, then by properties (i) and (ii) of property 3.3.5, we find

λ〈JH, e1〉JH = µ〈JH, e1〉JH,

so λ(p) = µ(p).

Conversely, assume that at any point p ∈ M , either H(p) = 0 or λ(p) = µ(p). If
H(p) = 0 then M is trivially pseudo-umbilical at p. If λ(p) = µ(p), then by item (iii) of
property 3.3.5 M is pseudo-umbilical at p. So M is a pseudo-umbilical submanifold.

In [Hua97] it is claimed that H-umbilical submanifolds of CP n are pseudo-umbilical.
However, making use of the previous lemma, we can provide a counterexample.

Example 3.3.10. Let M̃n(4c̃) be the complex projective space CP n(4c̃) and let Mn(c)
be a simply-connected open portion of the Riemannian n-sphere Sn(c) (c > c̃). Then M
admits a Lagrangian H-umbilical isometric immersion into M̃ such that

h(e1, e1) = 2
√
c− c̃Je1, h(ei, ei) =

√
c− c̃Je1

h(e1, ei) =
√
c− c̃Jei, h(ei, ej) = 0,

for some orthonormal local frame field {e1, . . . , en} on M , where 2 ≤ j 6= k ≤ n. Then M
is not minimal and λ 6= µ. In particular, by proposition 3.3.9, M is not pseudo-umbilical
[Che97b].

Similarly, we provide counterexamples for Cn and CHn:

Example 3.3.11. Let Sn be the unit sphere in Rn+1. The map

w : Sn → Cn : (y0, . . . , yn) 7→ 1 + iy0

1 + y2
0

(y1, . . . , yn),

is a Lagrangian H-umbilical immersion called the Whitney n-sphere, which satisfies λ =
3µ 6= 0. In fact, up to homothetic transformations, it is the only Lagrangian H-umbilical
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submanifold in Cn satisfying λ = 3µ. The second fundamental form of the Whitney
sphere is of the form

h(X, Y ) =
n

n+ 2
(〈X, Y 〉H + 〈JX,H〉JY + 〈JY,H〉JX) ,

and in fact, the only Lagrangian submanifolds of Cn to have this form are the totally
geodesic ones and the Whitney Sphere.

Since the Whitney sphere has nonzero mean curvature it is not minimal, so by propo-
sition 3.3.9 it is not pseudo-umbilical [BCM95; Che97a; CU93; DS04; RU98; Wei77].

Example 3.3.12. Let M̃n(4c̃) be the complex hyperbolic space CHn(4c̃) and let Mn(c)
be a real space form (c > c̃). Then M admits (at least locally) a Lagrangian H-umbilical
isometric immersion into M̃ such that

h(e1, e1) = 2
√
c− c̃Je1, h(ei, ei) =

√
c− c̃Je1

h(e1, ei) =
√
c− c̃Jei, h(ei, ej) = 0,

for some orthonormal local frame field {e1, . . . , en} on M , where 2 ≤ j 6= k ≤ n. Then
M is not minimal and λ 6= µ. Thus by proposition 3.3.9, M cannot be pseudo-umbilical
[Che97b].

Definition 3.3.13. A Lagrangian-umbilical submanifold is a Lagrangian H-umbilical
submanifold for which λ = µ.

Proposition 3.3.14. A Lagrangian-umbilical submanifold is both H-umbilical and pseudo-
umbilical.

Proof. This follows from the definition and proposition 3.3.9.

The following is an example of a non-minimal Lagrangian-umbilical submanifold:

Example 3.3.15. For a ∈ R0, let

F (s) =

∫ s

e−ia log(t)dt,

where
∫ s
f(t)dt denotes an antiderivative of f(s). Let ι : Sn−1(1) → En be the unit

hypersphere centred at the origin. Then the complex extensor (see the article referenced
below for a definition) F ⊗ ι : I×Sn−1(1)→ Cn is a H-umbilical Lagrangian submanifold
M with λ = µ = −a/s. So M is not minimal, but by the previous lemma it is pseudo-
umbilical [Che97a].

Next, we show there is a link between pseudo-umbilical Lagrangian submanifolds and
H-pseudo-parallel Lagrangian submanifolds. We first introduce the following lemma:

Lemma 3.3.16. Let M be a pseudo-umbilical Lagrangian submanifold. Then for all X, Y ,

[AJX , AJY ]JH = 0.
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Proof. This follows from the symmetry of the shape operator:

−AJXAJY JH = AJXAHY = ‖H‖2AJXY = ‖H‖2AJYX = AJYAHX = −AJYAJXJH,

which proves the lemma.

Theorem 3.3.17. If M is a pseudo-umbilical Lagrangian submanifold, then M is H-
pseudo-parallel for φ = c̃. Moreover, if the ambient manifold is Cn, then it is H-semi-
parallel.

Proof. Take φ = c̃. Since M is pseudo-umbilical, we use (2.1.7) and the previous lemma
to find

(R(X, Y )− c̃(X ∧ Y ))JH = [AJX , AJY ]JH = 0,

so M is H-pseudo-parallel. If the ambient manifold is Cn, then φ = c̃ = 0 so M is
H-semi-parallel.

Theorem 3.3.18. If M is a Lagrangian submanifold of CP n or CHn (i.e. c̃ 6= 0), then
M is minimal if and only if M is pseudo-umbilical and H-semi-parallel.

Proof. If M is minimal, then M is trivially pseudo-umbilical and H-semi-parallel. Con-
versely, assume M is both pseudo-umbilical and H-semi-parallel. Let X be a unit vector
orthogonal to JH. By equation (2.1.7) we find that

0 = 〈R(X, JH)JH,X〉 = c̃〈(X ∧ JH)JH,X〉 = c̃〈JH, JH〉〈X,X〉 = c̃‖H‖2,

thus M is minimal.

In the case of Lagrangian surfaces, we find that pseudo-umbilicity is a stronger condi-
tion than H-umbilicity:

Theorem 3.3.19. Let M2 be a pseudo-umbilical Lagrangian surface. Then M is H-
umbilical.

Proof. We will have to prove this differently depending on whether M is minimal at a
point p or not. First, let p ∈ M and suppose that H(p) = 0. Let {e1, . . . , en} be a
canonical basis, then C111 = −C122 = λ1 and C112 = −C222 = 0. Thus we have that

h(e1, e1) = λ1Je1,

h(e1, e2) = −λ1Je2,

h(e2, e2) = −λ1Je1,

so M is H-umbilical at p with λ = −µ.

Now assume H(p) 6= 0. Then choose e1 = −JH/‖H‖, so AH = ‖H‖AJe1 . Then

h(e1, e1) = JAJe1e1 =
1

‖H‖
JAHe1 = ‖H‖Je1,

h(e1, e2) = JAJe1e2 =
1

‖H‖
JAHe2 = ‖H‖Je2,

h(e2, e2) = 2H − h(e1, e1) = ‖H‖Je1,

so M is H-umbilical at p with λ = µ = ‖H‖.
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3.4 Second fundamental form

Rather than take the trace of the second fundamental form h and then differentiate, we
can simply work with h itself. We give the following definitions:

Definition 3.4.1. We define the following conditions related to the second fundamental
form h:

Name Condition
totally geodesic h ≡ 0
parallel ∇̄h ≡ 0
semi-parallel R̄ · h ≡ 0
pseudo-parallel (R̄− φ∧) · h ≡ 0

Proposition 3.4.2. Every condition in the above table implies the next:

h ≡ 0 =⇒ ∇̄h ≡ 0 =⇒ R̄ · h ≡ 0 =⇒ (R̄− φ∧)h ≡ 0.

Remark 3.4.3. Parallel submanifolds were introduced by Vilms in [Vil72] and elaborated
by Ferus in [Fer74; Fer80]. Semi-parallel submanifolds were defined by Deprez in [Dep85;
Dep86] and pseudo-parallel submanifolds by Asperti, Lobos and Mercuri in [ALM02].

Proposition 3.4.4. Let M be a parallel Lagrangian submanifold. Then M is H-parallel.

Proof. We have to prove that for any X ∈ TpM , ∇⊥XH = 0. So take X ∈ TpM and
consider

0 =
1

n

n∑
i=1

(∇̄Xh)(ei, ei) =
1

n

n∑
i=1

(
∇⊥Xh(ei, ei)− 2h(∇Xei, ei)

)
= ∇⊥XH−

2

n

n∑
i=1

h(∇Xei, ei).

where {e1, . . . , en} is an orthonormal basis of TpM . It suffices to prove that the summation
in the second term vanishes. Note that from the properties of the Levi-Civita connection,
we find

0 = X〈ei, ej〉 = 〈∇Xei, ej〉+ 〈∇Xej, ei〉,
0 = X〈ei, ei〉 = 2〈∇Xei, ei〉.

Applying these properties, the summation becomes

n∑
i=1

h(∇Xei, ei) =
∑
i,j

〈∇Xei, ej〉h(ei, ej)

=
∑
i<j

〈∇Xei, ej〉h(ei, ej) +
∑
i>j

〈∇Xei, ej〉h(ei, ej)

=
∑
i<j

〈∇Xei, ej〉h(ei, ej) +
∑
i<j

〈∇Xej, ei〉h(ej, ei)

=
∑
i<j

〈∇Xei, ej〉h(ei, ej)−
∑
i<j

〈∇Xei, ej〉h(ei, ej) = 0.

So we have that ∇⊥XH = 0 for all X ∈ TpM , so M is H-parallel.
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The function φ ∈ F(M) in the definition of pseudo-parallelity is unique in some sense.

Theorem 3.4.5. Let M be a pseudo-parallel Lagrangian submanifold, for both the func-
tions φ and ψ. Then φ = ψ on M\{p ∈M | hp ≡ 0} [CL09].

Proof. We rewrite the condition of pseudo-parallelity

0 =R̄(X, Y ) · h(U, V )− φ(X ∧ Y · h(U, V ))

=R⊥(X, Y )h(U, V )− h(R(X, Y )U, V )− h(U,R(X, Y )V )

− φ(〈Y, U〉h(X, V )− 〈X,U〉h(Y, V ) + 〈Y, V 〉h(U,X)− 〈X, V 〉h(U, Y )).

If M is pseudo-parallel for both φ and ψ, then we find

(φ− ψ)(〈Y, U〉h(X, V )− 〈X,U〉h(Y, V ) + 〈Y, V 〉h(U,X)− 〈X, V 〉h(U, Y )) = 0.

Let X = U = V be a unit vector and Y a unit vector orthogonal to X, then we get

(φ− ψ)h(X, Y ) = 0,

and taking X = U , Y = V both unit vectors orthogonal to each other, we get

(φ− ψ)(h(X,X)− h(Y, Y )) = 0.

Now, let p ∈M such that φ(p) 6= ψ(p). Then h(X, Y ) = 0 and h(X,X) = h(Y, Y ), so

〈h(X,X), JY 〉 = 〈h(X, Y ), JX〉 = 0,

which means that h(X,X) lies completely in the direction of JX. Thus we get

h(X,X) = 〈h(X,X), JX〉JX = 〈h(Y, Y ), JX〉JX = 〈h(X, Y ), JY 〉JX = 0,

so hp ≡ 0. Consequently,

{p ∈M | φ(p) 6= ψ(p)} ⊂ {p ∈M | hp ≡ 0},
which proves the theorem.

A link can be found between pseudo-parallel Lagrangian submanifolds and H-semi-
parallel Lagrangian submanifolds.

Proposition 3.4.6. Let M be a pseudo-parallel Lagrangian submanifold. Then M is
H-semi-parallel [CL09].

Proof. Let Z ∈ TpM and choose an orthonormal basis {e1, . . . , en} that diagonalises AJZ ,
so in particular h(Z, ei) = λiJei for certain λi. Then for any X, Y ∈ TpM we obtain

〈R⊥(X, Y )H, JZ〉 =
1

n

n∑
i=1

〈R⊥(X, Y )h(ei, ei), JZ〉

=
2

n

n∑
i=1

(φ〈h((X ∧ Y )ei, ei), JZ〉 − 〈h(R(X, Y )ei, ei), JZ〉)

=
2

n

n∑
i=1

(φ〈h(Z, ei), J(X ∧ Y )ei〉 − 〈h(Z, ei), JR(X, Y )ei〉)

=
2

n

n∑
i=1

λi(φ〈ei, (X ∧ Y )ei〉 − 〈ei, R(X, Y )ei〉) = 0,

because of the symmetries of curvature tensors. So M is H-semi-parallel.
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However, the notion of pseudo-parallelity is not very useful in the Lagrangian case, as
we shall prove in the next two theorems.

Theorem 3.4.7. A pseudo-parallel Lagrangian submanifold Mn of a complex space form
M̃n(4c̃) of dimension n ≥ 3 is semi-parallel [DVV09].

Proof. Let p ∈ Mn be a point such that φ(p) 6= 0. We will first play around a bit with
the symmetry of the condition of pseudo-parallelity: we have that

〈R̄(X, Y ) · h(U, V )− φ(X ∧ Y · h)(U, V ), JW 〉 = 0,

for all X, Y, U, V,W , and in particular this is symmetric in V and W . Now, we prove
that 〈R̄(X, Y ) · h(U, V ), JW 〉 on its own is symmetric in V and W . This can be seen by
writing R̄ · h in full:

〈R⊥(X, Y )h(U, V ), JW 〉 − 〈h(R(X, Y )U, V ), JW 〉 − 〈h(U,R(X, Y )V ), JW 〉.

Since the cubic form is totally symmetric, the middle term is symmetric in V and W . For
the first and last term, consider:

〈R⊥(X, Y )h(U, V ), JW 〉 = − 〈JR⊥(X, Y )h(U, V ),W 〉 = −〈R(X, Y )Jh(U, V ),W 〉
= 〈R(X, Y )W,Jh(U, V )〉 = −〈JR(X, Y )W,h(U, V )〉
= − 〈h(U,R(X, Y )W ), JV 〉,

so the first and last terms together are also symmetric in V and W . Since M is pseudo-
parallel, we have that 〈(X ∧ Y ) · h(U, V ), JW 〉 is then symmetric in V and W . In other
words,

〈Y, U〉〈h(X, V ), JW 〉 − 〈X,U〉〈h(Y, V ), JW 〉
+ 〈Y, V 〉〈h(X,U), JW 〉 − 〈X, V 〉〈h(Y, U), JW 〉,

is symmetric in V and W . But clearly the first two terms are both symmetric in V and
W too, so the last two terms together must also be symmetric in V and W :

〈Y, V 〉〈h(X,U), JW 〉 − 〈X, V 〉〈h(Y, U), JW 〉
= 〈Y,W 〉〈h(X,U), JV 〉 − 〈X,W 〉〈h(Y, U), JV 〉.

Take X = U = V and Y,W orthogonal to X, we get:

− 〈X,X〉〈h(X, Y ), JW 〉 = 〈Y,W 〉〈h(X,X), JX〉. (3.4.1)

Let {e1, . . . , en} be a canonical basis. Then taking X = e1, Y = ei,W = ej with i, j 6= 1
in (3.4.1) gives

〈h(e1, ei), Jej〉 = −λ1〈ei, ej〉 = −λ1δij,

and by taking X = ei, with i 6= 1, and Y = W = e1 we get

〈h(ei, ei), Jei〉 = −〈ei, ei〉〈h(e1, e1), Jei〉 = 0.
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By the linearity and total symmetry of the cubic form, we get that 〈h(ei, ej), Jek〉 = 0 for
all ei, ej, ek with i, j, k 6= 1. So h takes the following form:

h(e1, e1) = λ1Je1, h(e1, ei) = −λ1Jei
h(ei, ej) = −λ1δijJe1, 2 ≤ i, j ≤ n.

In fact, this would mean Mn is a H-umbilical Lagrangian submanifold with µ = −λ. If
λ1 = 0, then h vanishes at p. So now assume λ1 6= 0. Since n ≥ 3, the vectors e2 and e3

exist. Now, note that

R(e1, e2)e1 = c̃(e1 ∧ e2)e1 + [AJe1 , AJe2 ]e1

= −c̃e2 + λ2
1e2 + λ2

1e2

= −(c̃− 2λ2
1)e2,

and similarly

R(e1, e2)e2 = c̃(e1 ∧ e2)e2 + [AJe1 , AJe2 ]e2

= c̃e1 − λ2
1e1 − λ2

1e1

= (c̃− 2λ2
1)e1.

Hence

0 = (R̄(e1, e2) · h)(e2, e2) + φ(p)(e1 ∧ e2 · h)(e2, e2)

= −JR(e1, e2)Jh(e2, e2)− 2h(R(e1, e2)e2, e2) + 2φ(p)h(e1, e2)

= −λ1JR(e1, e2)e1 − 2(c̃− 2λ2
1)h(e1, e2)− 2λ1φ(p)Je2

= λ1(3(c̃− 2λ2
1)− 2φ(p))Je2,

thus for φ we find the following value at p:

φ(p) =
3

2
(c̃− 2λ2

1), (3.4.2)

Similarly, from

0 = (R̄(e1, e2) · h)(e2, e3) + φ(p)(e1 ∧ e2 · h)(e2, e3)

= −h(R(e1, e2)e2, e3) + φ(p)h(e1, e3)

= λ1((c̃− 2λ2
1)− φ(p))Je3,

we find

φ(p) = (c̃− 2λ2
1). (3.4.3)

Combining equations (3.4.2) and (3.4.3) we obtain φ(p) = 0. We conclude that either
φ(p) = 0 or hp ≡ 0. Either way, R̄ · h vanishes at p so M is semi-parallel.

Theorem 3.4.8. Let M2 be a H-semi-parallel Lagrangian surface. Then M is pseudo-
parallel with φ = 3

2
K, where K is the Gaussian curvature of M [CL09].
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Proof. Take X a unit tangent vector orthogonal to JH. Since M is H-semi-parallel we
obtain

0 = 〈R⊥(JH,X)H, JX〉 = −〈R(JH,X)JH,X〉 = −〈K(JH ∧X)JH,X〉
= K〈JH, (JH ∧X)X〉 = K‖H‖2,

thus at every point p ∈ M , K(p) = 0 or H(p) = 0. If K(p) = 0, then Rp ≡ 0 and M is
semi-parallel at p, so it is pseudo-parallel with φ(p) = 0. Now assume K(p) 6= 0, and thus
H(p) = 0. Then h in terms of the canonical basis becomes:

h(e1, e1) = λJe1,
h(e1, e2) = −λJe2,
h(e2, e2) = −λJe1.

Consider the condition of being pseudo-parallel with φ = 3
2
K:

R⊥(X, Y )h(U, V )− h(R(X, Y )U, V )− h(U,R(X, Y )V )

+
3

2
K(〈Y, U〉h(X, V )− 〈X,U〉h(Y, V ) + 〈Y, V 〉h(U,X)− 〈X, V 〉h(U, Y ))

= JK(X ∧ Y )Jh(U, V )−Kh((X ∧ Y )U, V )−Kh(U, (X ∧ Y )V )

+
3

2
K(〈Y, U〉h(X, V )− 〈X,U〉h(Y, V ) + 〈Y, V 〉h(U,X)− 〈X, V 〉h(U, Y ))

= K〈Y, Jh(U, V )〉JX −K〈X, Jh(U, V )〉JY

+
1

2
K(〈Y, U〉h(X, V )− 〈X,U〉h(Y, V ) + 〈Y, V 〉h(U,X)− 〈X, V 〉h(U, Y )).

Since K(p) 6= 0, we end up with

〈Y, Jh(U, V )〉JX − 〈X, Jh(U, V )〉JY

+
1

2
(〈Y, U〉h(X, V )− 〈X,U〉h(Y, V ) + 〈Y, V 〉h(U,X)− 〈X, V 〉h(U, Y )).

We have to show that this vanishes for any X, Y, U, V . Because of linearity, antisym-
metry in X and Y and symmetry in U and V , it suffices to show that this is true for
3 cases: (X, Y, U, V ) = (e1, e2, e1, e1), (X, Y, U, V ) = (e1, e2, e1, e2) and (X, Y, U, V ) =
(e1, e2, e2, e2).

In the case (X, Y, U, V ) = (e1, e2, e1, e1) we find

〈e2, Jh(e1, e1)〉Je1 − 〈e1, Jh(e1, e1)〉Je2

+
1

2
(〈e2, e1〉h(e1, e1)− 〈e1, e1〉h(e2, e1) + 〈e2, e1〉h(e1, e1)− 〈e1, e1〉h(e1, e2))

= −λJe2 +
1

2
(λJe2 + λJe2) = 0.

