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Abstract

The notion of conjugacy in a group can be generalised to twisted conjugacy. For
any endomorphism ϕ of a group G, we may define an equivalence relation ∼ϕ
on G by

∀g, g′ ∈ G : g ∼ϕ g′ ⇐⇒ ∃h ∈ G : g = hg′ϕ(h)−1.

The number of equivalence classes is called the Reidemeister number and is
denoted by R(ϕ). The set of all possible Reidemeister numbers of automorphisms
is called the Reidemeister spectrum.

This notion originates in topological fixed-point theory. A continuous self-map
f on a (sufficiently well-behaved) topological space X induces an endomorphism
f∗ on the fundamental group π1(X). The Reidemeister number R(f∗) is an
upper bound for the Nielsen number N(f), which in turn is a lower bound for
the number of fixed points of f .

In this thesis, we investigate the Reidemeister spectra of almost-crystallographic
groups. These groups are generalisations of the crystallographic groups, in the
sense that their translation subgroup is nilpotent rather than abelian. The main
results can be grouped into two parts.

In the first part, we investigate the Reidemeister spectra of finitely generated,
torsion-free, nilpotent groups. We compute the spectrum for every such group
of dimension at most 4. Furthermore, we compute the Reidemeister spectra of
free nilpotent groups of low rank and/or nilpotency class.

In the second part, we first determine which low-dimensional almost-crystallo-
graphic groups admit automorphisms with finite Reidemeister number. Next,
we provide an algorithm that is capable of calculating the Reidemeister number
of any given automorphism of a crystallographic group, and use this to calculate
the Reidemeister spectra. Finally, we determine which almost-crystallographic
groups admit Reidemeister zeta functions, and prove that these functions are
rational for groups of dimension at most 3.
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Beknopte samenvatting

De notie van conjugatie in een groep kan worden veralgemeend naar getwiste
conjugatie. Voor elk endomorfisme ϕ van een groep G, kunnen we een equiva-
lentierelatie ∼ϕ op G definiëren als

∀g, g′ ∈ G : g ∼ϕ g′ ⇐⇒ ∃h ∈ G : g = hg′ϕ(h)−1.

Het aantal equivalentieklassen wordt het Reidemeistergetal genoemd en wordt
genoteerd met R(ϕ). De verzameling van alle mogelijke Reidemeistergetallen
van automorfismen wordt het Reidemeisterspectrum genoemd.

Deze notie vindt zijn oorsprong in de topologische vastepuntstheorie. Een
continue zelf-afbeelding f op een (voldoende brave) topologische ruimte
X induceert een endomorfisme f∗ op de fundamentaalgroep π1(X). Het
Reidemeistergetal R(f∗) is een bovengrens voor het Nielsengetal N(f), dat
op zijn beurt een ondergrens is voor het aantal vaste punten van f .

In deze thesis onderzoeken we de Reidemeisterspectra van bijna-kristallografische
groepen. Deze groepen zijn veralgemeningen van de kristallografische groepen,
in die zin dat hun translatiedeelgroep nilpotent is in plaats van abels. De
belangrijkste resultaten kunnen in twee delen worden gegroepeerd.

In het eerste deel onderzoeken we de Reidemeisterspectra van eindig voortge-
brachte, torsievrije, nilpotente groepen. We berekenen het spectrum voor deze
groepen met dimensie maximaal 4. Verder berekenen we de Reidemeisterspectra
van vrije nilpotente groepen van lage rang en/of nilpotentieklasse.

In het tweede deel bepalen we eerst welke laag-dimensionale bijna-kristallogra-
fische groepen automorfismen met eindig Reidemeistergetal toelaten. Vervolgens
geven we een algoritme dat in staat is om het Reidemeistergetal van een gegeven
automorfisme van een kristallografische groep te berekenen en gebruiken dit
om de Reidemeisterspectra te berekenen. Ten slotte bepalen we welke bijna-
kristallografische groepen Reidemeister-zèta-functies toelaten, en bewijzen we
dat deze functies rationaal zijn voor groepen met dimensie maximaal 3.

v
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Chapter 1

Introduction

The main goal of fixed point theory is, given a self-map f : X → X on a space
X, to find the fixed point set

Fix(f) := {x ∈ X | f(x) = x}.

Fixed point theory is a branch of mathematics that intersects with many other
mathematical domains. For example, we have the Brouwer fixed point theorem
in topology and the Banach fixed point theorem in analysis.

Fixed point theory also yields a multitude of applications in a wide variety
of other scientific domains. If one describes an iterative process using a
function, then the equilibria of this process will coincide with the fixed points
of the function. Thus, finding the fixed points will provide information on the
asymptotic behaviour of the iterative process.

One example is the predator-prey model in biology. This model describes a
system in which two species interact, one as predator and one as prey. If the
evolution of their populations are described by an iterative process, then the
fixed points will indicate that either the populations remain stable or that they
go extinct. Another example is that of the Nash equilibrium in non-cooperative
games, whose existence was proven by John Nash using the Brouwer fixed point
theorem. His work on this equilibrium won Nash the Nobel Memorial Prize in
Economic Sciences.
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2 INTRODUCTION

1.1 Reidemeister-Nielsen fixed point theory

Fixed points are often quite hard to find, if they exist at all. Moreover, a slight
modification to the function f may completely change the set of fixed points.
Topological fixed point theory attempts to resolve these problems by asking the
following questions:

• Does every map homotopic to f have at least one fixed point?

• How many fixed points must every map homotopic to f at least have?

In the 1880’s, Henri Poincaré was the first to introduce topological methods
in the study of non-linear analysis, and in particular the topological study
of fixed points. This sparked the discovery of several fixed point theorems.
While studying fixed points in the 1900’s and early 1910’s, Luitzen Egbertus
Jan Brouwer proved the Brouwer fixed point theorem, which answers the first
question for closed disks.

Theorem. A continuous self-map on a closed disk has at least one fixed point.

In the early 1920’s, Solomon Lefschetz generalised this result by assigning
a homotopy-invariant integer L(f) (now called the Lefschetz number) to a
continuous self-map f on a compact, connected polyhedron X. He defined this
number as

L(f) :=
dimX∑
k=0

(−1)k tr (fk,∗ : Hk(X,Q)→ Hk(X,Q)) .

While the Lefschetz number does not coincide with the number of fixed points
of f , it does give information on the existence of a fixed point by means of the
Lefschetz fixed point theorem.

Theorem. Let f be a continuous self-map on a compact, connected polyhedron.
If L(f) 6= 0, then (any map homotopic to) f has at least one fixed point.

Still in the 1920’s, Jakob Nielsen worked on answering the second question. In
contrast to the algebraic approach of Lefschetz, he devised a geometric way to
count the fixed points. His approach can be summarised in three steps:

1. Partition Fix(f) into fixed point classes.

2. Determine which fixed point classes are essential, i.e. they cannot vanish
under homotopies.
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3. Count the number of essential fixed point classes.

The number of essential fixed point classes of f is now called the Nielsen number
N(f). By definition, an essential fixed point class contains at least one fixed
point, hence the Nielsen number is a homotopy-invariant lower bound for the
number of fixed points of f .

Of course, we have not yet mentioned how we partition Fix(f) and how we
determine whether or not a fixed point class is essential. Nielsen noted that,
when considering lifts of f to the universal cover X̃ of X, that these lifts
behave very different in general, yet very similar when they are conjugate by an
element of the covering transformation group D(X). He therefore introduced
the equivalence relation on the set of lifts of f given by

f̃1 ∼ f̃2 ⇐⇒ ∃γ ∈ D(X) : f̃1 = γ ◦ f̃2 ◦ γ−1.

The fixed points of the lifts f̃ completely determine the fixed point set Fix(f),
in a way that behaves nicely under the above equivalence:

Fix(f) =
⊔
[f̃ ]

p(Fix(f̃)),

where [f̃ ] is the equivalence class containing the lift f̃ and p : X̃ → X is
the covering map from X̃ to X. The fixed point classes are exactly the sets
p(Fix(f̃)).

Nielsen then assigned an integer to each fixed point class, called the fixed point
index, such that the fixed point class is essential if and only if the fixed point
index is non-zero. This index is closely related to the Lefschetz number, as
illustrated by the Lefschetz-Hopf fixed point theorem, proven by Heinz Hopf in
the late 1920’s.

Theorem. Let f be a continuous self-map on a compact, connected polyhedron.
Then the Lefschetz number L(f) is the sum of the fixed point indices of the fixed
point classes of f .