In the case (X, Y, U, V ) = (e1, e2, e1, e2) we find

〈e2, Jh(e1, e2)〉Je1 − 〈e1, Jh(e1, e2)〉Je2

+
1

2
(〈e2, e1〉h(e1, e2)− 〈e1, e1〉h(e2, e2) + 〈e2, e2〉h(e1, e1)− 〈e1, e2〉h(e1, e2))

= −λJe1 +
1

2
(λJe1 + λJe1) = 0.
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Finally, in the case (X, Y, U, V ) = (e1, e2, e2, e2) we find

〈e2, Jh(e2, e2)〉Je1 − 〈e1, Jh(e2, e2)〉Je2

+
1

2
(〈e2, e2〉h(e1, e2)− 〈e1, e2〉h(e2, e2) + 〈e2, e2〉h(e2, e1)− 〈e1, e2〉h(e2, e2))

= λJe2 +
1

2
(−λJe2 − λJe2) = 0.

Thus M is pseudo-parallel with φ = 3
2
K.

Corollary 3.4.9. A Lagrangian surface is pseudo-parallel if and only if it is H-semi-
parallel.

So if n = 2, pseudo-parallelity is equivalent to H-semi-parallelity, and if n ≥ 3 pseudo-
parallelity is equivalent to semi-parallelity. Thus the notion of pseudo-parallelity is always
equivalent to a previously established notion.

3.5 Cubic form

The cubic form C and the second fundamental form h are closely related. Just like for
the second fundamental form, we can study the derivatives of C.

Definition 3.5.1. We define the following conditions related to the cubic form C:

Name Condition
totally geodesic C ≡ 0
parallel ∇C ≡ 0
semi-parallel R · C ≡ 0
pseudo-parallel cubic form (R− φ∧) · C ≡ 0

Remark 3.5.2. The first 3 conditions are identical to the conditions h ≡ 0, ∇̄h ≡ 0 and
R̄ ·h ≡ 0 respectively. The last condition is not equivalent to (R̄−φ∧) ·h ≡ 0, but rather
to (R̄− φ∧̄) · h ≡ 0 instead, the condition of Lagrangian pseudo-parallelity.

Proposition 3.5.3. Every condition in the above table implies the next:

C ≡ 0 =⇒ ∇C ≡ 0 =⇒ R · C ≡ 0 =⇒ (R− φ∧)C ≡ 0.

We also have that the derivatives of h and C are very closely related.

Proposition 3.5.4. Let k ∈ N. Then (∇k
X1,...,Xk

C)(Y, Z,W ) = 〈(∇̄k
X1,...,Xn

h)(Y, Z), JW 〉.

Corollary 3.5.5. Let k ∈ N. Then ∇̄kh = 0 if and only if ∇kC = 0.

Again, we want to prove that the function φ in the definition of pseudo-parallel cubic
form is unique in some sense.

Theorem 3.5.6. Let M have pseudo-parallel cubic form for both the functions φ and ψ.
Then φ = ψ on M\{p ∈M | Cp ≡ 0}.
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Proof. If M is both pseudo-parallel for φ and ψ, then we find

(φ− ψ)(C((X ∧ Y )U, V,W ) + C(U, (X ∧ Y )V,W ) + C(U, V, (X ∧ Y )W )) = 0.

Let X be any unit vector and take a unit vector Y = U = V = W orthogonal to X, then
we get

0 = (φ− ψ)C((X ∧ Y )Y, Y, Y ) = (φ− ψ)C(X, Y, Y ).

Taking X = U = V , and Y = W unit and orthogonal to X, we get

0 = (φ− ψ)(C((X ∧ Y )X,X, Y ) + 2C(X,X, (X ∧ Y )Y )

= (φ− ψ)(C(X,X,X)− 2C(X,X, Y )

= (φ− ψ)C(X,X,X).

Now, let p ∈M such that φ(p) 6= ψ(p). Then by linearity, Cp ≡ 0. Consequently,

{p ∈M | φ(p) 6= ψ(p)} ⊂ {p ∈M | Cp ≡ 0},

which proves the theorem.

Proposition 3.5.7. If M has constant sectional curvature c, then it has pseudo-parallel
cubic form for the function φ = c. Moreover, if M is flat, then it is semi-parallel.

Proof. The curvature tensor of M is of the form R(X, Y ) = c(X ∧ Y ) (with c = 0 if M
is flat). Taking φ = c then gives (R − c∧) ≡ 0 so M has pseudo-parallel cubic form. In
particular, if M is semi-parallel, it has pseudo-parallel cubic form for φ = c = 0 so it is
semi-parallel.

Now we know that semi-parallelity implies both H-semi-parallelity and pseudo-parallel
cubic form. We investigate what happens if a Lagrangian submanifolds has both of these
weaker conditions.

Theorem 3.5.8. If M is H-semi-parallel and has pseudo-parallel cubic form at p, then
it is semi-parallel or minimal at p.

Proof. Choose a unit vector X orthogonal to JH, and let {e1, . . . , en} be an orthonormal
basis that diagonalises AJX , so in particular h(X, ei) = λiei for some λi. Then

0 = 〈JX,R⊥(X, JH)H〉 = −〈H, JR(X, JH)X〉

=
1

n

n∑
i=1

〈h(ei, ei), JR(X, JH)X〉 =
1

n

n∑
i=1

C(ei, ei, R(X, JH)X)

=
1

n

n∑
i=1

(−2C(R(X, JH)ei, ei, X) + φC(ei, ei, (X ∧ JH)X) + 2φC((X ∧ JH)ei, ei, X))

=
1

n

n∑
i=1

(−2〈h(X, ei), JR(X, JH)ei〉 − φC(ei, ei, JH) + 2φ〈h(X, ei), J(X ∧ JH)ei〉)

=
1

n

n∑
i=1

(−2λi〈R(X, JH)ei, ei〉+ φ〈h(ei, ei), H〉+ 2λiφ〈(X ∧ JH)ei, ei〉)

= φ‖H‖2.

So either φ(p) = 0 or H(p) = 0. Thus M is either minimal or semi-parallel at p.
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Theorem 3.5.9. Let M be a H-umbilical Lagrangian submanifold. Then M has pseudo-
parallel cubic form for the function φ = c̃+ µ(λ− µ).

Proof. If we take φ = c̃− µ(λ− µ), then

R(X, Y )− (c̃+ µ(λ− µ))(X ∧ Y ) = µ(µ− λ)(X ∧ Y ) + [AJX , AJY ].

Because the condition of having pseudo-parallel cubic form is equivalent to that of La-
grangian pseudo-parallel and because J and R commute for derivatives, it suffices to apply
this operator to Jh(U, V ) and show that the result always vanishes. By linearity we only
have to prove that it vanishes for vectors belonging to a canonical basis {e1, . . . , en}, so
let us take X = ei, Y = ej, U = ea, V = eb with i ≤ j and a ≤ b. Clearly everything
vanishes if i = j, so exploiting the symmetry we have 8 cases to prove:

(i) 1 = i 6= j, 1 = a = b,

(ii) 1 = i 6= j, 1 = a 6= b,

(iii) 1 = i 6= j, 1 6= a = b,

(iv) 1 = i 6= j, 1 6= a 6= b,

(v) 1 6= i 6= j, 1 = a = b,

(vi) 1 6= i 6= j, 1 = a 6= b,

(vii) 1 6= i 6= j, 1 6= a = b,

(viii) 1 6= i 6= j, 1 6= a 6= b.

Let us first write out the condition in terms of this basis:

(µ(µ− λ)(ei ∧ ej) + [AJei , AJej ]) · Jh(ea, eb)

= (µ(µ− λ) ((ei ∧ ej)Jh(ea, eb)− Jh((ei ∧ ej)ea, eb)− Jh(ea, (ei ∧ ej)eb))
+ [AJei , AJej ]Jh(ea, eb)− Jh([AJei , AJej ]ea, eb)− Jh(ea, [AJei , AJej ]eb)

= µ(µ− λ)
(
−(ei ∧ ej)AJeaeb + δajAJeieb − δaiAJejeb + δbjAJeiea − δbiAJejea

)
− AJeiAJejAJeaeb + AJejAJeiAJeaeb + AJebAJeiAJejea − AJebAJejAJeiea
+ AJeaAJeiAJejeb − AJeaAJejAJeieb.

Case (i): 1 = i 6= j, 1 = a = b:

µ(µ− λ) (λ− 2µ) ej − λµ2ej + λ2µej + µ3ej − λµ2ej + µ3ej − λµ2ej = 0.

Case (ii): 1 = i 6= j, 1 = a 6= b:

δbj
(
µ(µ− λ)(λ− 2µ)e1 − λµ2e1 + µ3e1 + µ3e1 − λµ2e1 + λ2µe1 − λµ2e1

)
= 0.

Case (iii): 1 = i 6= j, 1 6= a = b:

µ(µ− λ)(µej + 2δajµea)− µ3ej + λµ2ej + δaj(λµ
2ea − µ3ea + λµ2ea − µ3ea) = 0.
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Case (iv): 1 = i 6= j, 1 6= a 6= b:

µ(µ− λ)(δajµeb + δbjµea) + δaj(λµ
2eb − µ2eb) + δbj(λµ

2ea − µ2ea) = 0

Case (v): 1 6= i 6= j, 1 = a = b:

every term vanishes on its own.

Case (vi): 1 6= i 6= j, 1 = a 6= b:

−δbjµ3ei + δbiµ
3ej + δbjµ

3ei − δbiµ3ej = 0.

Case (vii): 1 6= i 6= j, 1 6= a = b:

every term vanishes on its own, using that δaiδaj = 0 since i 6= j.

Case (viii): 1 6= i 6= j, 1 6= a 6= b:

δajδbiµ
3Je1 − δaiδbjµ3Je1 + δaiδbjµ

3Je1 − δajδbiµ3Je1 = 0.

All 8 cases together prove that M has pseudo-parallel cubic form.

Proposition 3.5.10. Let M be a Lagrangian submanifold with pseudo-parallel cubic form
for a function φ. Then M is H-pseudo-parallel for that same φ.

Proof. Consider the condition for having pseudo-parallel cubic form, written in terms of
h and the Lagrangian wedge:

(R̄− φ∧̄) · h ≡ 0.

Expanding this, we get

0 = R⊥(X, Y )h(U, V )− h(R(X, Y )U, V )− h(U,R(X, Y )V )

− φ(JX ∧ JY )h(U, V ) + φh((X ∧ Y )U, V ) + φh(U, (X ∧ Y )V ).

Let {e1, . . . , en} be any orthonormal basis of TpM . Then take U = V = ei to obtain

0 =
1

n

n∑
i=1

(
R⊥(X, Y )h(ei, ei)− 2h(R(X, Y )ei, ei)

−φ(JX ∧ JY )h(ei, ei) + φ2h((X ∧ Y )ei, ei))

= R⊥(X, Y )H − φ(JX ∧ JY )H

− 2

n

n∑
i=1

(h(R(X, Y )ei, ei)− φh((X ∧ Y )ei, ei)) .

It now suffices to prove the last two terms drop for all i ∈ {1, . . . , n}. Let Z ∈ TpM , we
may assume that the basis {e1, . . . , en} diagonalises AJZ , i.e. h(Z, ei) = λiJei for certain
λi. So take the inner product of the last two terms with JZ:

〈h(R(X, Y )ei, ei), JZ〉 − φ〈h((X ∧ Y )ei, ei), JZ〉
= 〈h(Z, ei), JR(X, Y )ei〉 − φ〈h(Z, ei), J(X ∧ Y )ei〉
= −λi (〈ei, R(X, Y )ei〉 − φ〈ei, (X ∧ Y )ei〉) = 0,

because of the symmetries of curvature tensors. So M is H-pseudo-parallel for φ.
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We can give an analogue of theorem 3.2.8 where we weaken the condition of minimality
to pseudo-umbilicity and obtain a slightly weaker result in return:

Theorem 3.5.11. Let Mn(c) be a pseudo-umbilical Lagrangian submanifold of constant
sectional curvature c immersed in a complex space form M̃n(4c̃). Then c = 0 or c = c̃.

Proof. Let p ∈ M . If hp ≡ 0, then M has constant sectional curvature c̃ at p and thus
c = c̃. So we assume hp 6≡ 0. On the one hand, because M has constant curvature c, it has
pseudo-parallel cubic form at p for the function φ(p) = c. But then it is also H-pseudo-
parallel for the function φ(p) = c. On the other hand, because M is pseudo-umbilical, by
theorem 3.3.17 it is H-pseudo-parallel at p for the function ψ(p) = c̃.

Now, we have two possible cases: H(p) = 0 or H(p) 6= 0. In the first case, we find by
theorem 3.2.8 that c = 0. In the second case, we find that φ(p) = ψ(p) by theorem 3.2.10,
or thus c = c̃.

For Lagrangian surfaces we obtain the following:

Proposition 3.5.12. Let M2 be a Lagrangian surface. Then M has pseudo-parallel cubic
form for the function φ = K with K the Gaussian curvature.

Proof. A surface always has curvature tensor R = K∧. So (R − K∧) ≡ 0 and thus M
has pseudo-parallel cubic form for φ = K.

We have already remarked that the conditions of pseudo-parallelity and having pseudo-
parallel cubic form are different. In fact, we can show the former is strictly stronger than
the latter.

Proposition 3.5.13. If M is pseudo-parallel, then it has pseudo-parallel cubic form.

Proof. We first consider the case n = 2. All 2-dimensional Lagrangian submanifolds
have pseudo-parallel cubic form by taking φ = K, the Gaussian curvature. Thus the
implication clearly holds. For the case n ≥ 3, note that pseudo-parallel submanifolds are
semi-parallel and therefore have pseudo-parallel cubic form for φ = 0.

3.6 Summary

For a Lagrangian surface of a complex space form, we give the following graphical summary
of the constraints mentioned in this chapter:
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h ≡ 0H = 0

∇̄h ≡ 0∇⊥H ≡ 0

R̄ · h ≡ 0R⊥H ≡ 0

Lagr.-umb.

Ps.-umb.

H-umb.

K = 0

K = c

K = c̃

We left out the condition of pseudo-parallelity as it is always equivalent to H-semi-
parallelity, as shown in corollary 3.4.9.

For a Lagrangian submanifold of a complex space form of arbitrary dimension n ≥ 3,
we obtain the following summary:

h ≡ 0H = 0

∇̄h ≡ 0∇⊥H ≡ 0

R̄ · h ≡ 0R⊥H ≡ 0

(R− φ∧) · C ≡ 0(R⊥ − φ∧⊥)H ≡ 0

Lagr.-umb.

Ps.-umb.

H-umb.

K = 0

K = c

K = c̃

We left out the condition of pseudo-parallelity as it is always equivalent to semi-
parallelity, as shown in theorem 3.4.7.

A last remark in this chapter, we will give examples of Lagrangian manifolds that
show that the conditions of pseudo-parallel cubic form and H-pseudo-parallelity are not
equivalent to any of the stronger conditions in the summary above.

We begin with the condition of pseudo-parallel cubic form. Theorem 3.5.9 tells us
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that H-umbilical Lagrangian submanifolds have pseudo-parallel cubic form. An example
is the Whitney sphere given in example 3.3.11, which does not have constant sectional
curvature. Now consider the following examples:

Example 3.6.1. In [Toj01], Tojeiro gives explicit examples of non-totally geodesic La-
grangian submanifolds Mn(c̃) with constant sectional curvature c̃ immersed in a complex
space form M̃n(4c̃) with c̃ 6= 0. So these submanifolds have pseudo-parallel cubic form
for the function φ = c̃ 6= 0. Thus they are not semi-parallel.

Example 3.6.2. In [Mat94; Xia92], it is proven that there exist standard embeddings
of SU(3)/SO(3) (n = 5); SU(6)/Sp(3) (n = 14), SU(3) (n = 8) and E6/F4 (n = 26) in
CP n(4c̃) such that for any unit tangent vector X:

‖h(X,X)‖ =
√
c̃/2.

Thus there can be no orthonormal basis of the tangent space satisfying the requirements
for H-umbilicity. However, these embeddings have parallel second fundamental form and
thus have pseudo-parallel cubic form.

Indeed, we find that the condition of pseudo-parallel cubic form is not equivalent to
semi-parallelity, H-umbilicity or having constant sectional curvature.

We move on to the condition of H-pseudo-parallelity. Combining proposition 3.5.10
and theorem 3.5.9, we have that a H-umbilical Lagrangian submanifold is H-pseudo-
parallel. Again, we have the Whitney sphere given in example 3.3.11 which has λ = 3µ and
is thus not pseudo-umbilical. From example 3.6.1 we have non-totally geodesic Lagrangian
submanifolds of constant sectional curvature c̃ 6= 0. By corollary 3.2.9 these submanifolds
are not H-semi-parallel. Finally, we have the following example:

Example 3.6.3. In [CPM12] examples are given of Lagrangian submanifolds in C5 for
which there exists an orthonormal frame {e1, . . . , e5} such that the cubic form takes the
following form:

C111 = λ C122 = −a
C333 = µ C344 = −b Cijk = 0 otherwise,

where λ, µ are nonzero functions. In particular, these examples are minimal and thus
H-pseudo-parallel. However, we can show they do not have pseudo-parallel cubic form.
Assume a Lagrangian submanifold M5 has this second fundamental form. Consider the
condition

(R(X, Y )− φ(X ∧ Y )) · C(U, V,W ),

then choosing X = e1, Y = U = V = W = e2 gives (after a short, simple calculation)
that

φ = c̃− 2λ2.

On the other hand, choosing X = U = e3, Y = V = W = e1 gives (after an even shorter
and simpler calculation) that

φ = c̃.

However, since λ 6= 0, φ is unique and these two results do not match. Thus M does not
have pseudo-parallel cubic form, since the required function φ does not exist.





Chapter 4

Decomposition of the tangent space
of a Lagrangian submanifold

When attempting to classify certain Lagrangian submanifolds, it is often vital to obtain
a suitable basis for the tangent space, or a useful decomposition into vector subspaces.
In this chapter, we will assume certain constraints on a Lagrangian submanifold Mn of
a complex space form M̃n(4c̃), and attempt to give such decompositions. We will use a
canonical basis and techniques similar to those applied in [Dil+12; Eji82].

Throughout this chapter, we assume that {e1, . . . , en} is a canonical basis and {λ1, . . . , λn}
their eigenvalues. We define the following important functions:

ν =
1

2
λ1 ≥ 0,

η =
1

2

√
λ2

1 + 4(c̃− φ) =
√
ν2 + c̃− φ ≥ 0.

Then we have that c̃ − φ = η2 − ν2 and λ1 = 2ν. Moreover, we will always assume that
ν > 0, since otherwise λ1 = 0 and M is then totally geodesic.

4.1 H-pseudo-parallel

We will start with the weakest condition of all, that of H-pseudo-parallelity:

R(X, Y )JH − φ(X ∧ Y )JH = 0.

When we rewrite this using the equation of Gauss (2.1.7) and take the inner product with
a tangent vector Z, we get

(η2 − ν2)〈(X ∧ Y )JH,Z〉+ 〈[AJX , AJX ]JH,Z〉 = 0.

57
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Let us take X = ea, Y = eb, Z = ec with a 6= b. Then we find

0 = (η2 − ν2)〈(ea ∧ eb)JH, ec〉+ 〈[AJea , AJeb ]JH, ec〉
= − (η2 − ν2)〈(ea ∧ eb)ec, JH〉 − 〈[AJea , AJeb ]ec, JH〉

= (η2 − ν2)(δac〈eb, JH〉 − δbc〈ea, JH〉) +
n∑
i=1

〈ei, JH〉 (〈AJebAJeaec, ei〉 − 〈AJeaAJebec, ei〉)

= (η2 − ν2)(δac〈eb, JH〉 − δbc〈ea, JH〉) +
n∑
i=1

〈ei, JH〉 (〈AJeaec, AJebei〉 − 〈AJebec, AJeaei〉)

= (η2 − ν2)(δac〈eb, JH〉 − δbc〈ea, JH〉) +
n∑
i=1

〈ei, JH〉
n∑
j=1

(CacjCbij − CbcjCaij) . (4.1.1)

Lemma 4.1.1. If 〈H, Jei〉 6= 0 for 2 ≤ i ≤ n, then λi = ν − η.

Proof. Take a = c = 1 6= b in (4.1.1). Then we find

0 = (η2 − ν2)〈eb, JH〉+
n∑
i=1

〈ei, JH〉
n∑
j=1

(C11jCbij − Cb1jC1ij)

= 〈eb, JH〉
(
η2 − ν2 + 2νλb − λ2

b

)
= 〈eb, JH〉(λb − ν + η)(λb − ν − η).

We know that λb ≤ ν because of the properties of the canonical basis, thus the third
factor is nonzero. So if 〈eb, JH〉 6= 0, then λb = ν − η.

Corollary 4.1.2. Suppose that W is the eigenspace of ν − η, i.e. W = span{em, . . . , en}
with m ≥ 2, and U is the (1-dimensional) eigenspace of 2ν. Then JH ∈ U ⊕W .

Lemma 4.1.3. If W = ∅, i.e. none of the vectors {e2, . . . , en} have eigenvalue ν − η,
then M is minimal.

Proof. If W = ∅, then JH ∈ U , or thus JH = 〈JH, e1〉e1. Consider 1 = a 6= b = c in
(4.1.1):

0 = − (η2 − ν2)〈e1, JH〉+
n∑
i=1

〈ei, JH〉
n∑
j=1

(C1bjCbij − CbbjC1ij)

= − (η2 − ν2)〈e1, JH〉+ 〈e1, JH〉
n∑
j=1

(C1bjCb1j − CbbjC11j)

= 〈e1, JH〉
(
λ2
b − 2νλb − η2 + ν2

)
= 〈e1, JH〉(λb − ν − η)(λb − ν + η).

The last two factors must now be nonzero, so 〈e1, JH〉 = 0 and thereforeM is minimal.

Theorem 4.1.4. Let M be a H-pseudo-parallel Lagrangian submanifold. Then one of
the following two situations happens:

(i) M is minimal,
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(ii) we can decompose the tangent space in 3 mutually orthogonal subspaces TpM =
U ⊕ V ⊕W such that

h(U,U) ⊂ JU h(U,W ) ⊂ JW
h(U, V ) ⊂ JV h(V,W ) ⊂ JV ⊕ JW,

where U is 1-dimensional and U,W are always nonempty. Moreover, H ∈ JU⊕JW .

Proof. Assume M is not minimal. We define U to be the eigenspace of 2ν and W the
eigenspace of ν − η. Then U = span{e1} and is therefore 1-dimensional and nonempty.
The subspace W is nonempty because of lemma 4.1.3. The four listed properties follow
from the properties of the canonical basis. Finally, H ∈ JU ⊕ JW due to (4.1.2).

4.2 Pseudo-parallel cubic form

This section is based on section 3 of [Dil+12], but generalised from semi-parallelity to
pseudo-parallel cubic form. The same decomposition was used there to classify parallel
Lagrangian submanifolds of CP n.

Using equation (2.1.7), the condition for pseudo-parallel cubic form becomes

Ξ
U,V,W

{
(η2 − ν2)C((X ∧ Y )U, V,W ) + C([AJX , AJY ]U, V,W )

}
= 0.

We expand the wedge in the first term to get

(η2 − ν2)(〈Y, U〉C(X, V,W )− 〈X,U〉C(Y, V,W )).

For the second term, we expand the Lie bracket and then apply the following steps:

C(AJXAJYU, V,W )

= 〈JAJXAJYU, h(V,W )〉 = −〈AJXAJYU, Jh(V,W )〉 = −〈h(Y, U), h(X, Jh(V,W ))〉

= C(Y, U, Jh(X, Jh(V,W ))) = C

(
Y, U,

n∑
i=1

〈Jh(X, Jh(V,W )), ei〉ei

)

= −
n∑
i=1

C (Y, U, ei)C(X, Jh(V,W ), ei)

= −
n∑
i=1

C (Y, U, ei)C

(
X,

n∑
j=1

〈Jh(V,W ), ej〉ej, ei

)

=
n∑
i=1

n∑
j=1

C (Y, U, ei)C (X, ei, ej)C(V,W, ej),

and similarly

C(AJYAJXU, V,W ) =
n∑
i=1

n∑
j=1

C (X,U, ei)C (Y, ei, ej)C(V,W, ej).
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The second term then becomes

n∑
j=1

C(V,W, ej)
n∑
i=1

((C (Y, U, ei)C (X, ei, ej)− C (X,U, ei)C (Y, ei, ej))) .

So putting everything together, we find that

0 = Ξ
U,V,W

{
(η2 − ν2)(〈Y, U〉C(X, V,W )− 〈X,U〉C(Y, V,W )) (4.2.1)

+
n∑
j=1

C(V,W, ej)
n∑
i=1

(C (Y, U, ei)C (X, ei, ej)− C (X,U, ei)C (Y, ei, ej))

}
.

Let’s assume X = ea, Y = eb, U = ec, V = ed,W = ee. Then we obtain

0 = Ξ
c,d,e

{
(η2 − ν2)(δbcCade − δacCbde) +

n∑
j=1

Cdej

n∑
i=1

(CbciCaij − CaciCbij)

}
. (4.2.2)

Lemma 4.2.1. The tangent space TpM can be decomposed as a direct sum of 3 orthogonal
vector spaces, that is, TpM = U ⊕ V ⊕W where

(i) U is a 1-dimensional vector space spanned by e1,

(ii) h(e1, e1) = 2νJe1,

(iii) h(e1, v) = νJv for any v ∈ V ,

(iv) h(e1, w) = (ν − η)Jw for any w ∈ W ,

(v) h(v1, v2)− ν〈v1, v2〉Je1 ∈ JW for any v1, v2 ∈ V ,

(vi) h(w1, w2)− (ν − η)〈w1, w2〉Je1 ∈ JW for any w1, w2 ∈ W ,

(vii) h(v, w) ∈ JV for all v ∈ V , w ∈ W .

Proof. Items (i) and (ii) follow directly from the definition of the canonical basis. Choose
a = c = d = 1 and b = e 6= 1. Then (4.2.2) gives

0 = 2

(
−(η2 − ν2)C1bb +

n∑
j=1

C1bj

n∑
i=1

(C1biC1ij − C11iCbij)

)

+ (η2 − ν2)C111 +
n∑
j=1

C11j

n∑
i=1

(CbbiC1ij − C1biCbij)

= − 2(η2 − ν2)λb + 2λ3
b − 4νλ2

b + 2(η2 − ν2)ν + 4ν2λb − νλ2
b

= (λb − ν)(λb − ν − η)(λb − ν + η).

Thus for b ∈ {2, . . . , n}, there are only two possible values for λb: ν and ν − η. Let V
be the eigenspace of the eigenvalue ν and W the eigenspace of the eigenvalue ν − η. By
linearity, items (iii) and (iv) are then proven.
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For items (v) and (vi), let a = c = 1 and b, d, e different from 1.

0 = − (η2 − ν2)Cbde +
n∑
j=1

Cdej

n∑
i=1

(C1biC1ij − C11iCbij)

+ (η2 − ν2)δbdC11e +
n∑
j=1

C1ej

n∑
i=1

(CbdiC1ij − C1diCbij)

+ (η2 − ν2)δbeC11d +
n∑
j=1

C1dj

n∑
i=1

(CbeiC1ij − C1eiCbij)

= Cbde
(
−η2 + ν2 + λ2

b − 2νλb + λ2
e − λdλe + λ2

d − λdλe
)

= Cbde
(
(λb − ν − η)(λb − ν + η) + (λd − λe)2

)
.

If λb = λd = λe = ν, then we find that Cbde = 0. So by linearity C(v1, v2, v3) = 0 for all
v1, v2, v3 ∈ V . So h(V, V ) ⊂ JU ⊕JW . By item (iii) and the symmetry of the cubic form,
we know that

〈h(v1, v2), Je1〉 = ν〈v1, v2〉,

and thus h(v1, v2)− ν〈v1, v2〉Je1 ∈ JW , which proves item (v).

If λb = ν and λd = λe = ν − η, then again Cbde = 0. So by linearity, C(w1, w2, v) = 0
for all v ∈ V , w1, w2 ∈ W . So h(W,W ) ⊂ JU ⊕ JW . By item (iv) and the symmetry of
the cubic form, we know that

〈h(w1, w2), Je1〉 = (ν − η)〈w1, w2〉,

and thus h(w1, w2)− (ν − η)〈w1, w2〉Je1 ∈ JW , which proves item (vi) .

For item (vii), note that 〈h(v, w), Je1〉 = 0 for all v ∈ V and w ∈ W , and recall that
we have proven that

Cabc
(
(λa − ν − η)(λa − ν + η) + (λb − λc)2

)
= 0,

for a, b, c 6= 1. Choosing 2 ≤ a ≤ m and m+ 1 ≤ b, c ≤ n gives us that Cabc = 0, and thus
by linearity C(v, w, w′) = 0 for all v ∈ V and w,w′ ∈ W . So for all v ∈ V and w ∈ W ,
we find that h(v, w) ∈ JV .

We have n possible cases for the eigenvectors:
Case 1: λ2 = · · · = λn = ν.
Case m: λ2 = · · · = λm = ν and λm+1 = . . . = λn = ν − η for 2 ≤ m ≤ n− 1.
Case n: λ2 = · · · = λn = (ν − η).

If η = 0, all cases are identical. We will simply consider that a part of case n, and
from now on assume that η 6= 0.

Proposition 4.2.2. Case 1 does not occur.
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Proof. Assume we are in case 1. Let a = 1 and b = c = d = e 6= 1. Then

0 = (η2 − ν2)C1bb +
n∑
j=1

Cbbj

n∑
i=1

(CbbiC1ij − C1biCbij)

= (η2 − ν2)λb +
n∑
j=1

C2
bbj(λj − λb)

= (η2 − ν2)λb + C2
bb1(2ν − λb) +

n∑
j=2

C2
bbj(λj − λb)

= − λb(λb − ν − η)(λb − ν + η) +
n∑
j=2

C2
bbj(λj − λb).

Since λ2 = · · · = λn = λb = ν, then this reduces to

0 = νη2,

but as we assumed ν 6= 0 and η 6= 0 this gives a contradiction.

We will now work in Case m with 2 ≤ m ≤ n+ 1.

Definition 4.2.3. We introduce a bilinear map L : V × V → W by

L(v1, v2) := −J(h(v1, v2)− ν〈v1, v2〉Je1),

which indeed has image in W due to property (v) in lemma 4.2.1.

Then clearly we have

L(v1, v2) =
n∑

i=m+1

C(v1, v2, ei)ei,

or for vectors of the canonical basis,

L(ej, ek) =
n∑

i=m+1

Cijkei,

and thus

〈L(ej, ek), L(er, es)〉 =
n∑

i=m+1

CijkCirs. (4.2.3)

Lemma 4.2.4. The tensor L is an isotropic tensor, i.e.

‖L(v, v)‖2 = νη,

for a unit vector v ∈ V . Moreover, for v1, v2, v3, v4 ∈ V unit vectors, we have that

〈L(v1, v2), L(v3, v4)〉+ 〈L(v1, v3), L(v2, v4)〉+ 〈L(v1, v4), L(v2, v3)〉
= νη (〈v1, v2〉〈v3, v4〉+ 〈v1, v3〉〈v2, v4〉+ 〈v1, v4〉〈v2, v3〉) .
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Proof. By linearity, it suffices to prove this for the vectors of the canonical basis that span
V . Let a = 1 and 2 ≤ b, c, d, e ≤ m. Then

0 = (η2 − ν2)δbcC1de +
n∑
j=1

Cdej

n∑
i=1

(CbciC1ij − C1ciCbij)

+ (η2 − ν2)δbdC1ce +
n∑
j=1

Ccej

n∑
i=1

(CbdiC1ij − C1diCbij)

+ (η2 − ν2)δbeC1cd +
n∑
j=1

Ccdj

n∑
i=1

(CbeiC1ij − C1eiCbij)

= (η2 − ν2)ν(δbcδde + δbdδce + δbeδcd) +
n∑
j=1

(λj − ν) (CdejCbcj + CcejCbdj + CcdjCbej)

= ((η2 − ν2)ν + ν3)(δbcδde + δbdδce + δbeδcd)− η
n∑

j=m+1

(CdejCbcj + CcejCbdj + CcdjCbej)

= η

(
νη(δbcδde + δbdδce + δbeδcd)−

n∑
j=m+1

CdejCbcj −
n∑

j=m+1

CcejCbdj −
n∑

j=m+1

CcdjCbej

)
.

Due to η 6= 0 and (4.2.3), this proves the second part of the theorem. In particular, if v is
a unit vector, then taking v = v1 = v2 = v3 = v4 in the second part of the theorem gives

‖L(v, v)‖2 = νη,

so L is isotropic.

We now decompose W as the direct sum of two orthogonal vector spaces: W1 =
L(V, V ) and its orthogonal complement in W , named W2. By definition of L, we have
that h(V, V ) ∈ JU ⊕ JW1.

Next, we give a characterisation of W2:

Lemma 4.2.5. w ∈ W2 if and only if h(v, w) = 0 ∀v ∈ V .

Proof. By property (vii) in lemma 4.2.1, we need only consider the JV -component. For
any v1, v2 ∈ V and w ∈ W , we have

〈h(v1, w), Jv2〉 = 〈h(v1, v2), Jw〉 − ν〈v1, v2〉〈Je1, Jw〉 = 〈L(v1, v2), w〉,

and the lemma follows easily from this equality.

From this we also see that h(W1,W2) ⊂ JW . We can improve this to h(W1,W2) ⊂
JW2:

Lemma 4.2.6. Let v1, v2 ∈ V and w ∈ W2. Then

h(L(v1, v2), w) = (ν − η)η〈v1, v2〉Jw.
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Proof. Again, by linearity, it suffices to prove this for vectors of the canonical basis.
Choose a = 1, 2 ≤ b, c ≤ m, m+ 2 ≤ d, e ≤ n such that ed ∈ W and ee ∈ W2. Then

0 = (η2 − ν2)δbcC1de +
n∑
j=1

Cdej

n∑
i=1

(CbciC1ij − C1ciCbij)

+
n∑
j=1

Ccej

n∑
i=1

(CbdiC1ij − C1diCbij) +
n∑
j=1

Ccdj

n∑
i=1

(CbeiC1ij − C1eiCbij)

= (η2 − ν2)(ν − η)δbcδde +
n∑
j=1

(λj − ν)CbcjCdej

= η2(ν − η)δbcδde − η
n∑

j=m+1

CbcjCdej

= η (η(ν − η)δbcδde − 〈JL(eb, ec), h(ed, ee)〉)
= η (η(ν − η)δbc〈Jed, Jee〉 − 〈Jed, h(L(eb, ec), ee)〉) ,

and since η 6= 0 we find

h(L(eb, ec), ee) = η(ν − η)δbcJee,

which proves the lemma.

Finally, we show that h(W1,W1) ∈ JU ⊕ JW1:

Lemma 4.2.7. Let v1, v2, v3, v4 ∈ V , then we have that

h(L(v1, v2), L(v3, v4))

= (ν − η)〈L(v1, v2), L(v3, v4)〉Je1 + (ν − η)η〈v1, v2〉JL(v3, v4)

+
m∑
i=2

〈L(v1, ei), L(v3, v4)〉JL(v2, ei) +
m∑
i=2

〈L(v2, ei), L(v3, v4)〉JL(v1, ei).

Proof. Proving the Je1-component can be done by taking the inner product with Je1:

〈h(L(v1, v2), L(v3, v4)), Je1〉 = (ν − η)〈L(v1, v2), L(v3, v4)〉.

Now suppose a = 1, 2 ≤ b, c ≤ m, m+ 1 ≤ d, e ≤ n such that ed ∈ W1.
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0 = (η2 − ν2)δbcC1de +
n∑
j=1

Cdej

n∑
i=1

(CbciC1ij − C1ciCbij)

+
n∑
j=1

Ccej

n∑
i=1

(CbdiC1ij − C1diCbij) +
n∑
j=1

Ccdj

n∑
i=1

(CbeiC1ij − C1eiCbij)

= (η2 − ν2)(ν − η)δbcδde +
n∑
j=1

(λj − ν) (CdejCbcj + CcejCbdj + CcdjCbej)

= η2(ν − η)δbcδde − η
n∑

j=m+1

CdejCbcj + η

m∑
j=2

(CcejCbdj + CcdjCbej)

= η2(ν − η)δbc〈Jed, Jee〉 − η〈h(L(eb, ec), ed), Jee〉

+ η
m∑
j=2

〈L(eb, ej), ed〉〈JL(ec, ej), Jee〉+ η

m∑
j=2

〈L(ec, ej), ed〉〈JL(eb, ej), Jee〉.

Since η 6= 0, we obtain

〈h(L(eb, ec), ed), Jee〉 = (ν − η)ηδbc〈Jed, Jee〉+
m∑
j=2

〈L(eb, ej), ed〉〈JL(ec, ej), Jee〉

+ η
m∑
j=2

〈L(ec, ej), ed〉〈JL(eb, ej), Jee〉,

so by linearity, the lemma is proven.

Theorem 4.2.8. Suppose we are in Case m. Then we can decompose the tangent space
TpM = U ⊕ V ⊕W1 ⊕W2 such that

h(U,U) ⊂ JU h(V,W1) ⊂ JV
h(U, V ) ⊂ JV h(V,W2) = 0
h(U,W1) ⊂ JW1 h(W1,W1) ⊂ JU ⊕ JW1

h(U,W2) ⊂ JW2 h(W1,W2) ⊂ JW2

h(V, V ) ⊂ JU ⊕ JW1 h(W2,W2) ⊂ JU ⊕ JW1 ⊕ JW2.

Proof. The first 4 properties follow from (i) to (iv) in lemma 4.2.1. Moreover, the property
h(V, V ) ⊂ JU ⊕ JW1 follows property (v) in lemma 4.2.1 and the definition of W1;
h(V,W1) ⊂ JV follows from property (vii) in lemma 4.2.1; h(V,W2) = 0 follows from
lemma 4.2.5, h(W1,W2) ⊂ JW2 follows from lemma 4.2.6 and h(W2,W2) ⊂ JU ⊕ JW1 ⊕
JW2 follows from lemma 4.2.7.

Finally consider Case n. Then λi = ν − η for i ∈ {2, . . . , n}. Since e2, . . . , en are all
in the eigenspace of ν − η, we may assume that e2, . . . , en is in fact the canonical basis of
the vector space span{e2, . . . , en}:

C2ij = λ
(2)
i δij,



66 Chapter 4. Decomposition of the tangent space of a Lagrangian submanifold

for 2 ≤ i, j ≤ n. We define

ν2 =
1

2
λ

(2)
2 ,

η2 =
1

2

√
λ

(2)
2

2
+ 8η(η − ν) =

√
ν2

2 + 2η(η − ν),

thus η2
2 − ν2

2 = 2η(η − ν). So for 2 ≤ a, b, c, d ≤ n we have:

0 = Ξ
c,d,e

{
(η2 − ν2)(δbcCade − δacCbde) +

n∑
j=2

Cdej

n∑
i=2

(CbciCaij − CaciCbij)

+C1de

n∑
i=1

(CbciC1ai − CaciC1bi) +
n∑
j=2

Cdej (C1bcC1aj − C1acC1bj)

}

= Ξ
c,d,e

{
(η2 − ν2)(δbcCade − δacCbde) +

n∑
j=2

Cdej

n∑
i=2

(CbciCaij − CaciCbij)

+(ν − η)2 (δbcCade − δacCbde)
}

= Ξ
c,d,e

{
2η(η − ν)(δbcCade − δacCbde) +

n∑
j=2

Cdej

n∑
i=2

(CbciCaij − CaciCbij)

}

= Ξ
c,d,e

{
(η2

2 − ν2
2)(δbcCade − δacCbde) +

n∑
j=2

Cdej

n∑
i=2

(CbciCaij − CaciCbij)

}
.

We can thus consider the vector subspace span{e2, . . . , en} as vectors satisfying the con-
dition of pseudo-parallel cubic form again. We may then reapply the decomposition to
this vector subspace.

4.3 Constant sectional curvature

This section is based on [Eji82], but is more general since we do not assume minimality.
Suppose M is a manifold of constant sectional curvature c. Then the equation of Gauss
(4.2.2) becomes

0 = (η2 − ν2) (〈Y, Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉) + 〈h(Y, Z), h(X,W )〉 − 〈h(X,Z), h(Y,W )〉.

Lemma 4.3.1. The eigenvalues of {e2, . . . , en} are all ν − η.