In the 1930’s and 1940’s, Kurt Reidemeister and his student Franz Wecken
again took a more algebraic approach to studying fixed points. They noted
that, since any lift f̃ induces an endomorphism f∗ : D(X)→ D(X) by

f̃ ◦ γ = f∗(γ) ◦ f̃ ∀γ ∈ D(X),

the above equivalence relation induces an equivalence relation called f∗-twisted
conjugacy on D(X):

α1 ∼ α2 ⇐⇒ ∃γ ∈ D(X) : α1 = γα2f∗(γ)−1.
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Thus, the number of fixed point classes of f is the same as the number of
f∗-twisted conjugacy classes of D(X), which is called the Reidemeister number
R(f). Since the Reidemeister number counts both the essential and inessential
fixed point classes, it is an upper bound for the Nielsen number:

N(f) ≤ R(f).

Twisted conjugacy can be defined for any group G and any endomorphism
ϕ : G→ G: we define the equivalence relation ∼ϕ by

∀g, g′ ∈ G : g ∼ϕ g′ ⇐⇒ ∃h ∈ G : g = hg′ϕ(h)−1.

The number of equivalence classes is again called the Reidemeister number and
denoted by R(ϕ). The Reidemeister spectrum of a group is the set

SpecR(G) = {R(ϕ) | ϕ ∈ Aut(G)},

and we say that G has the R∞-property if SpecR(G) = {∞}.

In the 1960’s, Stephen Smale introduced the Lefschetz zeta function Lf (z) of a
self-map f , defined as

Lf (z) := exp
∞∑
n=1

L(fn)
n

zn,

and proved that this function is rational. In the 1990’s, Alexander Fel’shtyn
defined the Nielsen and Reidemeister zeta functions of a self-map f analogously
as

Nf (z) := exp
∞∑
n=1

N(fn)
n

zn,

Rf (z) := exp
∞∑
n=1

R(fn)
n

zn.

Unlike the Lefschetz zeta function, the Nielsen and Reidemeister zeta functions
need not be rational in general. Since the Reidemeister number can be defined
for any group G and endomorphism ϕ, we can also define the Reidemeister zeta
function of ϕ:

Rϕ(z) := exp
∞∑
n=1

R(ϕn)
n

zn.

Central to this thesis are the R∞-property, the Reidemeister spectrum and the
Reidemeister zeta functions.
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1.2 Overview of the thesis and main results

This thesis consists of three main parts and two appendices.

Part I. The first part forms an introduction, where we review the topics
needed to understand this thesis. In chapter 2, we give a brief overview of
Reidemeister-Nielsen fixed point theory. We mainly focus on the Reidemeister
number, both in its topological and group-theoretical setting. In chapter 3 we
define nilpotent groups, Lie groups (and algebras), crystallographic groups and
almost-crystallographic groups. Finally, in chapter 4, we mention the main
results in Reidemeister-Nielsen fixed point theory on almost-crystallographic
groups.

Part II. The second part of this thesis focuses on the R∞-property and
Reidemeister spectrum of nilpotent groups. Chapter 5 deals with the finitely
generated, torsion-free, nilpotent groups of dimension at most 4. For each of
these groups, we completely determine the Reidemeister spectrum. Chapter 6
deals with a particular subset of the finitely generated, torsion-free, nilpotent
groups, namely the free nilpotent groups. We determine the Reidemeister
spectra of the free nilpotent groups of nilpotency class 2, obtaining the following
result:

Theorem. A free nilpotent group of rank at least 4 and nilpotency class 2 has
full Reidemeister spectrum.

We also determine the Reidemeister spectra of the free nilpotent groups of rank
2 and 3. At the end of this chapter, we consider direct products of free nilpotent
groups, proving that the Reidemeister spectrum of such product is determined
completely by the spectra of its factors.

Part III. The final part of this thesis, which is by far the lengthiest part, focuses
on the R∞-property, Reidemeister spectra and Reidemeister zeta functions of
(low-dimensional) almost-crystallographic groups.

Chapters 7 and 8 each study a specific family of crystallographic groups, namely
the crystallographic groups with diagonal holonomy Z2 and the generalised
Hantzsche-Wendt groups respectively. For both families, we find necessary and
sufficient conditions for a group to have the R∞-property, we calculate the
Reidemeister spectra, determine when they admit Reidemeister zeta functions
and prove the rationality of these zeta functions.



6 INTRODUCTION

In chapter 9 we study the R∞-property for low-dimensional almost-crystallo-
graphic groups. For the crystallographic groups with finite outer automorphism
group, we provide an algorithm that determines whether the group has the
R∞-property; for the crystallographic groups with infinite outer automorphism
group and the non-crystallographic almost-crystallographic groups we use ad
hoc methods. For the following groups, we determine whether or not they have
the R∞-property:

• the almost-crystallographic groups of dimension at most 4,

• the crystallographic groups of dimension at most 6 whose outer automor-
phism group is finite.

In chapter 10 we study the Reidemeister spectra of the low-dimensional almost-
crystallographic groups that do not have the R∞-property, as determined
in the previous chapter. For the crystallographic groups with finite outer
automorphism group, we provide an algorithm that calculates the Reidemeister
spectrum; for the crystallographic groups with infinite outer automorphism
group and the non-crystallographic almost-crystallographic groups we again use
ad hoc methods. We calculate the Reidemeister spectra of the following groups:

• the almost-crystallographic groups of dimension at most 3,

• the almost-Bieberbach groups of dimension at most 4,

• the crystallographic groups of dimension at most 6 whose outer automor-
phism group is finite.

In chapter 11 we study the existence and rationality of Reidemeister zeta
functions of the low-dimensional almost-crystallographic groups. We determine
which almost-crystallographic groups of dimension at most 3 admit Reidemeister
zeta functions, and obtain the following result regarding their rationality.

Theorem. A Reidemeister zeta function of an almost-crystallographic group
of dimension at most 3 is rational.

Appendix. There are two appendices.

Appendix A is about isogredience, a concept closely related to twisted conjugacy.
For the following groups, we determine whether or not they have the S∞-
property:

• the almost-crystallographic groups of dimension at most 3,
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• the crystallographic groups of dimension at most 4.

We also calculate the isogredience spectra of the almost-crystallographic groups
of dimension at most 3.

Appendix B simply contains tables that are referenced throughout this thesis,
but whose inclusion in the relevant chapters would have seriously hampered
their readability.
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Preliminaries
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Chapter 2

Reidemeister-Nielsen fixed
point theory

Given a function f : X → X on some topological space X, the goal of topological
fixed point theory is to answer the following question: “Does every map g
homotopic to f admit fixed points, and if so, how many fixed points must g
have at the very least?”. If the space X is sufficiently nice (e.g. a compact
polyhedron or manifold), we can define the integers L(f), R(f) and N(f), each
of which provides certain information pertinent to this question.

The goal of this chapter is to give a quick overview of the ideas and results
in Reidemeister-Nielsen fixed point theory. Since the focus of this thesis is on
Reidemeister numbers, we will mostly provide proofs of theorems when they are
relevant to the Reidemeister number, and omit them otherwise. The interested
reader can find more complete and more detailed expositions in [Bro+05; Jia83;
Tsa89].

2.1 The Lefschetz number

One of the first tools to study the existence of a fixed point is the Lefschetz
number. This concept was introduced by Solomon Lefschetz in a series of papers
[Lef23; Lef25; Lef26; Lef27].

11
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Definition 2.1.1. Let f : X → X be a continuous self-map on a closed,
connected polyhedron X. The Lefschetz number L(f) is defined as

L(f) :=
dimX∑
k=0

(−1)k tr (fk,∗ : Hk(X,Q)→ Hk(X,Q)) ,

where fk,∗ is the induced morphism on the k-th homology group Hk(X,Q).

Note that the Lefschetz number is a generalisation of the Euler characteristic,
since L(idX) = χ(X). Moreover, it is invariant under homotopy, since homotopic
maps will induce the same morphisms on the homology groups. As we already
mentioned, the Lefschetz number allows us to study the existence of a fixed
point.
Theorem 2.1.2 (Lefschetz fixed point theorem). Let f : X → X be a
continuous self-map on a connected, compact polyhedron X. If L(f) 6= 0,
then f has at least one fixed point.

As the Lefschetz number is homotopy invariant, each g ' f will have at least
one fixed point as well. However, the converse to the Lefschetz fixed point
theorem is not necessarily true.
Example 2.1.3. The identity map idS1 on the circle S1 has Lefschetz number
L(idS1) = χ(S1) = 0, but obviously idS1 has infinitely many fixed points.

Later, in example 4.2.2(2), we will even give an example of a continuous map f
with Lefschetz number L(f) = 0, for which every map g homotopic to f has at
least one fixed point.

2.2 Fixed point classes

Every topological space X in this section is assumed to be a connected, locally
path-connected, semi-locally simply connected topological space. Such space
admits a universal cover p : X̃ → X. Any map is also assumed to be continuous,
and we denote the set of fixed points of a self-map f by Fix(f).