Proof. If we choose X = ea, Y = eb, Z = ec,W = ed, then we find

0 = (η2 − ν2) (δbcδad − δacδbd) +
n∑
i=1

(CbciCadi − CaciCbdi) . (4.3.1)

If we choose a = c = 1 6= b = d in (4.3.1), we get

0 = − (η2 − ν2) +
n∑
i=1

(Cb1iC1bi − C11iCbbi)

= − (η2 − ν2) + λ2
b − 2νλb

= (λb − ν − η)(λb − ν + η).
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So for all i ∈ {2, . . . , n}, we find that λi = ν − η.

Since {e2, . . . , en} are all in the eigenspace of ν − η, we may assume that {e2, . . . , en}
is in fact the canonical basis of span{e2, . . . , en}:

C2ij = λ
(2)
i δij,

for 2 ≤ i, j ≤ n and for certain eigenvalues λ
(2)
i . Let us set ν1 = ν and η1 = η. We define

ν2 =
1

2
λ

(2)
2 ,

η2 =
1

2

√
λ

(2)
2

2
+ 8η1(η1 − ν1) =

√
ν2

2 + 2η1(η1 − ν1),

thus η2
2 − ν2

2 = 2η1(η1 − ν1). So for 2 ≤ a, b, c, d ≤ n we have

0 = (η2
1 − ν2

1) (δbcδad − δacδbd) +
n∑
i=1

(CbciCadi − CaciCbdi)

= (η2
1 − ν2

1) (δbcδad − δacδbd) +
n∑
i=2

(CbciCadi − CaciCbdi) + (ν1 − η1)2 (δbcδad − δacδbd)

= 2η1(η1 − ν1) (δbcδad − δacδbd) +
n∑
i=2

(CbciCadi − CaciCbdi)

= (η2
2 − ν2

2) (δbcδad − δacδbd) +
n∑
i=2

(CbciCadi − CaciCbdi) .

This is just (4.3.1) again, but restricted to {e2, . . . , en} and with ν2 and η2. So we find

that λ
(2)
i = ν2 − η2 for 3 ≤ i ≤ n. We can continue this process, defining

νi =
1

2
λ

(i)
i ,

ηi =
1

2

√
λ

(i)
i

2
+ 8ηi−1(ηi−1 − νi−1) =

√
ν2
i + 2ηi−1(ηi−1 − νi−1).

We can summarise the results of this process as follows:

Theorem 4.3.2. If we choose the canonical basis {e1, . . . , en} where

ei = argmax
X∈(UpM)i

C(X,X,X),

λ
(i)
i = C(ei, ei, ei),

where (UpM)i = {X ∈ UpM | X ⊥ e1, . . . , fe−1}, and we define νi and ηi as above. Then
C has the following form:

Ciii = 2νi Cijj = νi − ηi
Ciij = 0 Cijk = 0,

where 1 ≤ i, j, k ≤ n and i < j < k. In particular, C is completely determined by the
curvatures c and c̃, and the values λ

(i)
i .
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Proof. The process to get this specific form is mentioned above. To see that C depends
only on these values, note that we constructed ν1 and η1 using c, c̃ and λ

(1)
1 . Using the

definition, we can write any νi and ηi in function of c, c̃ and {λ(1)
1 , λ

(2)
2 , . . . , λ

(i)
i }.

A special case occurs when M is a Lagrangian submanifold of constant sectional cur-
vature c̃:

Theorem 4.3.3. Let Mn be a Lagrangian submanifold of a complex space form M̃ (4c̃).
Then M has constant sectional curvature c̃ if and only if, at each point p ∈M , C satisfies

Ciii = µi Cijk = 0,

where i, j, k not all equal, for some functions µi and for some orthonormal basis {e1, . . . , en}
[Dil+12].

Proof. If M has constant sectional curvature c̃, then take the canonical basis mentioned
in theorem 4.3.2. But since c = c̃, we find that ν = η and as a consequence νi = ηi for all
1 ≤ i ≤ n. Then by theorem 4.3.2, C satisfies the required form by taking µi = 2νi.

Conversely, suppose that C satisfies the given form for some basis {e1, . . . , en}. The
equation of Gauss (4.2.2) reduces to

〈c̃(ea ∧ eb)ec, ed〉 = 〈R(ea, eb)ec, ed〉 −
n∑
i=1

(CbciCadi − CaciCbdi) = 0,

so we have to prove this summation vanishes. But both terms in the summation are only
nonzero when a = b = c = d = i, in which case they equal eachother. So by linearity,
we indeed have that R(X, Y ) = c̃(X ∧ Y ) for all X, Y ∈ TpM and thus Mn has constant
sectional curvature c̃.



Chapter 5

Classification results

In this chapter we give classification results for certain classes of Lagrangian submanifolds.
We mention the results without proof or explanation, as these fall beyond the scope of
this thesis. References are of course provided for the interested reader.

5.1 Lagrangian surfaces

If n = 2, then the conditions of pseudo-parallel cubic form and H-pseudo-parallel are
trivial. As can be seen in the summary of constraints on a Lagrangian surface, we end
up with 2 “weakest conditions”: being H-semi-parallel, having constant curvature K = c
or being H-umbilical. Due to theorem 3.2.12, the condition of H-semi-parallel means we
locally have one of the other two options.

The Lagrangian surfaces of constant curvature have been classified by Chen:

Theorem 5.1.1. There exist 19 families of Lagrangian surfaces of constant curvature
in C2. 12 of the 19 families are obtained via Legendre curves. Conversely, Lagrangian
surfaces of constant curvature in C2 can be obtained locally from the 19 families [Che04;
Che05d].

Theorem 5.1.2. There exist 32 families of Lagrangian surfaces of constant curvature
in CP 2. 25 of the 32 families are obtained via Legendre curves. Conversely, Lagrangian
surfaces of constant curvature in CP 2 can be obtained locally from the 32 families [Che05c;
Che05e; Che06].

Theorem 5.1.3. There exist 68 families of Lagrangian surfaces of constant curvature
in CH2. 48 of the 68 families are obtained via Legendre curves. Conversely, Lagrangian
surfaces of constant curvature in CH2 can be obtained locally from the 68 families [Che05b;
Che05e; Che07].

H-umbilical Lagrangian surfaces have been classified by Chen:

Theorem 5.1.4. Let M be a non-totally geodesic H-umbilical Lagrangian surface in C2

satisfying
h(e1, e1) = λJe1, h(e1, e2) = µJe2, h(e2, e2) = µJe1,

such that the integral curves of e1 are geodesics in M . Then we have [Che97a; Che99]:

69
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(i) if M is flat, then one of the following 2 cases happens:

(i-1) M is a Lagrangian cylinder, i.e. a cylinder over a curve whose rulings are lines
parallel to a fixed plane,

(i-2) M is a twisted product manifold of the form fI × E,

(ii) if M is of constant nonzero sectional curvature c, then up to rigid motions of C2,
M is a Lagrangian pseudo-sphere, i.e. the complex extensor F ⊗ ι of the unit circle
of E2 via the unit speed curve

F (s) =
e2
√
csi + 1

2
√
ci

,

which is then an immersion of an open portion of the 2-sphere S2(c),

(iii) if M contains no open subset of constant sectional curvature, then, up to rigid
motions of C2, M is a complex extensor of the unit circle of E2.

Theorem 5.1.5. Let M be a non-totally geodesic H-umbilical Lagrangian surface in
CP 2(4c̃) for the immersion ψ̄ : M → CP 2. We have [Che97b]:

(i) if M has constant sectional curvature c, it belongs to one of the 32 families mentioned
before,

(ii) if M contains no open subsets of constant sectional curvature ≥ c̃ and if the integral
curves of JH are geodesics in M , then there exists a unit speed Legendre curve

z(x) = (z1(x), z2(x)) : I → S3(c̃) ⊂ C2,

such that up to rigid motions of CP 2(4c̃), ψ̄ : M → CP 2(4c̃) with ψ̄ given by Π ◦ ψ
where ψ is defined by

ψ(x, θ) = (z1(x), z2(x) sin θ, z2(x) cos θ).

Theorem 5.1.6. Let M be a non-totally geodesic H-umbilical Lagrangian surface in
CH2(4c̃) for the immersion ψ̄ : M → CH2. Then we have [Che97b]:

(i) if M has constant sectional curvature c, it belongs to one of the 68 families mentioned
before,

(ii) if M contains no open subsets of constant sectional curvature ≥ c̃ and if the integral
curves of JH are geodesics in M , then we define

k(x) =
µ′(x)

λ− 2µ(x)
,

and

u(x) = c̃+ µ2(x) + k2(x).

Then one of the following cases happens:
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(ii-1) if u(x) > 0, there exists a unit speed Legendre curve z = (z1, z2) : I → H3
1 (c̃) ⊂

C2
1 such that up to rigid motions of CH2(4c̃), ψ̄ is locally given by Π ◦ψ where

ψ(x, θ) = (z1(x), z2(x) cos θ, z2(x) sin θ),

(ii-2) if u(x) < 0, there exists a unit speed Legendre curve z = (z1, z2) : I → H3
1 (c̃) ⊂

C2
1 such that up to rigid motions of CH2(4c̃), ψ̄ is locally given by Π ◦ψ where

ψ(x, θ) = (z1(x) cosh θ, z1(x) sinh θ, z2(x)),

(ii-3) if u(x) = 0, then up to rigid motions of CH2(4c̃), ψ̄ is locally given by Π ◦ ψ
where

ψ(x, θ) = e
∫ x
0 (iµ+k)dx

(
1√
−c̃

(
1− c̃θ2

2
−
∫ x

0

(iµ+ k)e−
∫ t
0 2k(t)dtdx

)
,

(iµ(0)− k(0))

(
θ2

2
+

1

c̃

∫ x

0

(iµ+ k)e−
∫ t
0 2k(t)dtdx

)
, θ

)
.

5.2 H-umbilical Lagrangian submanifolds

Chen did not just classify the H-umbilical Lagrangian surfaces, but in fact the classified
the H-umbilical Lagrangian submanifolds as a whole:

Theorem 5.2.1. Let Mn (n ≥ 3) be a non-totally geodesic H-umbilical Lagrangian sub-
manifold of Cn. Then [Che97a; Che99]:

(i) if M is flat, then one of the following 2 cases happens:

(i-1) M is a Lagrangian cylinder, i.e. a cylinder over a curve whose rulings are
(n− 1)-planes parallel to a fixed (n− 1)-plane,

(i-2) M is a twisted product manifold of the form fI × En−1,

(ii) if M is a manifold of constant nonzero sectional curvature c, then up to rigid motions
of Cn, M is a Lagrangian pseudo-sphere, i.e. the complex extensor F ⊗ ι of the unit
hypersphere of En via the unit speed curve

F (s) =
e2
√
csi + 1

2
√
ci

,

which is then an immersion of an open portion of the n-sphere Sn(c),

(iii) if M contains no open subset of constant sectional curvature, then up to rigid mo-
tions of Cn, M is a complex extensor of the unit hypersphere of En.

Theorem 5.2.2. Let M (n ≥ 3) be a non-totally geodesic H-umbilical Lagrangian sub-
manifold of CP n(4c̃) for the immersion ψ̄ : M → CP n. Then [Che97b]:

(i) if M is a manifold of constant sectional curvature c, then either:
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(i-1) c = c̃,

(i-2) c > c̃ and up to rigid motions of CP n(4c̃) the immersion ψ̄ = Π ◦ ψ where

ψ(x, y1, . . . , yn) =
ei
√
c−c̃x

2
√
c

((√
c− c̃(

√
c− c̃−

√
c)√

c̃
+
√
c̃y1

)
ei
√
cx

+

(√
c− c̃(

√
c− c̃+

√
c)√

c̃
+
√
c̃y1

)
e−i
√
cx,

(
√
c−
√
c− c̃+

√
c− c̃y1)ei

√
cx − (

√
c+
√
c− c̃−

√
c− c̃y1)e−i

√
cx,

√
cy2(ei

√
cx + e−i

√
cx), . . . ,

√
cyn(ei

√
cx + e−i

√
cx)

)
,

with y2
1 + · · ·+ y2

n = 1,

(ii) if M contains no open subsets of constant sectional curvature ≥ c̃, then there exists
a unit speed Legendre curve

z(x) = (z1(x), z2(x)) : I → S3(c̃) ⊂ C2,

such that up to rigid motions of CP n(4c̃), ψ̄ = Π ◦ ψ where ψ is defined by

ψ(x, y1, . . . , yn) = (z1(x), z2(x)y1, . . . , z2(x)yn),

with y2
1 + · · ·+ y2

n = 1.

Theorem 5.2.3. Let M (n ≥ 3) be a non-totally geodesic H-umbilical Lagrangian sub-
manifold of CHn(4c̃) for the immersion ψ̄ : M → CHn. Then [Che97b]:

(i) if M is a manifold of constant sectional curvature c, then either:

(i-1) c = c̃,

(i-2) c > c̃ and up to rigid motions of CHn(4c̃) the immersion ψ̄ = Π ◦ ψ where, if
c > 0,

ψ(x, y1, . . . , yn) =
ei
√
c−c̃x

2
√
c

((√
c− c̃(

√
c− c̃−

√
c)√

−c̃
−
√
−c̃y1

)
ei
√
cx

+

(√
c− c̃(

√
c− c̃+

√
c)√

−c̃
−
√
−c̃y1

)
e−i
√
cx,

(
√
c−
√
c− c̃+

√
c− c̃y1)ei

√
cx − (

√
c+
√
c− c̃−

√
c− c̃y1)e−i

√
cx,

√
cy2(ei

√
cx + e−i

√
cx), . . . ,

√
cyn(ei

√
cx + e−i

√
cx)

)
,

with y2
1 + · · ·+ y2

n = 1; when c = 0,

ψ(x, u2, . . . , un) =
ei
√
−c̃x

2
√
c

(
1√
c̃
− ix+

√
−c̃
2

n∑
j=2

u2
j , x+

i

2

n∑
j=2

u2
j , u2, . . . , un

)
,
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or when c < 0,

ψ(x, u2, . . . , un) =
ei
√
c−c̃x

2

(
1√
−c̃

(
e
√
−cx

(
1−
√
c− c̃√
−c

i− c̃
n∑
j=2

u2
j

)

+e−
√
−cx
(

1 +

√
c− c̃√
−c

i

))
, e
√
−cx

(
1√
−c

+ (
√
c− c̃i−

√
−c)

n∑
j=2

u2
j

)

− 1√
−c

e−
√
−cx, 2u2e

√
−cx, . . . , 2une

√
−cx
)
,

(ii) if M contains no open subsets of constant sectional curvature ≥ c̃, then we define

k(x) =
µ′(x)

λ− 2µ(x)
,

and

u(x) = c̃+ µ2(x) + k2(x).

Then M is foliated by real space forms Nn−1(u(x)) of constant sectional curvature
u(x). Then the following cases happen:

(ii-1) if u(x) > 0, then there exists a unit speed Legendre curve,

z(x) = (z1(x), z2(x)) : I → H3
1 (c̃) ⊂ C2

1,

such that up to rigid motions of CHn(4c̃), ψ̄ = Π ◦ ψ where

ψ(x, y1, . . . , yn) = (z1(x), z2(x)y1, . . . , z2(x)yn),

with y2
1 + · · ·+ y2

n = 1,

(ii-2) if u(x) < 0, then there exists a unit speed Legendre curve

z(x) = (z1(x), z2(x)) : I → H3
1 (c̃) ⊂ C2

1,

such that up to rigid motions of CHn(4c̃), ψ̄ = Π ◦ ψ where

ψ(x, y1, . . . , yn) = (z1(x)y1, . . . , z1(x)yn, z2(x)),

with y2
1 − y2

2 − · · · − y2
n = 1,

(ii-3) if u(x) = 0, then up to rigid motions of CHn(4c̃), ψ̄ = Π ◦ψ is locally given by

ψ(x, u2, . . . , un) = e
∫ x
0 (iµ+k)dx

(
1√
−c̃

(
1− c̃

2

n∑
j=2

u2
j −

∫ x

0

(iµ+ k)e−
∫ t
0 2k(t)dtdx

)
,

(iµ(0)− k(0))

(
1

2

n∑
j=2

u2
j +

1

c̃

∫ x

0

(iµ+ k)e−
∫ t
0 2k(t)dtdx

)
, u2, . . . , un

)
.
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5.3 Parallel Lagrangian submanifolds in CP n

Naitoh studied and classified the parallel Lagrangian submanifolds CP n in a series of
papers [Nai80; Nai81a; Nai81b; Nai83a; Nai83b; NT82]. However, we refer to the classi-
fication in [Dil+12] as it is more “geometric”:

Theorem 5.3.1. Let M be a parallel Lagrangian submanifold of CP n. Then M is one of
the following:

(i) M is totally geodesic,

(ii) M is locally the Calabi product of a point with a lower-dimension parallel Lagrangian
submanifold,

(iii) M is locally the Calabi product of two lower-dimensional parallel Lagrangian sub-
manifolds,

(iv) n = k(k + 1)/2− 1 for k ≥ 3 and M is congruent with SU(k)/SO(k),

(v) n = k2 − 1 for k ≥ 3 and M is congruent with SU(k),

(vi) n = 2k2 − k − 1 for k ≥ 3 and M is congruent with SU(2k)/Sp(k),

(vii) n = 26 and M is congruent with E6/F4.
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Chapter 6

δ-invariants of Riemannian manifolds

In this chapter, we will discuss Chen’s δ-invariants for general Riemannian manifolds and
submanifolds, not just for Lagrangian submanifolds of complex space forms. Most of the
content from this chapter is adapted from [Che11] and [Che13].

6.1 Introduction

Curvature invariants are the number one Riemannian invariants and the most natural
ones. They also play key roles in physics: for instance, the magnitude of a force required
to move an object at constant speed, according to Newton’s law, a constant multiple of the
curvature of the trajectory. The motion of a body in a gravitational field is determined,
according to Einstein, by the curvatures of spacetime. All sorts of shapes, from soap
bubbles to red blood cells, seem to be determined by various curvatures. Borrow a term
from biology, Riemannian invariants are the DNA of Riemannian manifolds. Classically,
among the Riemannian curvature invariants, people have been studying sectional, scalar
and Ricci curvatures in great detail.

One of the most fundamental problems in the theory of submanifolds is that of im-
mersibility (or non-immersibility) of a Riemannian manifold in a Euclidean space (or,
more generally, in a space form). This problem has been around since Bernhard Riemann
and was posed explicitly by Ludwig Schläfli in [Sch71]. Schläfli asserted that any Rie-
mannian manifold Mn can be isometrically embedded in Euclidean space of dimension
1
2
n(n+1). Apparently, it is appropriate to assume that he had in mind of analytic metrics

and local analytic embeddings. This was later called Schläfli’s conjecture.

Maurice Janet published in [Jan26] a proof of Schläfli’s conjecture which states that a
real analytic Riemannian manifold Mn can be locally isometrically embedded into any real
analytic Riemannian manifold of dimension 1

2
n(n+ 1). Élie Cartan revised Janet’s paper

in [Car27]; yet both Janet’s and Cartan’s proofs contained obscurities. C. Burstin got rid
of them in [Bur31]. This result of Cartan-Janet implies that every Einstein manifold Mn

(n ≥ 3) can be locally isometrically embedded in En(n+1)/2.

The Cartan-Janet theorem is dimension-wise the best possible, i.e. there exist real an-
alytic Riemannian manifolds Mn which do not possess smooth local isometric embeddings
into any Euclidean space of dimension strictly less than 1

2
n(n+1). Not every Riemannian
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n-manifold can be isometrically immersed in Em with m ≤ 1
2
n(n + 1). For instance, not

every Riemannian surface M2 can be isometrically immersed in E3. A global isometric
embedding theorem was proven by John F. Nash in [Nas56]

Theorem 6.1.1. Every compact Riemannian manifold Mn can be isometrically embedded
in any small portion of a Euclidean space Em with m = 1

2
n(3n+ 11). Every non-compact

Riemannian manifold Mn can be isometrically embedded in any small portion of a Eu-
clidean space Em with m = 1

2
n(n+ 1)(3n+ 11).

Robert E. Greene improved Nash’s result in [Gre70] and proved that every non-
compact Riemannian manifold Mn can be isometrically embedded in the Euclidean space
Em with m = 2(2n+ 1)(3n+ 7). Also, it was proven independently in [Gre70] and [GR70]

that a local isometric embedding from a Riemannian manifold Mn into E 1
2
n(n+1)+n always

exists.

The Nash embedding theorem was aimed at the hope that if Riemannian manifolds
could be regarded as Riemannian submanifolds, this would then yield the opportunity to
use extrinsic help in the study of (intrinsic) Riemannian geometry. However, this hope
had not been materialized according to Mikhail Gromov in [Gro85]. There were several
reasons why:

(i) It requires a very large codimension for a Riemannian manifold to admit an isometric
embedding in Euclidean spaces in general. But submanifolds of higher codimension
are very difficult to be understood, e.g. there are no general results for arbitrary
Riemannian submanifolds except the three fundamental equations of Gauss, Codazzi
and Ricci.