Note that throughout this thesis, we will use non-standard definitions of lifts
and of induced morphisms on fundamental groups. First, let us recall the usual
definition of the induced morphism.
Lemma 2.2.1 (see [Mun00, §52]). Let f : X → Y be a continuous map. Let
x ∈ X and set y = f(x). Then the map

fπ : π1(X,x) 7→ π1(Y, y) : [α] 7→ [f ◦ α]
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is a well-defined morphism.

This map is usually denoted by f∗, however, we will use f∗ for a different (but
related) morphism, so we denote this one by fπ. Let us also recall the following
lemma:

Lemma 2.2.2 (General lifting lemma, see [Mun00, Lemma 79.1]). Let p :
Z → Y be a covering map and fix y ∈ Y and z ∈ Z such that p(z) = y. Let
f : X → Y be a continuous map, with f(x) = y. Suppose Z is path-connected
and locally path connected.

There exists a continuous map f̃ : X → Z such that:

• p ◦ f̃ = f , i.e. the diagram below commutes,

• f̃(x) = z,

if and only if
fπ(π1(X,x)) ⊆ pπ(π1(Z, z)).

Furthermore, if such a map exists, it is unique.

Z

X Y

p

f

f̃

A map f̃ as above is usually called a lift in the literature. However, our definition
of a lift will be as follows:

Definition 2.2.3. Let f : X → Y be a continuous map between two topological
spaces X, Y with universal covers X̃, Ỹ respectively. Then a lift f̃ : X̃ → Ỹ of
f is a map between the universal covers such that f ◦ p = p ◦ f̃ . In other words,
the following diagram commutes:

X̃ Ỹ

X Y

p

f̃

p

f

The existence of this lift is guaranteed by the general lifting lemma (lemma 2.2.2).
Such a lift is, in general, far from unique, until we impose some extra conditions.
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Lemma 2.2.4. Let f : X → Y be a continuous map between two path-connected
topological spaces X, Y admitting universal covers X̃, Ỹ . Let x ∈ X, y ∈ Y
such that f(x) = y and choose any preimages x̃ ∈ p−1(x), ỹ ∈ p−1(y). Then
there exists a unique lift f̃ of f such that f̃(x̃) = ỹ.

Proof. Apply the general lifting lemma (lemma 2.2.2) to f ◦ p : X̃ → Y . Since
X̃ is simply connected, the condition for the existence of a (unique) lift is always
satisfied.

Definition 2.2.5. A lift of the identity map idX to X̃ is called a covering
transformation. The group of covering transformations will be denoted by D(X).
Equivalently, it can be defined as the group of self-homeomorphisms γ of X̃
such that p ◦ γ = p, with p : X̃ → X the universal cover.

Some well-known properties of lifts are the following:

Proposition 2.2.6. Let f : X → X be a self-map and p : X̃ → X be the
universal cover of X.

(i) For any x ∈ X and any x̃, x̃′ ∈ p−1(x), there exists a unique covering
transformation γ : X̃ → X̃ such that γ(x̃) = x̃′. In fact, D(X) is
isomorphic to the fundamental group π1(X,x).

(ii) Let x ∈ X and x′ = f(x). If x̃ ∈ p−1(x) and x̃′ ∈ p−1(x′), there exists a
unique lift f̃ such that f̃(x̃) = x̃′.

(iii) Let f̃ be a lift of f and α, β ∈ D(X). Then β ◦ f̃ ◦ α−1 is a lift of f .

(iv) Let f̃ , f̃ ′ be two lifts of f . Then there is a unique γ ∈ D(X) such that
f̃ ′ = γ ◦ f̃ .

Proof. We prove the four statements one by one.

(i) The first part of this statement is a special case of lemma 2.2.4. The
second part is exactly [Mun00, Corollary 81.4]. Rather than giving the
full proof, we will give an explicit isomorphism: consider the map

Φx̃ : D(X)→ π1(X,x) : γ 7→ [α],

where α = p ◦ α̃ is a path in X and is the projection of a path α̃ in X̃
with α̃(0) = x̃ and α̃(1) = γ(x̃).

(ii) Again, this is a special case of lemma 2.2.4.
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(iii) Using that α−1 and β are lifts of the identity map, we obtain:

p ◦ β ◦ f̃ ◦ α−1 = p ◦ f̃ ◦ α−1

= f ◦ p ◦ α−1

= f ◦ p,

hence β ◦ f̃ ◦ α−1 is indeed a lift of f .

(iv) Let x ∈ X and x̃ ∈ p−1(x). Take ỹ = f̃(x̃) and ỹ′ = f̃ ′(x̃). By property (i)
there exists a γ ∈ D(X) such that γ(ỹ) = ỹ′. Thus (γ ◦ f̃)(x̃) = γ(ỹ) = ỹ′.
But f̃ ′(x̃) = ỹ′ as well. By the uniqueness in property (ii) we obtain that
γ ◦ f̃ = f̃ ′.

If we fix a reference lift f̃0 of f , then for any other lift f̃ there is a unique
covering transformation γ ∈ D(X) such that f̃ = γ ◦ f̃0. This provides a
one-to-one correspondence between the set of lifts of f and the group of covering
transformations D(X).

We are interested in fixed points of self-maps. The following proposition tells
us how fixed points behave under lifts.

Proposition 2.2.7. Let f : X → X be a self-map on X, let p : X̃ → X be the
universal cover of X and let x ∈ X.

(i) Let x̃ ∈ p−1(x). Then f(x) = x ⇐⇒ f̃(x̃) ∈ p−1(x).

(ii) f(x) = x ⇐⇒ for any x̃ ∈ p−1(x), there is a unique lifting f̃ which
leaves x̃ fixed.

(iii) Let f̃ be a lift of f and x̃ ∈ p−1(x), such that f̃(x̃) = x̃. Suppose that
γ ∈ D(X). Then γ ◦ f̃ ◦ γ−1 is the unique lift of f that has a fixed point
at γ(x̃) ∈ p−1(x).

Proof. We prove the three statements one by one.

(i) If f(x) = x, then (p ◦ f̃)(x̃) = (f ◦ p)(x̃) = f(x) = x hence f̃(x̃) ∈ p−1(x).
Conversely, f(x) = (f ◦ p)(x̃) = (p ◦ f̃)(x̃) = x.

(ii) This follows immediately from combining property (i) with proposi-
tion 2.2.6 (ii).

(iii) This follows from the previous properties and proposition 2.2.6.
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This leads us to the following definition:

Definition 2.2.8. Two lifts f̃1 and f̃2 of a self-map f : X → X are Reidemeister-
equivalent if and only if there exists some γ ∈ D(X) such that f̃1 = γ ◦ f̃2 ◦ γ−1.
The equivalence classes (denoted by [f̃ ]) are called lifting classes, and the
number of such classes is called the Reidemeister number R(f).

There is a close connection between these lifting classes and the fixed points of
a self-map.

Theorem 2.2.9. Let f : X → X be a self-map, p : X̃ → X be the universal
cover of X and f̃ , f̃ ′ be lifts of f . Then:

(i) Fix(f) =
⋃
f̃

p(Fix(f̃)),

(ii) [f̃ ] = [f̃ ′] =⇒ p(Fix(f̃)) = p(Fix(f̃ ′)),

(iii) [f̃ ] 6= [f̃ ′] =⇒ p(Fix(f̃)) ∩ p(Fix(f̃ ′)) = ∅.

Proof. All of this follows from proposition 2.2.7 (ii) and (iii).

This leads naturally to the definition of (Nielsen) fixed point classes, which were
introduced by Jakob Nielsen [Nie24; Nie27].

Definition 2.2.10. The subset p(Fix(f̃)) of Fix(f) is called a fixed point class
of f , determined by the lifting class [f̃ ] of f . The number of fixed point classes
is called the Reidemeister number of f , denoted by R(f).

Of course, we had already defined the Reidemeister number as the number of
lifting classes of f . But since the number of lifting classes is the same as the
number of fixed point classes, both definitions are equivalent.

We may restate theorem 2.2.9 as follows:

Theorem 2.2.11. Let f : X → X be continuous. Then

Fix(f) =
⊔
[f̃ ]

p(Fix(f̃)).

It may be tempting to interpret this theorem as saying that the fixed point
classes form a partition of the set of fixed points. However, there is a small but
important caveat: some fixed point classes may be empty. It is imperative to
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note that an empty fixed point class is still counted as a fixed point class, i.e.
the Reidemeister number also counts the empty fixed point classes.

The following theorem provides a more intuitive understanding of what it means
for two fixed points to belong to the same fixed point class.

Theorem 2.2.12. Let f : X → X be a self-map, p : X̃ → X be the universal
cover of X and x, x′ ∈ Fix(f). Then x and x′ belong to the same fixed point
class if and only if there exists a path c in X from x to x′ such that

f ◦ c 'p c,

i.e. c is path-homotopic to its image under f .

Proof. Let x be a fixed point of f that belongs to the fixed point class p(Fix(f̃))
of a lift f̃ . Then there exists some x̃ ∈ p−1(x) such that f̃(x̃) = x̃. Let x′ be
another fixed point of f .

First, let us assume that x and x′ belong to the same fixed point class, i.e.
x′ ∈ p(Fix(f̃)). Take x̃′ ∈ p−1(x′) such that f̃(x̃′) = x̃′ and choose some path
c̃ in X̃ from x̃ to x̃′. Then the path f̃ ◦ c̃ is also a path from x̃ to x̃′ and is
path-homotopic to c̃, since X̃ is simply connected. Let c = p ◦ c̃, which is then
a path from x to x′ in X. We have that

c = p ◦ c̃ 'p p ◦ (f̃ ◦ c̃) = (p ◦ f̃) ◦ c̃ = (f ◦ p) ◦ c̃ = f ◦ c.

Conversely, let c be a path from x to x′ which is path-homotopic to its image
under f , and let c̃ be the lift of c that starts at x̃. Since c 'p f ◦ c, we must
have that c̃ and f̃ ◦ c̃ both end in the same terminal point x̃′ ∈ p−1(x′). Hence
f̃(x̃′) = x̃′, thus x′ ∈ p(Fix(f̃)).

At this point, one may wonder why the theorem above is not used as the
definition of a fixed point class. The reason is that this theorem does not
account for the existence of empty fixed point classes, and as we will show later,
the number of non-empty fixed point classes is not a homotopy invariant. The
number of all fixed point classes, including the empty ones, is.

Theorem 2.2.13. The Reidemeister number R(f) is a homotopy invariant.

Proof. Let f, g : X → X be self-maps and let H = {ht}t∈I : X × I → X be
a homotopy between f and g. Since p × id : X̃ × I → X × I is the universal
cover of X × I, we may consider lifts H̃ = {h̃t}t∈I of H such that the following
diagram commutes:
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X̃ × I X̃

X × I X

H̃

p×id p

H

This means that for every t ∈ I, h̃t must be a lift of ht. Because lifts are unique
once we fix a pair of points, H̃ is uniquely determined once we fix h̃0 = f̃ , and
in particular h̃1 = g̃ will be uniquely determined. The same reasoning can be
done for the inverse homotopy H−1 = {h1−t}t∈I , hence H induces a one-to-one
correspondence between the lifts of f and g.

Now, if H̃ = {h̃t}t∈I is a homotopy between f̃ and g̃, then for every γ ∈ D(X)
we have that {γ ◦ h̃t ◦γ−1}t∈I is a homotopy between γ ◦ f̃ ◦γ−1 and γ ◦ g̃ ◦γ−1.
Thus, the one-to-one correspondence preserves the lifting classes and hence
R(f) = R(g).

The example below illustrates that, while the Reidemeister number is invariant
under homotopies, the (non)-emptiness of a fixed point class is not.

Example 2.2.14. Consider the unit circle S1, and represent points of the circle
by the angle θ ∈ [0, 2π). The universal cover of S1 is given by

p : R→ S1 : t 7→ t mod 2π.

Consider the map
f : S1 → S1 : θ 7→ θ + ε mod 2π,

where ε is small. Then f is homotopic to idS1 , and an explicit homotopy is
given by

H = {ht}t∈I : S1 × I → S1 : (θ, t) 7→ θ + tε mod 2π.
If we take the lift

H̃ = {h̃t}t∈I : R× I → R : (θ, t) 7→ θ + tε,

we find that p(Fix(h̃0)) = S1 but p(Fix(h̃1)) = ∅.

We conclude this section by discussing the topological properties of fixed point
classes, which will be important for the next section on fixed point indices.

Proposition 2.2.15. Every fixed point class F of a self-map f is open and
closed in Fix(f).

Proof. We will start by proving that a fixed point class F is open in Fix(f).
Let x ∈ F and let V be a neighbourhood of x such that every loop with base
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point x is path-homotopic (in X) to the trivial loop at x. Now take an open
neighbourhood Ux ⊆ V ∩ f−1(V ) of x that is path-connected. We claim that

F =
(⋃
x∈F

Ux

)
∩ Fix(f) =

⋃
x∈F

(Ux ∩ Fix(f)) .

It suffices to prove that if y ∈ Ux ∩ Fix(f) for some x ∈ F, then y ∈ F. Because
Ux is path-connected, there exists some path c in Ux ⊆ V from x to y. Then
f ◦ c is a path from x to y in V as well. By the definition of V , c and f ◦ c are
path-homotopic in X, and by theorem 2.2.12 x and y belong to the same fixed
point class.

Next, we prove that a fixed point class F is closed in Fix(f). Consider the open
set U defined as

U :=
⋃

x∈Fix(f)\F

Ux.

Now F is exactly the intersection of Fix(f) and the complement of U .

Proposition 2.2.16. If X is Hausdorff, then Fix(f) is closed in X for any
self-map f : X → X.

Proof. Since X is Hausdorff, the diagonal ∆X := {(x, x) | x ∈ X} is a closed
subset of X ×X. But Fix(f) = (f × id)−1(∆X).

Corollary 2.2.17. If X is compact and Hausdorff, then the number of non-
empty fixed point classes of a self-map f : X → X is finite.

Proof. For any x ∈ Fix(f), let the set Ux be as in the proof of proposition 2.2.15.
For any fixed point class F, we define the open set UF as

UF :=
⋃
x∈F

Ux.

Consider the open cover of X given by X \ Fix(f) and all the open sets UF. By
compactness of X, this covering must have a finite subcover, hence only finitely
many of the sets UF can be non-empty.

2.3 Fixed point index

In the previous section, we have introduced fixed point classes, and we have seen
that the emptiness of a fixed point class is not a homotopy invariant. Moreover,
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a fixed point class could also contain more than a single point, meaning that so
far these fixed point classes tell us very little about the number of fixed points.

In order to study fixed point classes in more detail, we will assign an integer
to each of them, called the fixed point index. We will take the approach from
[FPS04], which is to introduce this index as the unique function satisfying
certain properties, though we will also briefly mention the original construction.

Throughout this section, let X be a connected, Hausdorff, second-countable
smooth manifold.

Definition 2.3.1. Let U be an open subset of X. The pair (f, U) is called
admissible if Fix(f, U) := Fix(f) ∩ U is compact in X. Denote the set of all
admissible pairs on X by A(X).

Let H : X × I → X be a homotopy with H(x, 0) = f0(x) and H(x, 1) = f1(x)
for all x ∈ X. We call H admissible in U if the set

{(x, t) ∈ U × I | H(x, t) = x}

is compact in X × I.

We can now define the fixed point index.

Theorem 2.3.2. There exists a (unique) function Ind : A(X)→ Z satisfying
the following:

Weak Normalisation
If f : X → X is a constant function, then

Ind(f,X) = 1.

Additivity
Let (f, U) be an admissible pair and U1, U2 disjoint subsets of U such that
Fix(f, U) ⊆ U1 ∪ U2. Then

Ind(f, U) = Ind(f, U1) + Ind(f, U2).

Homotopy-invariance
If H is an admissible homotopy on U between functions f0 and f1, then

Ind(f0, U) = Ind(f1, U).

Proposition 2.3.3. The function Ind as defined above satisfies the following
properties:
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Empty set
Ind(f,∅) = 0.

Solution
If (f, U) is admissible and Ind(f, U) 6= 0, then Fix(f, U) 6= ∅.

Excision
If V is an open subset of U containing Fix(f, U), then

Ind(f, U) = Ind(f, V ).

Commutativity
Let X,Y be connected manifolds and f : X → Y , g : Y → X be continuous
maps such that (g ◦ f, U) is admissible. Then (f ◦ g, g−1(U)) is admissible
as well, and

Ind(g ◦ f, U) = Ind(f ◦ g, g−1(U)).

Strong normalisation
Let X be compact, then

Ind(f,X) = L(f).

We can now define a (more or less) new function Ind which assigns integers to
pairs consisting of a function and a fixed point class, rather than to admissible
pairs. However, we will need to assume that the space X is compact.

Any fixed point class F is an open subset of Fix(f), hence there exists an open
U ⊆ X such that F = Fix(f) ∩ U . At the same time, F is closed in Fix(f) and
hence in X, and therefore it is compact (by compactness of X). We then define

Ind(f,F) := Ind(f, U).