(ii) As explained in [Yau92], “What is lacking in the Nash theorem is the control of the
extrinsic quantities in relation to the intrinsic quantities”. In other words, we do
not have any optimal relationships between intrinsic and extrinsic invariants.

Since there are no obstructions to isometric embeddings according to Nash’s theorem, in
order to study isometric immersions (or embeddings), it is natural to impose some suitable
constraints. Shiing-Shen Chern asked in [Che68]: “What are necessary conditions for a
Riemannian manifold to admit a minimal isometric immersion into a Euclidean space?”.
From the equation of Gauss, it follows that a necessary condition is that Ric ≤ 0 (and
in particular, τ ≤ 0). For many years, this was the only known Riemannian obstruction
for a general Riemannian manifold to admit a minimal immersion into a Euclidean space
with arbitrary codimension, until Bang-Yen Chen introduced his δ-invariants in [Che93;
Che94; Che95]. These invariants were later applied to Lagrangian submanifolds [Che00b].

6.2 Formal definition

Let Mn be a Riemannian manifold. Recall the definition of the scalar curvature:

τ =
∑
i<j

K(ei, ej),

where {e1, . . . , en} is an orthonormal basis for TpM .
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Definition 6.2.1. Let L be a subspace of TpM of dimension 2 ≤ m ≤ n − 1 and
{e1, . . . , em} an orthonormal basis of L. We define the scalar curvature of L as

τ(L) =
∑
i<j

K(ei, ej).

In particular, if m = 2, then τ(L) is the sectional curvature of L.

We will need the following definition:

Definition 6.2.2. We denote by S(n) the set of k-tuples (n1, . . . , nk) where

(i) 0 ≤ k ≤ bn
2
c,

(ii) 2 ≤ n1 ≤ n2 ≤ . . . ≤ nk < n,

(iii) n1 + · · ·+ nk ≤ n.

Remark 6.2.3. Note that #S(n) increases quite rapidly with n: it is equal to p(n) − 1
where p(n) is the partition function. The asymptotic behaviour of #S(n) is given by

#S(n) ≈ 1

4n
√

3
exp

(√
2n

3
π

)
as n→∞.

Definition 6.2.4. Let (n1, . . . , nk) ∈ S(n). We define the δ-invariant of (n1, . . . , nk) at
a point p ∈M as

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + . . .+ τ(Lk)},

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM with dimR Lj = nj.

Because of a compactness argument, this infimum will always be reached and is ac-
tually a minimum. The subspaces {L1, . . . , Lk} for which this minimum is attained need
not be unique, however.

Proposition 6.2.5. For certain integers, the delta-invariant has a well-known meaning:

(i) δ(∅) = τ ,

(ii) δ(2) = τ − infπ∈TpM K̃(π),

(iii) δ(n− 1) = max‖X‖=1 Ric(X).

Proof. Items (i) and (ii) follow immediately from the definition of the δ-invariants. For
item (iii), let L = span{e1, . . . , en−1} be the subspace of TpM minimizing τ(L). Now,

τ − τ(L) =
n∑
i<j

K(ei, ej)−
n−1∑
i<j

K(ei, ej) =
n−1∑
i=1

K(ei, en) = Ric(en).

Since L is the subspace minimizing the left-hand side of the above equality, en must be
the unit vector maximizing the right-hand side.
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6.3 Optimal general inequality for δ-invariants

Before stating any results, we will introduce some notation. For a given delta-invariant
δ(n1, . . . , nk) on a Riemannian manifold Mn and a point p ∈M , we consider the mutually
orthogonal subspaces L1, . . . , Lk with dim(Li) = ni of TpM , minimizing the infimum
inf{τ(L1) + . . .+ τ(Lk)}. We then choose an orthonormal basis {e1, . . . , en} of TpM such
that

e1, . . . , en1 ∈ L1,
en1+1, . . . , en1+n2 ∈ L2,

...
en1+···+nk−1+1, . . . , en1+···+nk ∈ Lk,

and we shall define Lk+1 as the subspace of dimension nk+1 = n− n1 − · · · − nk, spanned
by {en1+···+nk+1, . . . , en}. Then we have that TpM = L1⊕L2⊕· · ·⊕Lk+1. Note that Lk+1

may be empty and thus nk+1 may be zero.

To make notation with these indices a bit more easy, we set

∆1 = {1, . . . , n1},
∆2 = {n1 + 1, . . . , n1 + n2},

...
∆k = {n1 + · · ·+ nk−1 + 1, . . . , n1 + · · ·+ nk},
∆k+1 = {n1 + · · ·+ nk + 1, . . . , n},

so that we can apply following conventions for the ranges of summation indices:

a, b, c ∈ {1, . . . , n}, i, j ∈ {1, . . . , k}, αi, βi, γi ∈ ∆i, r, s, t ∈ ∆k+1.

Definition 6.3.1. For each (n1, . . . , nk) ∈ S(n), we define the functions c(n1, . . . , nk) and
b(n1, . . . , nk) by

c(n1, . . . , nk) =
n2(n+ k − 1−

∑k
j=1 nj)

2(n+ k −
∑k

j=1 nj)
,

b(n1, . . . , nk) =
1

2
n(n− 1)− 1

2

k∑
j=1

nj(nj − 1).

We have the following optimal general inequality [Che05a]:

Theorem 6.3.2. Let φ : Mn → M̃m be an isometric immersion of Riemannian manifolds.
Then for each k-tuple (n1, . . . , nk) ∈ S(n) we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)‖H‖2 + b(n1, . . . , nk) max K̃, (6.3.1)

where maxK is the maximum of the sectional curvature of M̃ restricted to 2-plane sections
of the tangent space TpM .

The equality case holds at p ∈M if and only if for any k mutual orthogonal subspaces
{L1, . . . , Lk} of TpM satisfying the infimum in the definition of δ(n1, . . . , nk), we have:
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(i) The shape operator A at p, with respect to the orthonormal basis {e1, . . . , en}, takes
the form

Aξ =


A

(1)
ξ . . . 0
...

. . .
... 0

0 . . . A
(k)
ξ

0 µξ Idnk+1

 , (6.3.2)

for any normal vector ξ where A
(j)
ξ is a symmetric nj × nj submatrix and µξ ∈ R

such that

trace(A
(1)
ξ ) = · · · = trace(A

(k)
ξ ) = µξ. (6.3.3)

(ii) With respect to the orthonormal basis {e1, . . . , en}, we have that K̃(eαi , eαj) =

K̃(er, es) = max K̃(p) for i 6= j, r 6= s.

An important special case of this theorem is the following:

Theorem 6.3.3. Given an n-dimensional submanifold M in a real space form M̃m(c̃).
Then for each k-tuple (n1, . . . , nk) ∈ S(n) we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)‖H‖2 + b(n1, . . . , nk)c̃. (6.3.4)

The equality case of (6.3.4) holds at a point p ∈ M if and only if there exists an or-
thonormal basis e1, . . . , en of TpM such that the shape operator at p satisfies (6.3.2) and
(6.3.3).

Because the proof of theorem 6.3.2 is based on the equation of Gauss and since this
equation for a totally real submanifold in a complex space form is the same as for a
submanifold in a real space form, we obtain the following result:

Theorem 6.3.4. Let M be an n-dimensional totally real submanifold of a complex space
form M̃m(4c̃). Then for any k-tuple (n1, . . . , nk) ∈ S(n) we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)‖H‖2 + b(n1, . . . , nk)c̃. (6.3.5)

The equality case of (6.3.5) holds at a point p ∈ M if and only if there exists an or-
thonormal basis e1, . . . , en of TpM such that the shape operator at p satisfies (6.3.2) and
(6.3.3).

So in particular, this theorem holds for Lagrangian submanifolds of complex space
forms.

Definition 6.3.5. Let φ : Mn → M̃m be an isometric immersion of Riemannian man-
ifolds. If this immersion satisfies the equality in (6.3.1) for some (n1, . . . , nk) at every
point p ∈M , then it is called an ideal immersion.

The inequality is called “optimal” because ideal immersions that are non-minimal,
exist.
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Example 6.3.6. Consider the spherical cylinder Mn = Ek×Sn−k(1) where 0 ≤ k ≤ bn
2
c.

Then at a point p = (x, y), we can consider the tangent space TpM = TxEk ⊕ TySn−k.
So let {e1, . . . , en} be an orthonormal basis of TpM where {e1, . . . , ek} are the lifts of
an orthonormal basis of TxEk and {ek+1, . . . , en} are the lifts of an orthonormal basis of
TyS

n−k. Then we have that

K(ei, ej) =

{
1 if k + 1 ≤ i, j ≤ n,
0 otherwise.

So we find that the scalar curvature of M is

τ =
(n− k)(n− k − 1)

2
.

Now let (n1, . . . , nl) be such that (n1−1) + · · ·− (nl−1) = k. Then for orthogonal spaces
{L1, . . . , Ll}, choose each Li to be the span of ni vectors in {e1, . . . , ek} and 1 vector in
{ek+1, . . . , en}. Then clearly τ(Li) = 0 for all these spaces, and thus

δ(n1, . . . , nl) = τ =
(n− k)(n− k − 1)

2
.

Now immerse this spherical cylinder as a hypersurface with the immersion

φ : Mn = Ek × Sn−k(1)→ En+1 = Ek × Ek−1.

It is well-known this immersion has ‖H‖ = n−k
n

. We can calculate c(n1, . . . , nl) to be

c(n1, . . . , nl) =
n2(n− k − 1)

2(n− k)
,

and therefore, for any such (n1, . . . , nl), we satisfy the equality in (6.3.1). So φ is an ideal
immersion.

6.4 Corollaries

Recall from proposition 6.2.5 that δ(∅) and δ(n− 1) have specific interpretation in terms
of the scalar curvature τ and the Ricci curvature Ric. It is natural to wonder what the
optimal general inequality tells us about them.

Corollary 6.4.1. Let Mn be a submanifold of a real space form M̃m(c̃) or a totally real
submanifold of a complex space form M̃m(4c̃). Then

τ ≤ n(n− 1)

2
(‖H‖2 + c̃),

with equality holding at a point p ∈M if and only if p is a totally umbilical point.

Proof. The inequality follows directly from calculating c(∅) and b(∅). In the equality case,
(6.3.2) becomes Aξ = µξ Id, which is the condition for being totally umbilical.
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Corollary 6.4.2. Let Mn be a submanifold of a real space form M̃m(c̃) or a totally real
submanifold of a complex space form M̃m(4c̃). Then

Ric(X) ≤ n2

4
‖H‖2 + (n− 1)c̃.

Proof. From calculating c(n− 1) and b(n− 1), we find that

Ric(X) ≤ max
‖Y ‖=1

Ric(Y ) = δ(n− 1) ≤ n2

4
‖H‖2 + (n− 1)c̃,

which proves the corollary.

Finally, in the case of δ(2), we have an interesting result for the form of the shape
operator in the equality case:

Corollary 6.4.3. Let Mn be a submanifold of a real space form M̃m(c̃) or a totally real
submanifold of a complex space form M̃m(4c̃). Then

δ(2) ≤ n− 2

2

(
n2

n− 1
‖H‖2 + (n+ 1)c̃

)
,

and equality holds at a point p ∈ M if and only if there is a basis {e1, . . . , en} of TpM
such that the shape operator Aξ has the form

Aξ = µξ

(
0 0
0 Idn−1

)
, (6.4.1)

where µξ ∈ R.

Proof. The inequality follows directly from calculating c(2) and b(2). For the equality
case, we refer to [Opr08].





Chapter 7

Improved inequality for Lagrangian
submanifolds

In this chapter, we will show that the general inequality is no longer optimal when re-
stricted to Lagrangian submanifolds. An improved and once again optimal inequality will
be given and proven in detail.

7.1 Loss of optimality

Naturally, we can apply theorem 6.3.4 to the case of Lagrangian submanifolds. However,
while inequality (6.3.5) is optimal in general, is it still optimal when restricted to the class
of Lagrangian submanifolds? It turns out it is not:

Theorem 7.1.1. Every Lagrangian submanifold satisfying inequality (6.3.5) is a minimal
submanifold [Che00a].

Proof. Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c̃) satisfying
equality in (6.3.5). Then there exists an orthonormal basis {e1, . . . , en} of TpM at each
p ∈ M such that, for each normal vector ξ at p, the shape operator Aξ with respect to
{e1, . . . , en} takes the form (6.3.2) and that equation (6.3.3) holds.

If h ≡ 0 there is nothing to prove. So assume h 6≡ 0. From (6.3.2), we find that for
any X ∈ TpM and for any i ∈ {1, . . . , k}, AJXLi ⊂ Li. Thus AJLjLi ⊂ Li, and likewise
AJLiLj ⊂ Lj. From the symmetry of the shape operator we know that AJLiLj = AJLjLi;
thus AJLiLj ⊂ (Li ∩ Lj), but since Li and Lj are orthogonal if i 6= j, we find

h(Li, Li) ⊂ JLi, h(Li, Lj) = 0, i 6= j.

Let us remark that

〈trace
Li

h, JX〉 =
∑
αi∈∆i

〈h(eαi , eαi), JX〉 =
∑
αi∈∆i

〈AJeαieαi , X〉 =
∑
αi∈∆i

〈AJXeαi , eαi〉

= traceA
(i)
JX ,

85



86 Chapter 7. Improved inequality for Lagrangian submanifolds

and

〈trace
Lk+1

h, JX〉 =
∑

r∈∆k+1

〈h(er, er), JX〉 =
∑

r∈∆k+1

〈AJerer, X〉 =
∑

r∈∆k+1

〈AJXer, er〉

=
∑

r∈∆k+1

µJX〈er, er〉 = nk+1µJX .

We consider two cases:

(i) n1 + . . .+nk = n. Then nk+1 = 0 and by the definition of S(n), we know that k ≥ 2.

We show that traceA
(i)
Jea

= 0, for any i ∈ {1, . . . , k}. There are two possible situa-
tions:

(i-1) a = αj with i 6= j. Then

traceA
(i)
Jeαj

=
∑
αi∈∆i

〈AJeαj eαi , eαi〉 =
∑
αi∈∆i

〈AJeαieαi , eαj〉 = 0,

since AJeαieαi ∈ Li and eαj ∈ Lj,
(i-2) a = αi ∈ ∆i. Since k ≥ 2, there exists a Lj ⊥ Li. Then by (6.3.3) and (i-1),

we find
traceA

(i)
Jeαi

= traceA
(j)
Jeαi

= 0.

Thus combining (i-1) and (i-2), we find that traceLi h = 0 for all i ∈ {1, . . . , k}.

(ii) n1 + · · · + nk < n. Then ∆k+1 is nonempty, so choose some r ∈ ∆k+1. Then by
(6.3.2) we have that for any a and any b 6= r,

〈AJerea, eb〉 = 〈AJeaer, eb〉 = µJea〈er, eb〉 = 0. (7.1.1)

Now consider two situations:

(ii-1) take a = r in (7.1.1), then we get for any b 6= r:

0 = 〈AJerer, eb〉 = 〈AJeber, er〉 = µJeb〈er, er〉 = µJeb ,

(ii-2) by definition, we know that ∆1 is nonempty. Now consider a = b = α1 ∈ ∆1

in (7.1.1) and then take the sum over all α1, then we find by (6.3.3):

0 =
∑
α1∈∆1

〈AJereα1 , eα1〉 = traceA
(1)
Jer

= µJer .

By combining (ii-1) and (ii-2), we find that µJX = 0 for all X ∈ TpM . Thus

〈trace
Li

h, JX〉 = traceA
(i)
JX = µJX = 0,

〈trace
Lk+1

h, JX〉 = nk+1µJX = 0.

So the trace of h over any space in {L1, . . . , Lk, Lk+1} vanishes.

Now the mean curvature is

H =
1

n
traceh =

1

n

k+1∑
i=1

trace
Li

h = 0,

so indeed M is minimal.
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7.2 Improved inequality

Since every Lagrangian submanifold satisfying the equality in (6.3.5) is minimal, the
inequality is not optimal for Lagrangian manifolds. So we should be able to find a function
cL(n1, . . . , nk) ≤ c(n1, . . . , nk), such that the inequality with cL instead of c is optimal.
This was done in [CD11b], however as pointed out in [CD11a] there was a mistake in the
proof. This was rectified in [Che+13].

We will first give two lemmas:

Lemma 7.2.1. For any set of real numbers {C ′abc | 1 ≤ a, b, c ≤ n}, which is symmetric
in the three indices a, b and c, there exists a Lagrangian isometric immersion F : U ⊂
Rn → Cn and a point p ∈ U such that the cubic form of F at p is given by Cabc = C ′abc
where {e1, . . . , en} is the standard basis of Rn and J is the standard complex structure of
Cn.

Proof. Let f : U ⊂ Rn → R : (x1, . . . , xn) 7→ f(x1, . . . , xn) be a smooth function on an
open subset U of Rn. Then

F : U ⊂ Rn → Cn : (x1, . . . , xn) 7→
(
x1 + i

∂f

∂x1

, . . . , xn + i
∂f

∂xn

)
,

is a Lagrangian isometric immersion satisfying Cabc = ∂3f
∂xa∂xb∂xc

at every point of U . For

a given set of real numbers {C ′abc | 1 ≤ a, b, c ≤ n} we can easily construct a smooth
function f which satisfies this. For indices 1 ≤ a ≤ b ≤ c ≤ n, consider the polynomial

f(x) =
∑
a<b<c

Cabcxaxbxc +
∑
a=b<c

Caac
1

2
x2
axc +

∑
a<b=c

Cabb
1

2
xax

2
b +

∑
a=b=c

Caaa
1

6
x3
a.

This function indeed has the required 3rd order derivatives.

Lemma 7.2.2. For real numbers A1, . . . , Ak, denote by ∆(A1, . . . , Ak) the determinant
of the matrix with A1, . . . , Ak on the diagonal and all other entries equal to 1:

∆(A1, . . . , Ak) =

A1 1 · · · 1 1
1 A2 · · · 1 1
...

...
. . .

...
...

1 1 · · · Ak−1 1
1 1 · · · 1 Ak

, (7.2.1)

Then

∆(A1, . . . , Ak) =
k∏
i=1

(Ai − 1) +
k∑
i=1

∏
j 6=i

(Aj − 1). (7.2.2)

In particular, if none of the numbers A1, . . . , Ak equal 1, then

∆(A1, . . . , Ak) =

(
1 +

1

A1 − 1
+ · · ·+ 1

Ak − 1

)
(A1 − 1) . . . (Ak − 1).
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Proof. We first verify if the result is true for k = 1 and k = 2 by direct computation of
(7.2.1) and (7.2.2).

For the k = 1 case, clearly ∆(A1) = A1, and equation (7.2.2) gives (A1 − 1) + 1 = A1

so this case works out fine.

For the k = 2 case, ∆(A1, A2) = A1A2 − 1. Equation (7.2.2) becomes

(A1 − 1)(A2 − 1) + (A1 − 1) + (A2 − 1)

= A1A2 − A1 − A2 + 1 + A1 − 1 + A2 − 1

= A1A2 − 1,

so the lemma is also true for k = 2.

Now assume that k ≥ 3 and the theorem holds for ∆(A1, . . . , Al) with l < k. We
compute the determinant ∆(A1, . . . , Ak) by first replacing the k-th column by the k-th
column minus the (k − 1)-th column, then replacing the k-th row by the k-th row minus
the (k−1)-th row and finally developing the determinant with respect to the last column.

∆(A1, . . . , Ak) =

A1 1 · · · 1 0
1 A2 · · · 1 0
...

...
. . .

...
...

1 1 · · · Ak−1 1− Ak−1

1 1 · · · 1 Ak − 1

=

A1 1 · · · 1 0
1 A2 · · · 1 0
...

...
. . .

...
...

1 1 · · · Ak−1 1− Ak−1

0 0 · · · 1− Ak−1 Ak + Ak−1 − 2

= (Ak + Ak−1 − 2)∆(A1, . . . , Ak−1)− (Ak−1)2∆(A1, . . . , Ak−2).