Note that this definition is independent of the choice of open set U . Indeed,
if V is another open subset of X such that F = Fix(f) ∩ V , then also F =
Fix(f) ∩ (U ∩ V ), and by the excision property we have

Ind(f, U) = Ind(f, U ∩ V ) = Ind(f, V ).

The original construction of the fixed point index used the degree of maps on
spheres, see [Bro71; Jia83]. For completeness’ sake, we will give the construction
below. Let x ∈ Fix(f) be an isolated fixed point. Because X has a manifold
structure, there exists an open neighbourhood U 3 x such that

• U, f(U) lie completely in the image of a chart ψ : V ⊆ Rn → X,
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• U, f(U) do not contain any other fixed points.

Then f ′ := ψ−1 ◦ f ◦ ψ is a function ψ−1(U) ⊆ Rn → Rn. Now pick a sphere
Sn−1
ψ−1(x) ⊆ ψ

−1(U) centred around ψ−1(x), and define

φf : Sn−1
ψ−1(x) → Sn−1 : y 7→ y − f ′(y)

‖y − f ′(y)‖ .

The index Ind(f, x) of the fixed point x is then defined as the degree of this
map.

We conclude this section with the Lefschetz-Hopf fixed point theorem, which
follows from the additivity and strong normalisation properties of the fixed
point index.

Theorem 2.3.4 (Lefschetz-Hopf fixed point theorem). Let f : X → X be a
self-map on a compact space X. Then

L(f) =
∑
F

Ind(f,F).

2.4 The Nielsen number

Because the fixed point index has the solution property, it allows us to make
statements about the existence of fixed points. We can now define the Nielsen
number N(f) of a self-map f which, unlike L(f) and R(f), tells us something
about the number of fixed points.

Definition 2.4.1. A fixed point class F is called essential if Ind(f,F) 6= 0, and
inessential otherwise. The Nielsen number N(f) of f is the number of essential
fixed point classes.

Since every essential fixed point class must contain at least one fixed point (the
solution property), we have the following theorem:

Theorem 2.4.2. The Nielsen number N(f) is a lower bound for the number
of fixed points of f , i.e. N(f) ≤ Fix(f).

By corollary 2.2.17, the number of non-empty fixed point classes is necessarily
finite, and thus the number of essential fixed point classes is finite as well.

Proposition 2.4.3. The Nielsen number is finite.
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We have shown before that the number of (non)-empty fixed point classes is not
a homotopy invariant. However, it can be shown that the number of (in)essential
fixed point classes is a homotopy invariant.

Theorem 2.4.4. The Nielsen number is a homotopy invariant, i.e. if f ' g,
then N(f) = N(g).

The proof is non-trivial and can be found in e.g. [Jia83]. We will give a basic
idea of the proof.

Idea of proof. Let H = {ht}t∈I : X × I → X be a homotopy with h0 = f
and h1 = g, and let F0, F1 be fixed point classes of f and g respectively
corresponding through H. We will extend H to the fat homotopy

Hfat : X × I → X × I : (x, t) 7→ (H(x), t).

Because H preserves the lifting classes, there exists a fixed point class F of Hfat

such that F0 and F1 are exactly the 0− and 1−slices of F.

We know there exists some open set U ⊆ X × I such that F = Fix(Hfat) ∩ U .
Define Ut and Ft as the t-slices of U and F respectively, then Ft = Fix(ht) ∩ Ut
is a fixed point class of ht. By “squeezing H into a thin map resembling ht”
(see [Jia83, Corollary 3.10]) we obtain that

Ind(ht,Ft) = Ind(Hfat,F) for all t ∈ I.

In particular, setting t = 0, 1, we find that

Ind(f,F0) = Ind(Hfat,F) = Ind(g,F1).

Thus, homotopies preserve the index of a fixed point class, and in particular
whether or not a fixed point class is essential.

Corollary 2.4.5. The Nielsen number N(f) is a lower bound for the number
of fixed points of every g ' f :

N(f) ≤ min
g'f

# Fix(g).

Often, the Nielsen number is a sharp bound, as proved by Wecken [Wec42].

Theorem 2.4.6. Let f : X → X be a continuous self-map on a compact,
connected manifold X with dim(X) ≥ 3. Then there exists a self-map g ' f
such that

N(f) = N(g) = # Fix(g).
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2.5 The Reidemeister number

In the previous sections, we defined an equivalence relation on the set of lifts of a
self-map f : X → X. Moreover, we showed there is a one-to-one correspondence
between the set of lifts and the group of covering transformations D(X). Hence,
this equivalence relation induces induces an equivalence relation on D(X) using
this one-to-one correspondence. This approach was first suggested by Kurt
Reidemeister in [Rei36].

Lemma 2.5.1. Fix a reference lift f̃0 of a self-map f : X → X. Then f̃0
induces an endomorphism f∗ on D(X) given by

f∗(γ) ◦ f̃0 = f̃0 ◦ γ

for all γ ∈ D(X). The choice of reference lift f̃0 determines f∗ up to an inner
automorphism of D(X).

Proof. The existence of f∗ is given by part (iv) of proposition 2.2.6. Now let f̃0
and f̃ ′0 be two reference lifts with induced maps f∗, f ′∗ respectively. Then for
some α ∈ D(X), we have f̃ ′0 = α ◦ f̃0. For every γ ∈ D(X) we then have that

f ′∗(γ) ◦ f̃ ′0 = f̃ ′0 ◦ γ

and thus
f ′∗(γ) ◦ α ◦ f̃0 = α ◦ f̃0 ◦ γ.

Rearranging this slightly, we obtain

α−1 ◦ f ′∗(γ) ◦ α ◦ f̃0 = f̃0 ◦ γ.

Thus, for every γ ∈ D(X) we have α−1 ◦f ′∗(γ)◦α = f∗(γ), and hence f ′∗ = ιαf∗,
where ια ∈ Inn(D(X)) is the inner automorphism

ια : D(X)→ D(X) : γ 7→ α ◦ γ ◦ α−1.

There is a natural link between fπ and any f∗ defined from lifts. To
make this more concrete, recall the group isomorphism between the covering
transformations and the fundamental group we mentioned in proposition 2.2.6:

Φx̃ : D(X)→ π1(X,x) : γ 7→ [α],

which depends on the choice of x̃ ∈ p−1(x).
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Proposition 2.5.2. Let f̃ be any lift of f , choose x̃ ∈ p−1(x) and set ỹ = f̃(x̃).
Now let f∗ be the endomorphism on D(X) induced by f̃ . Then

Φỹ ◦ f∗ = fπ ◦ Φx̃,

i.e. the following diagram commutes:

D(X) D(X)

π1(X,x) π1(X, y)

Φx̃∼ =

f∗

Φỹ∼ =

fπ

Proof. Let γ ∈ D(X). Its image under Φx̃ is [α], where

• α = p ◦ α̃ for some path α̃ in X̃,

• α̃(0) = x̃,

• α̃(1) = γ(x̃).

Now, (fπ ◦ Φx̃)(γ) = fπ([α]) = [f ◦ α], and this path satisfies the following:

• f ◦ α = f ◦ p ◦ α̃ = p ◦ f̃ ◦ α̃,

• (f̃ ◦ α̃)(0) = f̃(x̃) = ỹ,

• (f̃ ◦ α̃)(1) = (f̃ ◦ γ)(x̃) = (f∗(γ) ◦ f̃)(x̃) = f∗(γ)(ỹ).

On the other hand, (Φỹ ◦ f∗)(γ) = Φỹ(f∗(γ)) = [β], where

• β = p ◦ β̃ for some path β̃ in X̃,

• β̃(0) = ỹ,

• β̃(1) = f∗(γ)(ỹ).

Thus, f̃ ◦ α̃ and β̃ are two paths in X̃ from ỹ to f∗(γ)(ỹ), and must therefore
be path-homotopic, and hence [f ◦ α] = [β].

Definition 2.5.3. Two elements α, β ∈ D(X) are f∗-twisted conjugate if and
only if there exists γ ∈ D(X) such that

α = γβf∗(γ)−1.

Just like the usual notion of conjugacy, this is an equivalence relation. The
number of equivalence classes is called the Reidemeister number R(f∗).
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We show that this is indeed the equivalence relation induced by the equivalence
relation on lifts.
Proposition 2.5.4. Let f̃1, f̃2 be two lifts of a self-map f : X → X and f̃0 be
a reference lift such that f̃i = αi ◦ f̃0 for i = 1, 2, with αi ∈ D(X), and let f∗ be
the endomorphism on D(X) induced by f̃0. Then

f̃1 ∼ f̃2 ⇐⇒ α1 ∼f∗ α2,

and hence R(f) = R(f∗).

Proof.

f̃1 ∼ f̃2 ⇐⇒ α1 ◦ f̃0 ∼ α2 ◦ f̃0

⇐⇒ ∃γ ∈ D(X) : α1 ◦ f̃0 = γ ◦ α2 ◦ f̃0 ◦ γ−1

⇐⇒ ∃γ ∈ D(X) : α1 ◦ f̃0 = γ ◦ α2 ◦ f∗(γ)−1 ◦ f̃0

⇐⇒ ∃γ ∈ D(X) : α1 = γ ◦ α2 ◦ f∗(γ)−1

⇐⇒ α1 ∼f∗ α2.

2.5.1 Group-theoretic Reidemeister number

Definition 2.5.3 gives a purely algebraic definition of the Reidemeister number.
In fact, there is no real reason to only define the Reidemeister number for
endomorphisms on fundamental groups induced by self-maps.
Definition 2.5.5. Let G be a group and ϕ : G→ G an endomorphism. Define
an equivalence relation ∼ϕ on G by

∀g, g′ ∈ G : g ∼ϕ g′ ⇐⇒ ∃h ∈ G : g = hg′ϕ(h)−1.

The equivalence classes are called Reidemeister classes or twisted conjugacy
classes, and we will denote the Reidemeister class of g under the endomorphism
ϕ by [g]ϕ. The set of Reidemeister classes of ϕ is denoted by R(ϕ). The
Reidemeister number R(ϕ) is the cardinality of R(ϕ) and is therefore always a
positive integer or infinity.
Definition 2.5.6. Let Aut(G) be the automorphism group of a group G. We
define the Reidemeister spectrum as

SpecR(G) = {R(ϕ) | ϕ ∈ Aut(G)}.

If SpecR(G) = {∞} we say that G has the R∞-property, and if SpecR(G) =
N ∪ {∞} we say G has full Reidemeister spectrum.
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Similarly, we can define such spectrum for endomorphisms:

Definition 2.5.7. Let End(G) be the set of endomorphisms of a group G. We
define the extended Reidemeister spectrum as

ESpecR(G) = {R(ϕ) | ϕ ∈ End(G)}.

If ESpecR(G) = N ∪ {∞} we say G has full extended Reidemeister spectrum.

For any group G, 1 ∈ ESpecR(G), since the Reidemeister number of the trivial
endomorphism g 7→ 1 is 1. Let us provide some examples.

Example 2.5.8. Let G be a finite abelian group and ϕ ∈ End(G). Then for
any two elements g, g′ ∈ G, we have

g ∼ϕ g′ ⇐⇒ ∃h ∈ G : g = h+ g′ − ϕ(h)

⇐⇒ ∃h ∈ G : g − g′ = (id−ϕ)(h)

⇐⇒ g − g′ ∈ im(id−ϕ).

Thus, for the Reidemeister number R(ϕ) we find that

R(ϕ) = #(G/ im(id−ϕ))

= #G/# im(id−ϕ)

= # ker(id−ϕ)

= # Fix(ϕ).

If G = Zp with p > 2 prime, then any endomorphism ϕ is completely determined
by the image of 1. We have three cases:

(1) ϕ(1) = 0. This is the trivial endomorphism, which only fixes 0, hence
R(ϕ) = 1.

(2) ϕ(1) = 1. This is the identity, which fixes every element, hence R(ϕ) = p.

(3) ϕ(1) = k, with 1 < k < p. If ϕ(x) = x, then (k − 1)x ≡ 0 mod p, hence
either x = 0 or k = 1. Since we excluded the latter case, 0 is the only
fixed point and R(ϕ) = 1.

Thus, we have that SpecR(Zp) = ESpecR(Zp) = {1, p}.
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To simplify notation in the next example (and the remainder of this thesis), we
introduce the following map:

| . |∞ : Z→ N ∪ {∞} : x 7→ |x|∞ :=
{
|x| if x 6= 0,
∞ if x = 0.

Example 2.5.9 (see [Bro+75]). Let G = Zn and D ∈ Zn×n an endomorphism.
Just like in the previous example, R(ϕ) = #(Zn/ im(1n − D)). The Smith
normal form of 1n −D is a diagonal matrix with a1, a2, . . . , ak, 0, . . . , 0 on the
diagonal for some k ≤ n, ai 6= 0. Then

Zn/ im(1n −D) ∼= Za1 ⊕ Za2 ⊕ · · · ⊕ Zak ⊕ Zn−k,

and hence R(D) = |det(1n −D)|∞.

The following lemma is pivotal in determining the R∞-property of many groups.

Lemma 2.5.10 (see [Hea85, Theorem 1.8], [KLL05, §2], [GW09, Lemma 1.1]).
Let N be a normal subgroup of a group G and ϕ ∈ End(G) with ϕ(N) ⊆ N .
We denote the restriction of ϕ to N by ϕ|N , and the induced endomorphism on
the quotient G/N by ϕ′. We then get the following commutative diagram with
exact rows:

1 N G G/N 1

1 N G G/N 1

i

ϕ|N

p

ϕ ϕ′

i p

Note that, if ϕ and ϕ|N are both automorphisms, then ϕ′ is an automorphism
as well. This diagram induces the following exact sequence of pointed sets:

1 Fix(ϕ|N ) Fix(ϕ) Fix(ϕ′)

R(ϕ|N ) R(ϕ) R(ϕ′) 1

iFix pFix

δ

ı̂ p̂

where all maps are evident except δ, which is defined as δ(gN) = [gϕ(g)−1]ϕ|N .
We obtain the following properties:

(1) R(ϕ) ≥ R(ϕ′),
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(2) if R(ϕ|N ) =∞ and |Fix(ϕ′)| <∞, then R(ϕ) =∞,

(3) if R(ϕ|N ) <∞, R(ϕ′) <∞ and N ⊆ Z(G), then R(ϕ) ≤ R(ϕ|N )R(ϕ′).

Proof. Proving that the diagram commutes and that it has exact rows is
straightforward. For the cohomological background of the exact sequence, we
refer to [FT15, Section 2.2].

The only map that is not obviously well-defined, is δ. Consider the natural
action of Fix(ϕ′) on R(ϕ|N ) given by

gN · [n]ϕ|N = [gnϕ(g)−1]ϕ|N .

Since
p(gnϕ(g)−1) = gN · ϕ′(gN)−1 = 1N,

we have that gnϕ(g)−1 ∈ N . Moreover, if g′N = gN , then g = n′g′ for some
n′ ∈ N . Hence

[gnϕ(g)−1]ϕ|N = [n′g′nϕ(g′)−1ϕ|N (n′)−1]ϕ|N = [g′nϕ(g′)−1]ϕ|N ,

so this action is well-defined. We can write δ in terms of this action as δ(gN) =
gN · [1]ϕ|N , hence δ is well-defined.

Next, we prove the exactness of the sequence step by step.

(1) iFix is injective and im(iFix) = ker(pFix). These follow readily from the
exactness of the diagram.

(2) im(pFix) ⊆ ker(δ). Let gN ∈ im(pFix), then we may assume that ϕ(g) = g.
So

δ(gN) = [gϕ(g)−1]ϕ|N = [gg−1]ϕ|N = [1]ϕ|N ,

therefore gN ∈ ker(δ).

(3) im(pFix) ⊇ ker(δ). Let gN ∈ ker(δ), then [gϕ(g)−1]ϕ|N = [1]ϕ|N . This
means there exists some n ∈ N such that ngϕ(g)−1ϕ|N (n)−1 = 1, which
is equivalent to ng = ϕ(ng). Then ng ∈ Fix(ϕ) and pFix(ng) = gN , thus
gN ∈ im(pFix).

(4) im(δ) ⊆ ker(̂ı). Let [n]ϕ|N ∈ im(δ), hence there exists gN ∈ Fix(ϕ′) such
that [n]ϕ|N = [gϕ(g)−1]ϕ|N . Then

ı̂([n]ϕ|N ) = ı̂([gϕ(g)−1]ϕ|N ) = [gϕ(g)−1]ϕ = [1]ϕ,

thus [n]ϕ|N ∈ ker(̂ı).
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(5) im(δ) ⊇ ker(̂ı). Let [n]ϕ|N ∈ ker(̂ı), then

ı̂([n]ϕ|N ) = [n]ϕ = [1]ϕ,

so there exists some g ∈ G such that gϕ(g)−1 = n, or equivalently
ϕ(g) = n−1g. Then ϕ′(gN) = gN and

δ(gN) = [gϕ(g)−1]ϕ|N = [n]ϕ|N ,

therefore [n]ϕ|N ∈ im(δ).

(6) im(̂ı) = ker(p̂) and p̂ is surjective. Again, these follow readily from the
exactness of the diagram.