It is now sufficient to verify that the expression (7.2.2) indeed satisfies the recursion
relation

∆(A1, . . . , Ak) = (Ak + Ak−1 − 2)∆(A1, . . . , Ak−1)− (Ak−1)2∆(A1, . . . , Ak−2).
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Now,

(Ak + Ak−1 − 2)

(
k−1∏
i=1

(Ai − 1) +
k−1∑
i=1

k−1∏
j 6=i

(Aj − 1)

)

− (Ak−1)2

(
k−2∏
i=1

(Ai − 1) +
k−2∑
i=1

k−2∏
j 6=i

(Aj − 1)

)

=
k∏
i=1

(Ai − 1) + (Ak−1 − 1)
k−1∏
i=1

(Ai − 1) +
k−1∑
i=1

k∏
j 6=i

(Aj − 1)

+ (Ak−1)
k−1∑
i=1

k−1∏
j 6=i

(Aj − 1)− (Ak−1 − 1)
k−1∏
i=1

(Ai − 1)−
k−2∑
i=1

k−1∏
j 6=i

(Aj − 1)

=
k∏
i=1

(Ai − 1) +
k∑
i=1

k∏
j 6=i

(Aj − 1),

which proves the lemma.

Theorem 7.2.3. Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c̃).
Let (n1, . . . , n) ∈ S(n) be integers satisfying n1 + · · · + nk < n and let nk+1 = n − n1 −
· · · − nk. Then, at any point of Mn, we have

δ(n1, . . . , nk) ≤
n2
(
nk+1 + 3k − 1− 6

∑k
i=1

1
2+ni

)
2
(
nk+1 + 3k + 2− 6

∑k
i=1

1
2+ni

) ‖H‖2 + b(n1, . . . , nk)c̃. (7.2.3)

Assume that equality holds at a point p ∈ Mn. Then with the choice of basis and the
notations introduced earlier in this chapter, one has

(i) Cabc = 0 if a, b, c are mutually different and not all in the same ∆i with i ∈
{1, . . . , k},

(ii) Cαiαjαj = Cαiαk+1αk+1
=
∑

βi∈∆i
Cαiβiβi = 0 for i 6= j,

(iii) Crrr = 3Crss = (ni + 2)Cαiαir for r 6= s.

Proof. The proof consists of four steps.

Step 1: Set-up. Fix a delta-invariant δ(n1, . . . , nk) and a point p ∈ Mn. Take linear
subspaces {L1, . . . , Lk} of TpM and orthonormal basis {e1, . . . , en} described above. The
equation of Gauss (1.3.7) gives us

〈R(ei, ej)ej, ei〉 = c̃+
∑
k

(CiikCjjk − C2
ijk).

Then by taking the sum over all indices b < c we get

τ =
n(n− 1)

2
c̃+

∑
a

∑
b<c

(CabbCacc − C2
abc),
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and in particular, for each subspace Li we find

τ(Li) =
ni(ni − 1)

2
c̃+

∑
a

∑
αi<βi

(CaαiαiCaβiβi − C2
aαiβi

).

Combining these, we have

τ −
∑
i

τ(Li) =
∑
a

(∑
b<c

(CabbCacc − C2
abc)−

∑
i

∑
αi<βi

(CaαiαiCaβiβi − C2
aαiβi

)

)
+ b(n1, . . . , nk)c̃

=
∑
a

(∑
r<s

(
CarrCass − C2

ars

)
+
∑
i

∑
αi,r

(
CaαiαiCarr − C2

aαir

)
(7.2.4)

+
∑
i<j

∑
αi,αj

(
CaαiαiCaαjαj − C2

aαiαj

)+ b(n1, . . . , nk)c̃.

Now, let us consider the quadratic terms in the summations:

∑
a

∑
r<s

C2
ars +

∑
i

∑
αi,r

C2
aαir

+
∑
i<j

∑
αi,αj

C2
aαiαj

 ≥∑
r

∑
b6=r

C2
brr +

∑
i

∑
αi

∑
b/∈∆i

C2
bαiαi

,

(7.2.5)

since every term on the right-hand side is also a term on the left-hand side, but not
vice-versa. We then find by combining (7.2.4) and (7.2.5) that

τ −
∑
i

τ(Li) ≤
∑
a

∑
r<s

CarrCass +
∑
i

∑
αi,r

CaαiαiCarr +
∑
i<j

∑
αi,αj

CaαiαiCaαjαj


−
∑
r

∑
b 6=r

C2
brr −

∑
i

∑
αi

∑
b/∈∆i

C2
bαiαi

+ b(n1, . . . , nk)c̃. (7.2.6)

Now, we want to find cL such that (7.2.6) is less than or equal to

n2cL(n1, . . . , nk)‖H‖2 + b(n1, . . . , nk)c̃ = cL(n1, . . . , nk)
∑
a

(∑
b

Cabb

)2

+ b(n1, . . . , nk)c̃,

(7.2.7)
such that the value for cL is the best possible one in the sense that the inequality in the
theorem will no longer be true in general for smaller values of cL. In view of Lemma 1,
we have to find the smallest possible cL for which the following two statements hold:

(I) for any l ∈ {1, . . . , k} and any γl ∈ ∆l,∑
r<s

CγlrrCγlss +
∑
i

∑
αi,r

CγlαiαiCγlrr +
∑
i<j

∑
αi,αj

CγlαiαiCγlαjαj

−
∑
r

C2
γlrr
−
∑
i 6=l

∑
αi

C2
γlαiαi

≤ cL(n1, . . . , nk)

(∑
b

Cγlbb

)2

,
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(II) for any t ∈ ∆k+1,∑
r<s

CtrrCtss +
∑
i

∑
αi,r

CtαiαiCtrr +
∑
i<j

∑
αi,αj

CtαiαiCtαjαj

−
∑
r 6=t

C2
trr −

∑
i

∑
αi

C2
tαiαi

≤ cL(n1, . . . , nk)

(∑
b

Ctbb

)2

.

Step 2: Finding the best possible cL in (I).

We use that∑
b

Cγlbb =
∑
i 6=l

∑
αi

C2
αiαiγl

+
∑
αl

C2
αlαlγl

+ 2
∑
i<j

∑
αi,αj

CαiαiγlCαjαjγl

+ 2
∑
i

∑
αi<βi

CαiαiγlCβiβiγl + 2
∑
i

∑
αi,r

CαiαiγlCrrγl + 2
∑
r<s

CrrγlCssγl +
∑
r

C2
rrγl

.

So we can rearrange (I) into

(cL + 1)
∑
i 6=l

∑
αi

C2
αiαiγl

+ cL
∑
αl

C2
αlαlγl

+ (cL + 1)
∑
r

C2
rrγl

+ 2cL
∑
i

∑
αi<βi

CαiαiγlCβiβiγl

+ (2cL − 1)

∑
i<j

∑
αi,αj

CαiαiγlCαjαjγl +
∑
i

∑
αi,r

CαiαiγlCrrγl +
∑
r<s

CrrγlCssγl

 ≥ 0.

Now, if we put xa = Caaγl for all a = 1, . . . , n, we can consider the left-hand side of the
previous inequality as a quadratic form on Rn. So we need to find necessary and sufficient
conditions on cL for this quadratic form to be non-negative. Two times the matrix of this
quadratic form consists of (k + 1)2 blocks:

Ml = (Λij)i,j=1,...,k+1,

with

Λll =

 2cL · · · 2cL
...

. . .
...

2cL · · · 2cL

 ∈ Rnl×nl ,

Λk+1 k+1 =


2(cL + 1) 2cL − 1 · · · 2cL − 1 2cL − 1
2cL − 1 2(cL + 1) · · · 2cL − 1 2cL − 1

...
...

. . .
...

...
2cL − 1 2cL − 1 · · · 2(cL + 1) 2cL − 1
2cL − 1 2cL − 1 · · · 2cL − 1 2(cL + 1)

 ∈ Rnk+1×nk+1 ,

Λii =


2(cL + 1) 2cL · · · 2cL 2cL

2cL 2(cL + 1) · · · 2cL 2cL
...

...
. . .

...
...

2cL 2cL · · · 2(cL + 1) 2cL
2cL 2cL · · · 2cL 2(cL + 1)

 ∈ Rni×ni if i 6= l, k + 1,
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Λij =

 2cL − 1 · · · 2cL − 1
...

. . .
...

2cL − 1 · · · 2cL − 1

 ∈ Rni×nj .

For every i ∈ {1, . . . , k + 1}, Ml has the following ni − 1 eigenvectors:

wi1 = (0, . . . , 0, |1,−1, 0 . . . , 0, 0, |0, . . . , 0),
wi2 = (0, . . . , 0, |1, 0,−1 . . . , 0, 0, |0, . . . , 0),

...
wi ni−1 = (0, . . . , 0, | 1, 0, 0 . . . , 0,−1,︸ ︷︷ ︸

∆i

|0, . . . , 0).

We can verify this by multiplying the corresponding block Λii with the ∆i-part of the
eigenvector wij. We have to consider the cases i = l, i = k+ 1 and i 6= l, k+ 1 separately.

For i = l, we find

Mlwlj =

 2cL · · · 2cL
...

. . .
...

2cL · · · 2cL

 ·



1
0
...
0
−1
0
...
0


=

 0
...
0

 = 0 ·



1
0
...
0
−1
0
...
0


= 0 · wlj,

for i = k + 1 we find

Mlwk+1 j =


2(cL + 1) 2cL − 1 · · · 2cL − 1 2cL − 1
2cL − 1 2(cL + 1) · · · 2cL − 1 2cL − 1

...
...

. . .
...

...
2cL − 1 2cL − 1 · · · 2(cL + 1) 2cL − 1
2cL − 1 2cL − 1 · · · 2cL − 1 2(cL + 1)

 ·



1
0
...
0
−1
0
...
0



=



2(cL + 1)− (2cL − 1)
(2cL − 1)− (2cL − 1)

...
(2cL − 1)− (2cL − 1)
(2cL − 1)− 2(cL + 1)
(2cL − 1)− (2cL − 1)

...
(2cL − 1)− (2cL − 1)


=



3
0
...
0
−3
0
...
0


= 3 · wk+1 j,
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and for i 6= l, k + 1 we find

Mlwij =


2(cL + 1) 2cL · · · 2cL 2cL

2cL 2(cL + 1) · · · 2cL 2cL
...

...
. . .

...
...

2cL 2cL · · · 2(cL + 1) 2cL
2cL 2cL · · · 2cL 2(cL + 1)

 ·



1
0
...
0
−1
0
...
0



=



2(cL + 1)− 2cL
2cL − 2cL

...
2cL − 2cL)

2cL − 2(cL + 1)
2cL − 2cL

...
2cL − 2cL


=



2
0
...
0
−2
0
...
0


= 2 · wij.

The eigenvalues are 0, 3, 2 depending on whether i = l, i = k+ 1 or i 6= l, k+ 1 respec-
tively. So in total we have n− (k + 1) eigenvectors of Ml with non-negative eigenvalues.
The orthogonal complement of all these eigenvectors is spanned by

vi =
1

ni
(0, . . . , 0, | 1, 1, . . . , 1,︸ ︷︷ ︸

∆i

|0, . . . , 0), i = 1, . . . , k + 1,

since

〈vi, wij〉 =
1

ni
(1 · 1 + 1 · 0 + · · ·+ 1 · 0 + 1 · (−1) + 1 · 0 + · · ·+ 1 · 0) = 0,

〈vi, wkj〉 = 0, i 6= k,

〈vi, vj〉 = 0.

It is now sufficient to prove that the matrix M ′
l = (viMlv

T
j )i,j=1,...,k+1 ∈ R(k+1)×(k+1) is

non-negative. We calculate its coefficients:

(M ′
l )ll = vlMlv

T
l =

1

n2
l

(1 · · · 1)

 2cL · · · 2cL
...

. . .
...

2cL · · · 2cL


 1

...
1

 = 2cL,
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(M ′
l )k+1 k+1 = vk+1Mlv

T
k+1

=
1

n2
k+1

(1, . . . , 1)


2(cL + 1) 2cL − 1 · · · 2cL − 1 2cL − 1
2cL − 1 2(cL + 1) · · · 2cL − 1 2cL − 1

...
...

. . .
...

...
2cL − 1 2cL − 1 · · · 2(cL + 1) 2cL − 1
2cL − 1 2cL − 1 · · · 2cL − 1 2(cL + 1)


 1

...
1


=

1

nk+1

((nk+1 − 1)(2cL − 1) + 2(cL + 1)) = 2cL − 1 +
3

nk+1

,

(M ′
l )ii = viMlv

T
i

=
1

n2
i

(1, . . . , 1)


2(cL + 1) 2cL · · · 2cL 2cL

2cL 2(cL + 1) · · · 2cL 2cL
...

...
. . .

...
...

2cL 2cL · · · 2(cL + 1) 2cL
2cL 2cL · · · 2cL 2(cL + 1)


 1

...
1



=
1

ni
((nk+1 − 1)(2cL) + 2(cL + 1)) = 2

(
cL +

1

ni

)
,

(M ′
l )ij = viMlv

T
j =

1

ninj
(1, . . . , 1)

 2cL − 1 · · · 2cL − 1
...

. . .
...

2cL − 1 · · · 2cL − 1


 1

...
1

 = 2cL − 1.

We investigate three cases.

Case 1: 2cL = 1. In this case, we have

• (M ′
l )ll = 1,

• (M ′
l )k+1 k+1 = 3

nk+1
,

• (M ′
l )ii = 1 + 2

ni
,

• (M ′
l )ij = 0,

so M ′
l is a diagonal matrix with positive diagonal entries, so clearly it is positive semi-

definite.

Case 2: 2cL > 1. We verify that the matrix M ′′
l = M ′

l/(2cL − 1) is positive semi-
definite. Sylvester’s criterion states that it is sufficient to verify that the (j × j)-matrix
in the upper left corner of M ′′

l has positive determinant for all j = 1, . . . , k + 1.

• (M ′′
l )ll = 2cL

2cL−1
= 1 + 1

2cL−1
,

• (M ′′
l )k+1 k+1 =

2cL−1+ 3
nk+1

2cL−1
= 1 + 3

(nk+1)(2cL−1)
,

• (M ′′
l )ii =

2
(
cL+ 1

ni

)
2cL−1

= 1 +
1+ 2

ni

2cL−1
,
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• (M ′′
l )ij = 1.

Since (M ′′
l )ij = 1, we can apply lemma 7.2.2 to calculate the determinants the afore-

mentioned submatrices. But all diagonal entries are strictly greater than 1, so these are
clearly positive.

Case 3: 2cL < 1. We verify that the matrix M ′′
l = M ′

l/(2cL − 1) is negative semi-
definite. Sylvester’s criterion states that it is sufficient to verify that the (j × j)-matrix
in the upper left corner of M ′′

l has a determinant with sign (−1)j for all j = 1, . . . , k + 1.

We get the same matrix elements as in Case 2, so we once again apply 7.2.2. We
consider ranges of j:

If 1 ≤ j < l, we have

Dj =

1 +

j∑
i=1

1
1+ 2

ni

2cL−1

 j∏
i=1

(
1 + 2

ni

2cL − 1

)
=

(
1 +

j∑
i=1

2cL − 1

1 + 2
ni

)
j∏
i=1

(
1 + 2

ni

2cL − 1

)

=
1

(2cL − 1)j−1

(
1

2cL − 1
+

j∑
i=1

ni
ni + 2

)
j∏
i=1

(
1 +

2

ni

)
,

if l ≤ j < k + 1, we have

Dj =

1 +

j∑
i=1
i 6=l

1
1+ 2

ni

2cL−1

+
1
1

2cL−1

 j∏
i=1
i 6=l

(
1 + 2

ni

2cL − 1

)(
1

2cL − 1

)

=

2cL +

j∑
i=1
i 6=l

2cL − 1

1 + 2
ni

 j∏
i=1
i 6=l

(
1 + 2

ni

2cL − 1

)(
1

2cL − 1

)

=
1

(2cL − 1)j−1

 2cL
2cL − 1

+

j∑
i=1
i 6=l

ni
ni + 2

 j∏
i=1
i 6=l

(
1 +

2

ni

)
,
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and finally if j = k + 1, we have

Dk+1 =

1 +
k∑
i=1
i 6=l

1
1+ 2

ni

2cL−1

+
1
1

2cL−1

+
1
3

nk+1(2cL−1)


·

k∏
i=1
i 6=l

(
1 + 2

ni

2cL − 1

)(
1

2cL − 1

)(
3

nk+1(2cL − 1)

)

=

2cL +
k∑
i=1
i 6=l

2cL − 1

1 + 2
ni

+
nk+1(2cL − 1)

3


·

k∏
i=1
i 6=l

(
1 + 2

ni

2cL − 1

)(
1

2cL − 1

)(
3

nk+1(2cL − 1)

)

=
1

(2cL − 1)k

 2cL
2cL − 1

+
k∑
i=1
i 6=l

ni
ni + 2

+
nk+1

3

 k∏
i=1
i 6=l

(
1 +

2

ni

)(
3

nk+1

)
.

Hence we have:

sign(Dj) = (−1)j−1 sign

(
1

2cL − 1
+

j∑
i=1

ni
ni + 2

)
1 ≤ j < l,

sign(Dj) = (−1)j−1 sign

 2cL
2cL − 1

+

j∑
i=1
i 6=l

ni
ni + 2

 l ≤ j ≤ k,

sign(Dk+1) = (−1)k sign

 2cL
2cL − 1

+
k∑
i=1
i 6=l

ni
ni + 2

+
nk+1

3

 .

So we always need the formula inside the sign-function on the right-hand sides of the
previous equations to be negative:

1
2cL−1

+
∑j

i=1
ni
ni+2
≤ 0 1 ≤ j < l,

2cL
2cL−1

+
∑j

i=1
i 6=l

ni
ni+2
≤ 0 l ≤ j ≤ k,

2cL
2cL−1

+
∑k

i=1
i 6=l

ni
ni+2

+ nk+1

3
≤ 0.

But since we are in the case where 2cL < 1, we know that 2cL/(2cL − 1) > 1/(2cL − 1).
Moreover, it is obvious that for all 1 ≤ i ≤ k, ni/(ni + 2) ≥ 0 and nk+1/3 ≥ 0. So the last
condition implies the first k conditions.

Now, note that

k∑
i=1
i 6=l

ni
ni + 2

=
k∑
i=1
i 6=l

ni + 2

ni + 2
−

k∑
i=1
i 6=l

2

ni + 2
= k − 1− 2

k∑
i=1
i 6=l

1

ni + 2
.
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Then applying this and multiplying the condition by 2cL − 1 gives

2cL + (2cL − 1)

k − 1− 2
k∑
i=1
i 6=l

1

ni + 2
+
nk+1

3

 ≤ 0.

Solving for 2cL gives

2cL ≥
nk+1 + 3k − 3− 6

∑k
i=1
i 6=l

1
ni+2

nk+1 + 3k − 6
∑k

i=1
i 6=l

1
ni+2

. (7.2.8)

Step 3: Finding the best possible cL in (II).

We use that∑
b

Ctbb =
∑
i

∑
αi

C2
αiαit

+ C2
ttt + 2

∑
i<j

∑
αi,αj

CαiαitCαjαjt

+ 2
∑
i

∑
αi<βi

CαiαitCβiβit + 2
∑
i

∑
αi,r

CαiαitCrrt + 2
∑
r<s

CrrtCsst +
∑
r

C2
rrt.

So we can rearrange (II) into

(cL + 1)
∑
i

∑
αi

C2
αiαit

+ cLC
2
ttt + (cL + 1)

∑
r 6=t

C2
rrt + 2cL

∑
i

∑
αi<βi

CαiαitCβiβit

+ (2cL − 1)

∑
i<j

∑
αi,αj

CαiαitCαjαjt +
∑
i

∑
αi,r

CαiαitCrrt +
∑
r<s

CrrtCsst

 ≥ 0.

Now, if we put xa = Caat for all a = 1, . . . , n, we can consider the left-hand side of the
previous inequality as a quadratic form on Rn. So we need to find necessary and sufficient
conditions on cL for this quadratic form to be non-negative. Two times the matrix of this
quadratic form consists of (k + 1)2 blocks:

Mt = (Λij)i,j=1,...,k+1

with

Λii =


2(cL + 1) 2cL · · · 2cL 2cL

2cL 2(cL + 1) · · · 2cL 2cL
...

...
. . .

...
...

2cL 2cL · · · 2(cL + 1) 2cL
2cL 2cL · · · 2cL 2(cL + 1)

 ∈ Rni×ni if i 6= k + 1,

Λij =

 2cL − 1 · · · 2cL − 1
...

. . .
...