Finally, we prove the 3 properties:

(1) This follows from p̂ being surjective,

(2) Since R(ϕ|N ) is infinite and Fix(ϕ′) is finite, the action of Fix(ϕ′) on
R(ϕ|N ) divides the latter into infinitely many orbits. However, two
elements [n]ϕ|N and [n]ϕ|N belong to the same orbit if and only if i(n) ∼ϕ
i(n′), thus R(ϕ) must be infinite.

(3) Let

R(ϕ|N ) = {[n1]ϕ|N , [n2]ϕ|N , . . . , [nR(ϕ|N )]ϕ|N },

R(ϕ′) = {[g1N ]ϕ′ , [g2N ]ϕ′ , . . . , [gR(ϕ′)N ]ϕ′}.

Let g ∈ G, then gN ∈ [giN ]ϕ′ for some i, so there exists some hN ∈ G/N
such that

gN = hN · giN · ϕ′(hN)−1 = hgiϕ(h)−1N.

Hence there exists some n ∈ N such that

g = hgiϕ(h)−1n.

In turn, n ∈ [nj ]ϕ|N for some j, hence there exists an m ∈ N such that

n = mnjϕ|N (m)−1.

Since n,m ∈ N ⊆ Z(G), we obtain

g = hgiϕ(h)−1mnjϕ|N (m)−1 = (hm)(ginj)ϕ(hm)−1,

therefore g ∈ [ginj ]ϕ. Since this is true for arbitrary g ∈ G, we obtain
that R(ϕ) ≤ R(ϕ|N )R(ϕ′).
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Note that in the above lemma, if the group G is abelian, then all of the sets of
Reidemeister classes are abelian groups as well, and the exact sequence becomes
an exact sequence of groups. This is used in the following example.

Example 2.5.11. Let G be a finitely generated abelian group and ϕ ∈ End(G).
Then G = Zn ⊕ τ(G) where τ(G) is the (fully characteristic) torsion subgroup,
hence we get the commutative diagram

1 τ(G) G Zn 1

1 τ(G) G Zn 1

i

ϕ|τ(G)

p

ϕ ϕ′

i p

The induced endomorphism ϕ′ on G/τ(G) ∼= Zn is given by some matrix
D ∈ Zn×n. Since R(ϕ′) = |det(1n −D)|∞, we have that

R(ϕ′) <∞ ⇐⇒ det(1n −D) 6= 0 ⇐⇒ Fix(ϕ′) = 1.

First, consider the case where R(ϕ′) = ∞. Then R(ϕ) = ∞ as well due to
the first property in lemma 2.5.10. Second, let R(ϕ′) < ∞. Then the exact
sequence becomes

1 R(ϕ|τ(G)) R(ϕ) R(ϕ′) 1ı̂ p̂

However, since G is abelian, all of these sets of Reidemeister classes inherit the
(abelian) group law from G, and hence this is an exact sequence of finite groups.
In particular, we have that

R(ϕ) = R(ϕ|τ(G))R(ϕ′).

The same result actually holds for any group of the form G = Zn ⊕ τ(G) with
τ(G) any finite (not necessarily abelian) group, see [Fel00, Proposition 3].

Corollary 2.5.12. Let N be a characteristic subgroup of G. If either

(1) the quotient G/N has the R∞-property, or

(2) N has finite index in G and has the R∞-property,

then G has the R∞-property as well.

Proof. This follows from property 1 in lemma 2.5.10.
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The following proposition is well-known, see for example [KLL05, Lemma 2.1].
However, identity (3) is usually proven only for an endomorphism f∗ on a
fundamental group induced by a self-map f , since the proof is topological in
nature. We will provide a purely group-theoretic proof.

Proposition 2.5.13. Consider the situation from lemma 2.5.10. Let g ∈ G
and ιg its corresponding inner automorphism. Then we have the following exact
sequence of pointed sets

1 Fix(ιgϕ|N ) Fix(ιgϕ) Fix(ιgNϕ′)

R(ιgϕ|N ) R(ιgϕ) R(ιgNϕ′) 1

ig pg

δg

ı̂g p̂g

from which we obtain the following identities:

(1) #p̂−1([gN ]ϕ′) = # im(̂ıg),

(2) R(ϕ) =
∑

[gN ]ϕ′

# im(̂ıg),

(3) #ı̂−1
g ([n]ιgϕ) = [Fix(ιgNϕ′) : png(Fix(ιngϕ))],

(4) [G : N ] = #[gN ]ιgNϕ′ ·# Fix(ιgNϕ′).

Proof. We will prove this item per item. When g = 1, the maps ı̂1 and p̂1 equal
the maps ı̂ and p̂ from lemma 2.5.10 respectively.

(1) First, note that #p̂−1([gN ]ϕ′) = #p̂−1
g ([1N ]ιgNϕ′) because

[h]ϕ ∈ p̂−1([gN ]ϕ′) ⇐⇒ [hN ]ϕ′ = [gN ]ϕ′

⇐⇒ ∃k ∈ G : hN = kgϕ(k)−1N

⇐⇒ ∃k ∈ G : hg−1N = kgϕ(k)−1g−1N

⇐⇒ [hg−1N ]ιgNϕ′ = [1N ]ιgNϕ′

⇐⇒ [hg−1]ιgϕ ∈ p̂−1
g ([1N ]ιgNϕ′).

By exactness, p̂−1
g ([1N ]ιgNϕ′) = im(̂ıg).
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(2) Because p̂ is surjective, we have the disjoint union

R(ϕ) =
⊔

[gN ]ϕ′

p̂−1([gN ]ϕ′).

Applying (1), we get

R(ϕ) =
∑

[gN ]ϕ′

#p̂−1([gN ]ϕ′) =
∑

[gN ]ϕ′

# im(̂ıg).

(3) #ı̂−1
g ([n]ιgϕ) = #ı̂−1

ng ([1]ιngϕ), because

[m]ιgϕ|N ∈ ı̂−1
g ([n]ιgϕ) ⇐⇒ [m]ιgϕ = [n]ιgϕ

⇐⇒ ∃k ∈ G : m = kn(ιgϕ)(k)−1

⇐⇒ ∃k ∈ G : mn−1 = kn(ιgϕ)(k)−1n−1

⇐⇒ [mn−1]ιngϕ = [1]ιngϕ

⇐⇒ [mn−1]ιngϕ|N ∈ ı̂−1
ng ([1]ιngϕ).

By exactness, ı̂−1
ng ([1]ιngϕ) = im(δng). Now note that

δng(h1N) = δng(h2N) ⇐⇒ [h1(ιngϕ)(h1)−1]ιngϕ|N =

[h2(ιngϕ)(h2)−1]ιngϕ|N

⇐⇒ ∃m ∈ N : h1(ιngϕ)(h1)−1 =

mh2(ιngϕ)(h2)−1(ιngϕ)(m)−1

⇐⇒ ∃m ∈ N : h−1
2 m−1h1 ∈ Fix(ιngϕ)

⇐⇒ h−1
2 h1N ∈ png(Fix(ιngϕ)).

Therefore, # im(δng) = [Fix(ιgNϕ′) : png(Fix(ιngϕ))], from which the
result follows.

(4) The quotient group G/N acts transitively on [gN ]ιgNϕ′ by

hN · [gN ]ιgNϕ′ = [hgϕ(h)−1N ]ιgNϕ′ .

The result then follows from the orbit-stabiliser theorem.
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We can now prove the following inequalities.

Proposition 2.5.14. Let G be a group with finite index normal subgroup N ,
and ϕ an endomorphism such that ϕ(N) ⊆ N . Then we have∑

gN

R(ιgϕ|N ) ≥ R(ϕ) ≥ 1
[G : N ]

∑
gN

R(ιgϕ|N ).

Proof. From proposition 2.5.13 we can deduce that

R(ϕ) =
∑

[gN ]ϕ′

# im(̂ıg)

=
∑

[gN ]ϕ′

∑
[n]ιgϕ∈im(ı̂g)

1

=
∑
gN

1
#[gN ]ϕ′

∑
[n]ιgϕ|N

1
#ı̂−1

g ([n]ιgϕ)
(2.1)

=
∑
gN

∑
[n]ιgϕ|N

#png(Fix(ιngϕ))
#[gN ]ϕ′ ·# Fix(ιgNϕ′)

= 1
[G : N ]

∑
gN

∑
[n]ιgϕ|N

#png(Fix(ιngϕ)).

Clearly #png(Fix(ιngϕ)) ≥ 1, hence

R(ϕ) ≥ 1
[G : N ]

∑
gN

∑
[n]ιgϕ|N

1 = 1
[G : N ]

∑
gN

R(ιgϕ|N ).

On the other hand, #png(Fix(ιngϕ)) ≤ [G : N ], hence

R(ϕ) ≤ 1
[G : N ]

∑
gN

∑
[n]ιgϕ|N

[G : N ] =
∑
gN

R(ιgϕ|N ).