2cL − 1 · · · 2cL − 1

 ∈ Rni×nj ,
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Λk+1 k+1 =


2(cL + 1) 2cL − 1 · · · 2cL − 1 2cL − 1
2cL − 1 2(cL + 1) · · · 2cL − 1 2cL − 1

...
...

. . .
...

...
2cL − 1 2cL − 1 · · · 2(cL + 1) 2cL − 1
2cL − 1 2cL − 1 · · · 2cL − 1 2cL

 ∈ Rnk+1×nk+1 ,

where we assumed without loss of generality that t = n.

For every i ∈ {1, . . . , k}, Mt has the following ni − 1 eigenvectors:

wi1 = (0, . . . , 0, |1,−1, 0 . . . , 0, 0, |0, . . . , 0),
wi2 = (0, . . . , 0, |1, 0,−1 . . . , 0, 0, |0, . . . , 0),

...
wi ni−1 = (0, . . . , 0, | 1, 0, 0 . . . , 0,−1,︸ ︷︷ ︸

∆i

|0, . . . , 0),

and Mt has another nk+1 − 2 eigenvectors

wk+1 1 = (0, . . . , 0, |1,−1, 0 . . . , 0, 0, 0),
wk+1 2 = (0, . . . , 0, |1, 0,−1 . . . , 0, 0, 0),

...
wk+1 nk+1−2 = (0, . . . , 0, | 1, 0, 0 . . . , 0,−1, 0︸ ︷︷ ︸

∆k+1

).

The eigenvalues of wij are again 0, 3, 2 depending on whether i = l, i = k + 1 or
i 6= l, k + 1 respectively. So in total we have n − (k + 2) eigenvectors of Mt with non-
negative eigenvalues. The orthogonal complement of all these eigenvectors is spanned
by

vi =
1

ni
(0, . . . , 0, | 1, 1, . . . , 1,︸ ︷︷ ︸

∆i

|0, . . . , 0), i = 1, . . . , k,

vk+1 =
1

nk+1 − 1
(0, . . . , 0, | 1, 1, . . . , 1, 0︸ ︷︷ ︸

∆k+1

),

vk+2 = (0, . . . , 0, 1).

It is now sufficient to prove that the matrix M ′
t = (viMtv

T
j )i,j=1,...,k+2 ∈ R(k+2)×(k+2) is

non-negative.

(M ′
t)k+1 k+1 = vk+1Mtv

T
k+1

=
1

(nk+1 − 1)2
(1, . . . , 1)


2(cL + 1) 2cL − 1 · · · 2cL − 1 2cL − 1
2cL − 1 2(cL + 1) · · · 2cL − 1 2cL − 1

...
...

. . .
...

...
2cL − 1 2cL − 1 · · · 2(cL + 1) 2cL − 1
2cL − 1 2cL − 1 · · · 2cL − 1 2(cL + 1)


 1

...
1


=

1

nk+1 − 1
((nk+1 − 2)(2cL − 1) + 2(cL + 1)) = 2cL − 1 +

3

nk+1 − 1
,
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(M ′
t)ii = viMtv

T
i

=
1

n2
i

(1, . . . , 1)


2(cL + 1) 2cL · · · 2cL 2cL

2cL 2(cL + 1) · · · 2cL 2cL
...

...
. . .

...
...

2cL 2cL · · · 2(cL + 1) 2cL
2cL 2cL · · · 2cL 2(cL + 1)


 1

...
1



=
1

ni
((nk+1 − 1)(2cL) + 2(cL + 1)) = 2

(
cL +

1

ni

)
,

(M ′
t)ij = viMtv

T
j =

1

ninj
(1, . . . , 1)

 2cL − 1 · · · 2cL − 1
...

. . .
...

2cL − 1 · · · 2cL − 1


 1

...
1

 = 2cL − 1,

(M ′
t)k+2 k+2 = vk+2Mtv

T
k+2 = 2cL.

We investigate three cases.

Case 1: 2cL = 1. In this case, we have

• (M ′
t)k+1 k+1 = 3

nk+1−1
,

• (M ′
t)ii = 1 + 2

ni
,

• (M ′
t)ij = 0,

• (M ′
t)k+2 k+2 = 1,

so M ′
t is a diagonal matrix with positive diagonal entries, so clearly it is positive semi-

definite.

Case 2: 2cL > 1. We verify that the matrix M ′′
t = M ′

t/(2cL − 1) is positive semi-
definite. Sylvester’s criterion states that it is sufficient to verify that the (j × j)-matrix
in the upper left corner of M ′′

t has positive determinant for all j = 1, . . . , k + 2.

• (M ′′
t )k+1 k+1 =

2cL−1+ 3
nk+1−1

2cL−1
= 1 + 3

(nk+1−1)(2cL−1)
,

• (M ′′
t )ii =

2
(
cL+ 1

ni

)
2cL−1

= 1 +
1+ 2

ni

2cL−1
,

• (M ′′
t )ij = 1,

• (M ′′
t )k+2 k+2 = 2cL

2cL−1
= 1 + 1

2cL−1
.

Since (M ′′
t )ij = 1, we can apply lemma 7.2.2 to calculate the determinants the afore-

mentioned submatrices. But all diagonal entries are strictly greater than 1, so these are
clearly positive.
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Case 3: 2cL < 1. We verify that the matrix M ′′
t = M ′

t/(2cL − 1) is negative semi-
definite. Sylvester’s criterion states that it is sufficient to verify that the (j × j)-matrix
in the upper left corner of M ′′

t has a determinant with sign (−1)j for all j = 1, . . . , k + 2.

We get the same matrix elements as in Case 2, so we once again apply 7.2.2. We
consider ranges of j:

If 1 ≤ j ≤ k, we have

Dj =

1 +

j∑
i=1

1
1+ 2

ni

2cL−1

 j∏
i=1

(
1 + 2

ni

2cL − 1

)
=

(
1 +

j∑
i=1

2cL − 1

1 + 2
ni

)
j∏
i=1

(
1 + 2

ni

2cL − 1

)

=
1

(2cL − 1)j−1

(
1

2cL − 1
+

j∑
i=1

ni
ni + 2

)
j∏
i=1

(
1 +

2

ni

)
,

if j = k + 1, we have

Dk+1 =

1 +
k∑
i=1

1
1+ 2

ni

2cL−1

+
1
3

(nk+1−1)(2cL−1)

 k∏
i=1

(
1 + 2

ni

2cL − 1

)(
3

(nk+1 − 1)(2cL − 1)

)

=

(
1 +

k∑
i=1

2cL − 1

1 + 2
ni

+
(nk+1 − 1)(2cL − 1)

3

)
k∏
i=1

(
1 + 2

ni

2cL − 1

)(
3

(nk+1 − 1)(2cL − 1)

)

=
1

(2cL − 1)k

(
1

2cL − 1
+

k∑
i=1

ni
ni + 2

+
nk+1 − 1

3

)
k∏
i=1

(
1 +

2

ni

)(
3

nk+1 − 1

)
,

and finally if j = k + 2, we have

Dk+2 =

1 +
k∑
i=1

1
1+ 2

ni

2cL−1

+
1
3

(nk+1−1)(2cL−1)

+
1
1

2cL−1


·

k∏
i=1

(
1 + 2

ni

2cL − 1

)(
3

(nk+1 − 1)(2cL − 1)

)(
1

2cL − 1

)

=

(
2cL +

k∑
i=1

2cL − 1

1 + 2
ni

+
(nk+1 − 1)(2cL − 1)

3

)

·
k∏
i=1

(
1 + 2

ni

2cL − 1

)(
3

(nk+1 − 1)(2cL − 1)

)(
1

2cL − 1

)

=
1

(2cL − 1)k+1

(
2cL

2cL − 1
+

k∑
i=1

ni
ni + 2

+
nk+1 − 1

3

)
k∏
i=1

(
1 +

2

ni

)(
3

nk+1 − 1

)
.
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Hence we have

sign(Dj) = (−1)j−1 sign

(
1

2cL − 1
+

j∑
i=1

ni
ni + 2

)
1 ≤ j ≤ k,

sign(Dk+1) = (−1)k sign

(
1

2cL − 1
+

k∑
i=1

ni
ni + 2

+
nk+1 − 1

3

)
,

sign(Dk+2) = (−1)k+1 sign

(
2cL

2cL − 1
+

k∑
i=1

ni
ni + 2

+
nk+1 − 1

3

)
.

So we always need the formula inside the sign-function on the right-hand sides of the
previous equations to be negative:

1
2cL−1

+
∑j

i=1
ni
ni+2
≤ 0 1 ≤ j < k + 1,

1
2cL−1

+
∑k

i=1
ni
ni+2

+ nk+1−1

3
≤ 0 ,

2cL
2cL−1

+
∑k

i=1
ni
ni+2

+ nk+1−1

3
≤ 0.

But since we are in the case where 2cL < 1, we know that 2cL/(2cL−1) > 1/(2cL−1).
Moreover, it is obvious that for all i, ni/(ni + 2) ≥ 0 and (nk+1 − 1)/3 ≥ 0. So the last
condition implies the first k + 1 conditions.

Now, note that

k∑
i=1

ni
ni + 2

=
k∑
i=1

ni + 2

ni + 2
−

k∑
i=1

2

ni + 2
= k − 2

k∑
i=1

1

ni + 2
,

Then applying this and multiplying the condition by 2cL − 1 gives

2cL + (2cL − 1)

(
k − 2

k∑
i=1

1

ni + 2
+
nk+1 − 1

3

)
≤ 0,

Solving for 2cL gives

2cL ≥
nk+1 + 3k − 1− 6

∑k
i=1

1
ni+2

nk+1 + 3k + 2− 6
∑k

i=1
1

ni+2

.

We show that the right-hand side of the cL found in step 2 is less than the right-hand
side of step 3. We define

λ = nk+1 + 3k − 6
k∑
i=1
i 6=l

1

ni + 2
,

Thus we have to show that
λ− 3

λ
≤
λ− 1− 6

nl+2

λ+ 2− 6
nl+2

.

which is true for nl ≥ 1. But by definition, nl ≥ 2, thus we choose for cL the value found
in step 3.
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Step 4: The equality case. Assume equality holds at a point. Then we have equality
in (7.2.6), which gives us condition (i) of the equality case. Next, we have equality in
statement (I), this implies that the vector (C11αi , . . . , Cnnαi) has to be a linear combination
of the eigenvectors wij of Ml. This gives condition (ii) of the equality case. Similarly we
obtain from equality in statement (II) condition (iii) of the equality case.

Theorem 7.2.4. Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c̃).
Let (n1, . . . , nk) ∈ S(n) satisfying n1 + · · ·+ nk = n. Then, at any point of Mn, we have

δ(n1, . . . , nk) ≤
n2
(
k − 1− 1

∑k
i=2

1
2+ni

)
2
(
k − 2

∑k
i=1

1
2+ni

) ‖H‖2 + b(n1, . . . , nk)c̃. (7.2.9)

Assume that equality holds at a point p ∈ Mn. Then with the choice of basis and the
notations introduced earlier in this chapter, one has

(i) Caαiαj = 0 if i 6= j and a 6= αi, αj,

(ii) if nj 6= n1: Cαiαiβj = 0 if i 6= j and
∑

αj∈∆j
Cαjαjβj = 0,

(iii) if nj = n1:
∑

αj∈∆j
Cαjαjβj = (ni + 2)Cαiαiβj for any i 6= j and any αi ∈ ∆i.

Proof. The proof consists of four steps.

Step 1: Set-up. The set-up of the proof is exactly the same as the previous theorem,
except that now ∆k+1 = ∅. So we have

τ −
∑
i

τ(Li) =
∑
a

∑
i<j

∑
αi,αj

(CaαiαiCaαjαj − C2
aαiαj

) + b(n1, . . . , nk)c̃. (7.2.10)

Now, let us consider the quadratic terms in the summations:∑
a

∑
i<j

∑
αi,αj

C2
aαiαj

≥
∑
i

∑
αi

∑
b/∈∆i

C2
bαiαi

, (7.2.11)

since every term on the right-hand side is also a term on the left-hand side, but not
vice-versa. We then find by combining (7.2.10) and (7.2.11) that

τ −
∑
i

τ(Li) ≤
∑
a

∑
i<j

∑
αi,αj

CaαiαiCaαjαj

−∑
i

∑
αi

∑
b/∈∆i

C2
bαiαi

+ b(n1, . . . , nk)c̃.

(7.2.12)
Now, we want to find the “best” cL such that (7.2.12) is less than or equal to

n2cL(n1, . . . , nk)‖H‖2 + b(n1, . . . , nk)c̃ = cL(n1, . . . , nk)
∑
a

(∑
b

Cabb

)2

+ b(n1, . . . , nk)c̃.

In fact, we want to prove that the value for cL is the best possible one in the sense that
the inequality in the theorem will no longer be true in general for smaller values of cL.
In view of Lemma 1, we have to find the smallest possible cL for which the following
statement holds:



7.2. Improved inequality 103

for any l ∈ {1, . . . , k} and any γl ∈ ∆l:

∑
i<j

∑
αi,αj

CγlαiαiCγlαjαj −
∑
i 6=l

∑
αi

C2
γlαiαi

≤ cL(n1, . . . , nk)

(∑
b

Cγlbb

)2

. (7.2.13)

Step 2: Finding the best possible cL.

We use that∑
b

Cγlbb =
∑
i 6=l

∑
αi

C2
αiαiγl

+
∑
αl

C2
αlαlγl

+ 2
∑
i<j

∑
αi,αj

CαiαiγlCαjαjγl

+ 2
∑
i

∑
αi<βi

CαiαiγlCβiβiγl .

So we can rearrange (7.2.13) into

(cL + 1)
∑
i 6=l

∑
αi

C2
αiαiγl

+ cL
∑
αl

C2
αlαlγl

+ 2cL
∑
i

∑
αi<βi

CαiαiγlCβiβiγl

+ (2cL − 1)

∑
i<j

∑
αi,αj

CαiαiγlCαjαjγl

 ≥ 0.

Now, if we put xa = Caaγl for all a = 1, . . . , n, we can consider the left-hand side of the
previous inequality as a quadratic form on Rn. So we need to find necessary and sufficient
conditions on cL for this quadratic form to be non-negative. Two times the matrix of this
quadratic form consists of k2 blocks:

Ml = (Λij)i,j=1,...,k,

with

Λll =

 2cL · · · 2cL
...

. . .
...

2cL · · · 2cL

 ∈ Rnl×nl ,

Λii =


2(cL + 1) 2cL · · · 2cL 2cL

2cL 2(cL + 1) · · · 2cL 2cL
...

...
. . .

...
...

2cL 2cL · · · 2(cL + 1) 2cL
2cL 2cL · · · 2cL 2(cL + 1)

 ∈ Rni×ni if i 6= l,

Λij =

 2cL − 1 · · · 2cL − 1
...

. . .
...

2cL − 1 · · · 2cL − 1

 ∈ Rni×nj .

The next steps are identical to Step 2 from the previous theorem once again, so we omit
some details. We take the same eigenvectors vi. It is now sufficient to prove that the
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matrix M ′
l = (viMlv

T
j )i,j=1,...,k ∈ R(k)×(k) is non-negative. This matrix has the following

components:

(M ′
l )ll = 2cL,

(M ′
l )ii = 2

(
cL +

1

ni

)
i 6= l,

(M ′
l )ij = 2cL − 1.

We investigate three cases.

Case 1: 2cL = 1. In this case, we have

• (M ′
l )ll = 1,

• (M ′
l )ii = 1 + 2

ni
,

• (M ′
l )ij = 0.

so M ′
l is a diagonal matrix with positive diagonal entries, so clearly it is positive semi-

definite.

Case 2: 2cL > 1. We verify that the matrix M ′′
l = M ′

l/(2cL − 1) is positive semi-
definite. Sylvester’s criterion states that it is sufficient to verify that the (j × j)-matrix
in the upper left corner of M ′′

l has positive determinant for all j = 1, . . . , k.

• (M ′′
l )ll = 2cL

2cL−1
= 1 + 1

2cL−1
,

• (M ′′
l )ii =

2
(
cL+ 1

ni

)
2cL−1

= 1 +
1+ 2

ni

2cL−1
,

• (M ′′
l )ij = 1.

Since (M ′′
l )ij = 1, we can apply lemma 7.2.2 to calculate the determinants the afore-

mentioned submatrices. But all diagonal entries are strictly greater than 1, so these are
clearly positive.

Case 3: 2cL < 1. We verify that the matrix M ′′
l = M ′

l/(2cL − 1) is negative semi-
definite. Sylvester’s criterion states that it is sufficient to verify that the (j × j)-matrix
in the upper left corner of M ′′

l has a determinant with sign (−1)j for all j = 1, . . . , k.

We get the same matrix elements as in Case 2, so we once again apply 7.2.2. We
consider ranges of j:

If 1 ≤ j < l, we have

Dj =
1

(2cL − 1)j−1

(
1

2cL − 1
+

j∑
i=1

ni
ni + 2

)
j∏
i=1

(
1 +

2

ni

)
,

and if l ≤ j ≤ k, we have

Dj =
1

(2cL − 1)j−1

 2cL
2cL − 1

+

j∑
i=1
i 6=l

ni
ni + 2

 j∏
i=1
i 6=l

(
1 +

2

ni

)
.
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Hence we have

sign(Dj) = (−1)j−1 sign

(
1

2cL − 1
+

j∑
i=1

ni
ni + 2

)
1 ≤ j < l,

sign(Dj) = (−1)j−1 sign

 2cL
2cL − 1

+

j∑
i=1
i 6=l

ni
ni + 2

 l ≤ j ≤ k.

So we always need the formula inside the sign-function on the right-hand sides of the
previous equations to be negative:{

1
2cL−1

+
∑j

i=1
ni
ni+2
≤ 0 1 ≤ j < l,

2cL
2cL−1

+
∑j

i=1
i 6=l

ni
ni+2
≤ 0 l ≤ j ≤ k.

But since we are in the case where 2cL < 1, we know that 2cL/(2cL−1) > 1/(2cL−1).
Moreover, it is obvious that for all i, ni/(ni + 2) ≥ 0. So the last condition with j = k
implies the first k− 1 conditions. Moreover, since n1 ≤ n2 ≤ · · · ≤ nk, the k-th condition
with l = 1 is the strongest:

2cL
2cL − 1

+
k∑
i=2

ni
ni + 2

=
2cL

2cL − 1
+ k − 1− 2

k∑
i=2

1

ni + 2
≤ 0

Multiplying the condition by 2cL − 1 gives

2cL + (2cL − 1)

(
k − 1− 2

k∑
i=2

1

ni + 2

)
≤ 0,

and solving for 2cL gives

2cL ≥
k − 1− 2

∑k
i=2

1
ni+2

k − 2
∑k

i=2
1

ni+2

.

Step 3: The equality case. Assume equality holds at a point. Then we have equality
in (7.2.12), which gives us condition (i) of the equality case. Next, we have equality in
(7.2.13), this implies that the vector (C11γl , . . . , Cnnγl) has to be in the kernel of Ml. If
nl 6= n1 then this kernel is spanned by the eigenvectors wlj. This corresponds to condition
(ii) of the equality case. If nl = n1, the kernel of Ml is larger due to the choice of cL.
In particular, there will be non-zero linear combinations of the vectors v1, . . . , vk in the
kernel. Assume that

Ml

(
k∑
i=1

aivi

)
= 0, (7.2.14)

for some real numbers {a1, . . . , ak}.
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We calculate Mlvi. If i 6= l, we find

Mlvi =
1

ni


Λi1
...

Λii
...

Λik

 ·
 1

...
1

 =



2cL − 1
...

2cL − 1 +
(

1 + 2
ni

)
...

2cL − 1

 ,

and for i = l we obtain

Mlvl =
1

nl


Λl1
...

Λll
...

Λlk

 ·
 1

...
1

 =


2cL − 1

...
2cL

...
2cL − 1

 .

As such, we find that (7.2.14) is equivalent to
(∑k

j=1 aj

)
(2cL − 1) + ai

(
1 + 2

ni

)
= 0, 1 ≤ i ≤ k, i 6= l,(∑k

j=1 aj

)
(2cL − 1) + al = 0.

From this we determine that

ai = al

(
ni

ni + 2

)
,

for all i 6= l. But then we can calculate the sum of the ai and solve the conditions for cL:(
k∑
j=1

aj

)
(2cL − 1) + al =

(∑
i 6=l

al

(
ni

ni + 2

)
+ al

)
(2cL − 1) + al = 0.

Because the solution cannot be zero, al 6= 0 and we may divide by al:(∑
i 6=l

ni
ni + 2

+ 1

)
(2cL − 1) + 1 = 0.

Solving this for 2cL and rewriting the summation gives us

2cL =
k − 1− 2

∑
i 6=l

1
ni+2

k − 2
∑

i 6=l
1

ni+2

,

from which is clear that we have a solution if and only if nl = n1. Thus the vector
(C11γl , . . . , Cnnγl) has to satisfy condition (iii) of the equality case.

Definition 7.2.5. Let φ : Mn → M̃n(4c̃) be an isometric immersion of a Lagrangian
submanifold in a complex space form. If this immersion satisfies the equality in (7.2.3)
or (7.2.9) for some (n1, . . . , nk) at every point p ∈ M , then it is called an improved ideal
immersion.



Chapter 8

Corollaries

In this chapter, we give some corollaries of the improved inequality. In the first section
we will give a non-immersibility theorem for compact Lagrangian submanifolds, in the
second section we give corollaries related to k-tuples where k = 0 or k = 1.

8.1 Non-immersibility of compact manifolds

Definition 8.1.1. Let Mn be a Lagrangian submanifold of a complex space form. We
define the Maslov form Φ of M as

Φp : TpM → R : X 7→ 〈X, JH〉,

i.e. the dual form of JH.

Proposition 8.1.2. Let M be a Lagrangian submanifold of a complex space form M̃(4c̃).
Then the Maslov form Φ on M is closed, i.e. dΦ ≡ 0 [Che98].

Proof. Let {e1, . . . , en} be an orthonormal frame for TM , and extend it with {en+1 =
Je1, . . . , e2n = Jen} to form an orthogonal frame for TM̃ . Let ωi be the dual forms to
{e1, . . . , en} and ω̃ji the connection forms of ∇̃.

Choosing j = i in (2.3.3) gives us

dω̃i+ni = 2
∑
k

ω̃ik ∧ ω̃ki+n + Ω̃i+n
i . (8.1.1)

Now consider the Maslov form Φ:

Φ = 〈., JH〉 =
∑
j

〈ej, JH〉ωj = − 1

n

∑
i,j

〈h(ei, ei), Jej〉ωj = − 1

n

∑
i,j

〈h(ej, ei), Jei〉ωj

= − 1

n

∑
i,j

〈∇̃ejei, Jei〉ωj = − 1

n

∑
i,j

ωi+ni (ej)ω
j = − 1

n

∑
i

ω̃i+ni . (8.1.2)

Therefore, combining (8.1.1) and (8.1.2) we find that

dΦ = − 1

n

∑
i

dω̃i+ni = − 1

n

(
2
∑
i,k

ω̃ik ∧ ω̃ki+n +
∑
i

Ω̃i+n
i

)
.
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Now, we show that the first term vanishes:∑
i,k

ω̃ik ∧ ω̃ki+n =
∑
i 6=k

ω̃ik ∧ ω̃ki+n =
∑
i<k

ω̃ik ∧ ω̃ki+n +
∑
k<i

ω̃ik ∧ ω̃ki+n

= −
∑
i<k

ω̃ki ∧ ω̃ik+n +
∑
i<k

ω̃ki ∧ ω̃ik+n = 0.

And so does the second term:∑
i

Ω̃i+n
i =

1

2

∑
i,j,k

〈R̃(ei+n, ei)ej, ek〉ωj ∧ ωk =
1

2

∑
i,j,k

〈R̃(Jei, ei)ej, ek〉ωj ∧ ωk

= −1

2

∑
i,j,k

(
〈R̃(ei, ej)Jei, ek〉+ 〈R̃(ej, Jei)ei, ek〉

)
ωj ∧ ωk

= −1

2

∑
i,j,k

(
〈R̃(ei, ej)Jek, ei〉+ 〈R̃(Jei, ej)Jek, Jei〉

)
ωj ∧ ωk

= −1

2

∑
j,k

∑
α

〈R̃(eα, ej)Jek, eα〉ωj ∧ ωk = −1

2

∑
j,k

R̃ic(ej, Jek)ω
j ∧ ωk = 0.

Thus dΦ ≡ 0 and therefore the Maslov form Φ is closed.

Theorem 8.1.3. Let Mn be a compact Lagrangian submanifold of a complex space form
M̃n(4c̃). If M has finite fundamental group π1(M) or null first Betti number b1(M), then
M has minimal points, i.e. the mean curvature H must vanish at some points.

Proof. Assume that H is nowhere zero, then the Maslov form Φ is nowhere zero. Since
Φ is a closed 1-form, its equivalence class [Φ] ∈ H1

dR(M). Now suppose that Φ is exact,
then there exists a function f : M → R such that Φ = df . But M is compact, so f
attains a maximum on M , say at p. Then Φp = (df)p = 0, which is a contradiction with
Φ being nowhere zero. So Φ is not exact, so its equivalence class is nontrivial and thus
H1(M,R) is nontrivial. This means that b1(M) = dimH1

dR(M) > 0 and thus M is not
simply connected. We now consider 2 cases:

(i) π1(M) = 0. We know that b1(M) 6= 0, thus M is not simply connected. But then
π1(M) 6= 0, which is a contradiction. So M has a minimal point p,

(ii) π1(M) 6= 0. Let φ : M → M̃ be the Lagrangian immersion of M into M̃ . Denote
by M̂ the universal Riemannian covering space of M and let π : M̂ → M be the
universal covering map. Then N is also a compact n-dimensional manifold since M
is compact and π1(M) <∞. Then φ̂ = φ ◦ π is a Lagrangian immersion of M̂ into
M̃ . But M̂ is simply connected, thus π1(M̂) = 0. But by case (i) we then find that
M̂ has a minimal point p̂. Then p = π(p̂) is a minimal point of M .

Thus M has at least one point p such that H(p) = 0.

Theorem 8.1.3 is sharp:
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Example 8.1.4. Consider the standard embedding

φ : T n = S1 × · · · × S1 → Cn = C× · · · × C.

T n is a compact Lagrangian submanifold with nonzero constant mean curvature. However,
T n has first Betti number b1(T n) = n, and fundamental group π1(T n) = Zn which is
infinite.

Corollary 8.1.5. There do not exist Lagrangian immersions of nonzero constant mean
curvature n-spheres into complex space forms.

Proof. Follows directly from theorem 8.1.3.

Before stating the next corollary, we need the following result:

Lemma 8.1.6. A complete n-dimensional Riemannian manifold M for which Ric(X) ≥
c > 0 for any X ∈ UM , is compact and has finite fundamental group [Mye41].

Corollary 8.1.7. If M is a complete Riemannian manifold whose Ricci curvature satisfies
Ric(X) ≥ c > 0 for any X ∈ UM , then every Lagrangian immersion of constant mean
curvature of M into a complex space form M̃ is a minimal immersion.

Proof. By lemma 8.1.6, we know M is compact and has finite fundamental group. Thus
we can apply theorem 8.1.3 to find that there exists a minimal point. But since H is
constant, we then know that M is minimal.

Corollary 8.1.8. Let Mn(c) be a compact real space form of positive constant curvature
c > 0, immersed as a Lagrangian submanifold with constant mean curvature in CP n.
Then M is totally geodesic.

Proof. Since M is a compact real space form of positive curvature, it has finite funda-
mental group. By theorem 8.1.3 M is a minimal immersion, and by theorem 3.2.8 it is
totally geodesic.

Corollary 8.1.9. There do not exist Lagrangian isometric immersions from a compact
Riemannian manifold with positive Ricci curvature into Cn or CHn.

Proof. Let M be a compact Riemannian manifold with positive Ricci curvature. If φ :
M → M̃ is a Lagrangian isometric immersion of M into a complex space form M̃(4c̃) of
constant holomorphic sectional curvature c̃ ≤ 0, then by theorem 8.1.3 φ has at least one
minimal point, say at p ∈M .

Now, consider the equation of Gauss (4.2.2), which gives that

c̃〈(ei ∧ ej)ej, ei〉 = 〈R(ei, X)Y, ei〉 − 〈h(ei, ei), h(ej, ej)〉+ 〈h(ei, ej), h(ei, ej)〉.

Summing over all i = 1, . . . , n gives

c̃(n− 1) = Ric(ej)− n〈H, h(ej, ej)〉+
n∑
i=1

‖h(ei, ej)‖2.
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Let us assume H = 0 at some point p, then we can rearrange this equation at p as

Ric(ej) = c̃(n− 1)−
n∑
i=1

‖h(ei, ej)‖2.

However, since c̃ ≤ 0, the right-hand side is negative whereas the left-hand side is strictly
positive, which is a contradiction.

We now show how we can use δ-invariants in this situation:

Corollary 8.1.10. Let Mn be a compact Riemannian manifold with first Betti number
b1(M) = 0 or with finite fundamental group π1(M), and let c̃ ∈ R. If there exists a k-tuple
(n1, . . . , nk) ∈ S(n) such that δ(n1, . . . , nk) > b(n1, . . . , nk)c̃ at every point of M , then M
does not admit any Lagrangian isometric immersion into a complex space form M̃(4c̃).

Proof. Assume that M admits a Lagrangian isometric immersion φ : M → M̃n(4c̃). If
M satisfies δ(n1, . . . , nk) > b(n1, . . . , nk)c̃ for some k-tuple (n1, . . . , nk) ∈ S(n), then by
theorem 6.3.2 we find

b(n1, . . . , nk)c̃ < δ(n1, . . . , nk) ≤ c(n1, . . . , nk)‖H‖2 + b(n1, . . . , nk)c̃,

and thus

0 < c(n1, . . . , nk)‖H‖2.

Since c(n1, . . . , nk) is strictly positive, we find that H is nowhere zero. But then theo-
rem 8.1.3 gives a contradiction, thus such immersion does not exist.

Remark 8.1.11. The condition on δ(n1, . . . , nk) in corollary 8.1.10 is sharp. For example,
consider the Whitney sphere in example 3.3.11. This is a Lagrangian isometric immersion
with δ(n1, . . . , nk) ≥ 0 at all points, with equality holding only at the unique point of
self-intersection w(1, 0, . . . , 0) = w(−1, 0, . . . , 0).

The assumptions on π1(M) and b1(M) in corollary 8.1.10 are both necessary if n ≥ 3:

Example 8.1.12. Consider the unit circle F : S1 → C : s 7→ eis, and let ι : Sn−1 → En
(n ≥ 3) be the unit hypersphere in En centred at the origin. Then

φ : M = S1 × Sn−1 → Cn : (s, p) 7→ F (s)⊗ ι(p),

is a complex extensor, thus a Lagrangian isometric immersion of M into Cn which carries
each pair of points {(s, p), (−s,−p)} ∈ M to a point in Cn. Clearly π(M) = Z and
b1(M) = 1. Moreover, for each k-tuple (n1, . . . , nk), the δ-invariant δ(n1, . . . , nk) is a
positive constant.

8.2 Results for k = 0 or k = 1

We first consider the case k = 0. We can provide an improvement of corollary 6.4.1 using
the improved inequality.
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Corollary 8.2.1. Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c̃).
Then the scalar curvature of a M satisfies

τ ≤ n(n− 1)

2

(
n

n+ 2
‖H‖2 + c̃

)
. (8.2.1)

The equality sign of (8.2.1) holds if and only if M is a Lagrangian H-umbilical submanifold
with λ = 3µ.

Proof. If we choose k = 0 (and therefore n = nk+1), then (7.2.3) reduces immediately
to (8.2.1). For the equality case of the theorem, note that TpM = Lk+1. We know that
Crrr = 3Crss for r 6= s and Crst = 0 for r, s, t all different.

Now first suppose that M is minimal. Then for any r, t,

0 = 〈H, Jer〉 =
n∑
s=1

Crss =

(
1 +

n− 1

3

)
Crrr = (n+ 2)Crtt,

thus C ≡ 0 and M is totally geodesic. If M is not minimal, we can choose e1 = −JH/‖H‖.
So for any r 6= 1:

‖H‖ = 〈H, Je1〉 =
n∑
s=1

C1ss =

(
1 +

n− 1

3

)
C111 = (n+ 2)C1rr,

and for any r, t different and not 1:

0 = 〈H, Jer〉 =
n∑
s=1

Crss =

(
1 +

n− 1

3

)
Crrr = (n+ 2)Crtt,

so M is H-umbilical.

Remark 8.2.2. Inequality (8.2.1) was already known before the improved inequality for
Lagrangian submanifolds. For n = 2 it was proved in [CU93] (c̃ = 0) and [CU95] (c̃ 6= 0).
For general n it was proved in [BCM95] (c̃ = 0) and [Che96; CV96] (c̃ 6= 0).

Next, let us give a general result for k = 1:

Theorem 8.2.3. Let M be a Lagrangian submanifold of a complex space form Mn(4c̃).
Then for any integer n1 ∈ {2, . . . , n− 1} we have

δ(n1) ≤ n2(n1(n− n1) + 2(n− 1))

2(n1(n− n1) + 2n+ 3n1 + 4)
‖H‖2 +

1

2
(n(n− 1)− n1(n1 − 1))c̃. (8.2.2)

Moreover, if the equality sign of (8.2.2) holds identically for some n1 ≤ n− 2, then M is
a minimal submanifold [CD11b].

Proof. The inequality follows immediately from taking k = 1 in (7.2.3). For the equality
case, we refer to [CD11b].
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Remark 8.2.4. Theorem 8.2.3 is sharp. Let F : I → C∗ : s 7→ r(s)eiθ(s) be a unit speed
curve with curvature κ(s) = (n + 1)θ′(s) 6= 0 and let ι : Sn−1(1) → En be the unit
hypersphere centred at the origin. Then the complex extensor F ⊗ ι : I×Sn−1(1)→ Cn is
a non-minimal Lagrangian submanifold satisfying equality in (8.2.2) [CD11b]. An example
of a non-minimal Lagrangian submanifold of CP 3(4c̃) attaining equality can be found in
[BV07].

For the Ricci curvature we find the following improvement of corollary 6.4.2:

Proposition 8.2.5. Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c̃).
Then the Ricci curvature of M satisfies

Ric(X) ≤ n(n− 1)

4
‖H‖2 + (n− 1)c̃. (8.2.3)

For any X ∈ UM . Equality holds for every X if and only if M is either totally geodesic
or a H-umbilical submanifold with λ = 3µ [Den09; Opr05].

Proof. Let n1 = n− 1 in (8.2.2). Then we obtain

Ric(X) ≤ max
‖Y ‖=1

Ric(Y ) = δ(n− 1)
n(n− 1)

4
‖H‖2 + (n− 1)c̃.

For the equality case, we refer to [Den09].

To finish, we mention that several results have been obtained for the δ(2)-invariant,
for example see [BDV07; BV07; Che+94; Che+96; CV02; Dil+14; Opr08].



Appendix A

Lagrangian submanifolds in
symplectic geometry

In this chapter, we give a small introduction to symplectic geometry and in particular
we discuss Lagrangian submanifolds from the symplectic point of view. This chapter is
based on [Arn89; Arn90; DS01; Wei77].

Definition A.1. Let M be a differentiable manifold, and let ω ∈ Ω2(M) with the follow-
ing properties:

(i) ω is nondegenerate (or symplectic), i.e. if ω(X, Y ) = 0 ∀Y , then X = 0,

(ii) ω is closed, i.e. dω = 0,

then we call (M,ω) a symplectic manifold and ω is called the symplectic form.

Note that a necessary condition for ω to be symplectic is that dimRM is even.

Suppose M has an almost complex structure J . Then we say that J is compatible
with the symplectic form ω if 〈., .〉 = ω(., J.) is a Riemannian metric on M .

In symplectic geometry, the definition of a Kähler manifold is as follows:

Definition A.2. A Kähler manifold is a symplectic manifold (M,ω) equipped with a
compatible almost complex structure J such that NJ ≡ 0. The symplectic form ω is then
called a Kähler form.

Remark A.3. From the closedness of ω follows that ∇J ≡ 0, so M is clearly a Kähler
manifold in the Riemannian sense. But the converse holds too: if we have a Kähler
manifold M in the Riemannian sense and we define ω(., .) = 〈J., .〉, then from ∇J ≡ 0
follows that ω is closed and thus M is Kähler in the symplectic sense. So both definitions
are equivalent.

A Lagrangian submanifold is defined as follows:

Definition A.4. Let M be a submanifold that has half the dimension of the ambient
symplectic manifold (M̃, ω), such that ω|M ≡ 0. Then we call M a Lagrangian submani-
fold.
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Remark A.5. Since ω(., .) = 〈J., .〉, this means that 〈JX, Y 〉 = 0 = ω(X, Y ) for X, Y ∈
TpM . So again this definition is equivalent to the Riemannian definition.

So where does the big difference between Riemannian and symplectic geometry lie? In
Riemannian geometry, we defined (sub)manifolds up to isometry. However, in symplectic
geometry, we consider things up to symplectomorphism:

Definition A.6. Let (M1, ω1) and (M2, ω2) be 2n-dimensional symplectic manifolds and
let φ : M1 →M2 be a diffeomorphism. Then φ is a symplectomorphism if φ∗ω2 = ω1.

We have the following theorem:

Theorem A.7 (Darboux). Let (M,ω) be a 2n-dimensional symplectic manifold, and let
p be any point in M . Then there is a coordinate chart (U , x1, . . . , xn, y1, . . . , yn) centred
at p such that on U

ω =
n∑
i=1

dxi ∧ dyi.

If we have 2 Lagrangian submanifolds Mn
1 and Mn

2 of a symplectic manifold (M̃n, ω)
and points p and q on them respectively, there is a symplectomorphism from a neighbour-
hood of p (in the ambient symplectic manifold M̃) to a neighbourhood of q which sends
p to q and maps M1 to M2. This can be done using Darboux’s theorem: simply take a
coordinate basis such that the first n coordinates vanish on the Lagrangian submanifold.



Conclusions and further research

In this thesis we have given the reader an introduction to Lagrangian submanifolds of
complex space forms. In the preliminaries, we gave a description of complex space forms
and Lagrangian submanifolds, and we discussed their basic properties. A canonical basis of
the tangent space was introduced, which has several nice properties helpful in determining
the second fundamental form, and thus the properties of the submanifold itself.

In the first part of this thesis we discussed parallelity conditions we may impose on a
Lagrangian submanifold. Basic properties of each of these conditions were considered, as
well as how the various conditions interact with each other. In particular, we researched
the condition of pseudo-parallel cubic form proposed in [DVV09] and introduced the new
condition of H-pseudo-parallelity. We also discussed the use of the canonical basis to
decompose the tangent space, and gave some classification results.

In the second part of this thesis we considered Chen’s δ-invariants and the inequality
we can obtain between these invariants and the mean curvature. We then restricted
ourselves to the Lagrangian case, providing a better inequality and giving corollaries of
this improved inequality.

The work in this thesis can be continued and extended in many ways. We give a short
list of suggestions:

(i) For Lagrangian submanifolds, we introduced a normal wedge ∧⊥ operator and a
Lagrangian wedge ∧̄ = ∧ ⊕ ∧⊥. The reason to do so was that this construction
retains the same symmetries as the Van der Waerden-Bortolotti connection ∇̄ and
curvature R̄. However, the construction of the normal wedge was strongly based on
the complex structure J . One may wonder if it possible to define similar operators
in different or more general settings.

(ii) In the case of Lagrangian surfaces, we have shown that the ‘weakest’ conditions
were constant curvature K and H-umbilicity, both of which have been classified.
Is it possible to classify all Lagrangian surfaces, or can we come up with a weaker
condition than the two aforementioned ones to classify?

(iii) Can the given technique for decomposing the tangent space be improved upon,
and can it be applied to give more classifications of certain classes of Lagrangian
submanifolds?

(iv) Finally, the improved inequality for Lagrangian submanifolds of complex space forms
was only proven very recently, in 2013. There is still much work to be done for the
classification of (improved) ideal Lagrangian submanifolds.

115





Bibliography

[ALM02] Antonio C Asperti, G Lobos, and Francesco Mercuri. “Pseudo-parallel sub-
manifolds of a space-form”. In: Adv. Geom 2.1 (2002), pp. 57–71.

[Arn89] Vladimir Igorevich Arnol’d. Mathematical methods of classical mechanics.
Vol. 60. Springer, 1989.

[Arn90] Vladimir Igorevich Arnol’d. Singularities of caustics and wave fronts. Vol. 62.
Springer, 1990.

[BCM95] Vincent Borrelli, Bang-Yen Chen, and Jean-Marie Morvan. “Une caracterisa-
tion geometrique de la sphere de Whitney”. In: Comptes rendus de l’Académie
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