Corollary 2.5.15. Let G be a group with finite index normal subgroup N , and
ϕ an endomorphism such that ϕ(N) ⊆ N . Then we have

R(ϕ) =∞ ⇐⇒ ∃gN ∈ G/N such that R(ιgϕ|N ) =∞.

The following formula is often called the averaging formula.
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Proposition 2.5.16. Let G be a torsion-free group with finite index normal
subgroup N ; and let ϕ be an endomorphism such that ϕ(N) ⊆ N and
Fix(ιgϕ|N ) = 1 for all g ∈ G. Then we have

R(ϕ) = 1
[G : N ]

∑
gN

R(ιgϕ|N ).

Proof. Consider eq. (2.1): it suffices to show that Fix(ιgϕ) = 1 for all g ∈ G.
Suppose that h is a fixed point of ιgϕ. Because G/N is finite, there exists some
k ∈ N such that hkN = 1N , and therefore hk ∈ N . But then (ιgϕ|N )(hk) =
(ιgϕ)(h)k = hk. Because 1 is the only fixed point of ιgϕ|N , this means that
hk = 1, and because G is torsion-free, h = 1.

A similar result is the following, often called the addition formula.

Proposition 2.5.17 (see [Won01, Proposition 1]). Let G be a group with finite
index normal subgroup N ; and let ϕ be an endomorphism such that ϕ(N) ⊆ N
and Fix(ιgNϕ′) = 1 for all g ∈ G. Then we have

R(ϕ) =
∑

[gN ]ϕ′

R(ιgϕ|N ).

Proof. Consider proposition 2.5.13(2). If Fix(ιgNϕ′) = 1 for all g ∈ G, then
# im(̂ıg) = R(ιgϕ|N ).

Lemma 2.5.18. Let G = G1×G2 be a direct product where both G1×{1} and
{1}×G2 are (fully) characteristic subgroups. Then Aut(G) ∼= Aut(G1)×Aut(G2)
(End(G) ∼= End(G1)× End(G2)), and for any automorphism (endomorphism)
ϕ = ϕ1 × ϕ2 we have R(ϕ) = R(ϕ1)R(ϕ2). Hence SpecR(G) = SpecR(G1) ·
SpecR(G2) (ESpecR(G) = ESpecR(G1) · ESpecR(G2)).

Proof. It is straightforward to work out that the map

R(ϕ)→ R(ϕ1)×R(ϕ2) : [(g1, g2)]ϕ 7→ ([g1]ϕ1 , [g2]ϕ2)

is a bijection. The result follows immediately.

We give a lemma that gives equality of Reidemeister numbers of different
endomorphisms of the same group.

Lemma 2.5.19 (see [FLT08, Corollary 3.2]). Let G be a group and let ϕ1, ϕ2 ∈
End(G). If either of the following holds:
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(1) ∃ι ∈ Inn(G) such that ϕ1 = ϕ2 ◦ ι,

(2) ∃ψ ∈ Aut(G) such that ϕ1 = ψ ◦ ϕ2 ◦ ψ−1,

then R(ϕ1) = R(ϕ2).

Proof. We will prove this case by case.

(1) There exists some g ∈ G such that ι(h) = ghg−1 for all g ∈ G. Let
x ∼ϕ1 y, then there exists z ∈ G such that

x = zyϕ1(z)−1 = zyϕ2(gzg−1)−1 = zg−1gyϕ2(gzg−1)−1.

Multiplying on the left by g we get

gx =
(
gzg−1) (gy)ϕ2(gzg−1)−1,

hence the map

ĝ : R(ϕ1)→ R(ϕ2) : [x]ϕ1 7→ [gx]ϕ2

is a well-defined bijection, and R(ϕ1) = R(ϕ2).

(2) Let x ∼ϕ1 y, then there exists z ∈ G such that

x = zyϕ1(z)−1 = zy(ψ ◦ ϕ2 ◦ ψ−1)(z)−1.

Applying ψ−1 to both sides gives us

ψ−1(x) = ψ−1(z)ψ−1(y)ϕ2(ψ−1(z))−1,

thus ψ−1(x) ∼ϕ2 ψ
−1(y). Hence the map

ψ̂ : R(ϕ1)→ R(ϕ2) : [x]ϕ1 7→ [ψ−1(x)]ϕ2

is a well-defined bijection, and then R(ϕ1) = R(ϕ2).

2.6 Dynamical zeta functions

Inspired by the Hasse-Weil zeta function of an algebraic variety over a finite
field, in [AM65] Artin and Mazur defined the zeta function of a map f : X → X
on a topological space X as
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Ff (z) := exp
∞∑
n=1

F (fn)
n

zn,

where F (fn) is the number of isolated fixed points of fn. For axiom A
diffeomorphisms on a compact manifold, this zeta function was shown to be
rational [Man71], while in general it need not be, see for example [BL70].

Definition 2.6.1. Let us use ζa(z) to denote a zeta function of the form

ζa(z) := exp
∞∑
n=1

an
n
zn.

We say that ζa(z) is determined by the sequence a = (an)n∈N.

We are particularly interested in when a zeta function ζa(z) is rational, since
this means that the infinite sequence of coefficients (an)n∈N is determined by a
finite set of complex numbers, i.e. the zeroes and poles of ζa(z).

When we say that a zeta function is rational, we actually mean that there
exists a positive radius of convergence on which the power series converges to a
rational function. The power series

∞∑
n=1

bn

n
zn = − log(1− bz),

with b ∈ C, has radius of convergence 1/|b| if b 6= 0 and converges on the entire
complex plane otherwise. The following lemma makes use of this to explicitly
give a link between the rationality and the zeroes and poles.

Lemma 2.6.2. A zeta function ζa(z) is a rational function if and only if there
exist complex numbers λ1, λ2, . . . , λk, µ1, µ2, . . . , µl such that

an =
l∑

j=1
µnj −

k∑
i=1

λni

for all n ∈ N. In particular, the numbers 1/λi and 1/µj are exactly the zeroes
and poles of ζa(z) respectively.

Proof. If ζa(z) is a rational function, it is of the form

ζa(z) =
∏k
i=1(1− λiz)∏l
j=1(1− µjz)

,
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since ζa(0) = 1. Taking the logarithmic derivative, we get

d

dz
log ζa(z) = d

dz
log

∏k
i=1(1− λiz)∏l
j=1(1− µjz)

= d

dz

 k∑
i=1

log(1− λiz)−
l∑

j=1
log(1− µjz)



= −
k∑
i=1

λi
1− λiz

+
l∑

j=1

µi
1− µiz

= −
k∑
i=1

∞∑
n=1

λni z
n−1 +

l∑
j=1

∞∑
n=1

µni z
n−1

=
∞∑
n=1

 l∑
j=1

µni −
k∑
i=1

λni

 zn−1,

which must equal

d

dz
log ζa(z) = d

dz

∞∑
n=1

an
n
zn =

∞∑
n=1

anz
n−1.

The converse follows from a direct calculation. In particular, the radius of
convergence r is given by

r = 1
max{|λ1|, . . . , |λk|, |µ1|, . . . , |µl|}

.

It is easy to prove the following corollary using this lemma.

Corollary 2.6.3. Consider two zeta functions

ζa(z) = exp
∞∑
n=1

an
n
zn, ξb(z) = exp

∞∑
n=1

bn
n
zn,

and their additive convolution

(ζa ∗ ξb)(z) := exp
∞∑
n=1

anbn
n

zn.

If ζa and ξb are rational, then so is ζa ∗ ξb.
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Inspired by the Artin-Mazur zeta function, Smale introduced the Lefschetz zeta
function [Sma67] as

Lf (z) := exp
∞∑
n=1

L(fn)
n

zn.

Smale immediately proved the following:

Theorem 2.6.4. Let f : X → X be a map on a compact polyhedron X. Then
the Lefschetz zeta function Lf of f is rational.

Proof. We know that

L(fn) =
dimX∑
i=0

(−1)i tr(fni,∗ : Hi(X,Q)→ Hi(X,Q)).

Since the homology groups Hi(X,Q) are finite-dimensional vector spaces over
Q and the f∗,i are linear maps, we may express the Lefschetz numbers L(fn) in
terms of the eigenvalues of fi,∗:

L(fn) =
∑
k

ank −
∑
l

bnl ,

where ak, bl ∈ C are the eigenvalues. The result now follows from lemma 2.6.2.

Fel’shtyn defined the Nielsen zeta function of a self-map f analogously as

Nf (z) := exp
∞∑
n=1

N(fn)
n

zn,

and proved that it has positive radius of convergence [Fel88; FP85]. Unlike the
Lefschetz zeta function, the Nielsen function need not be rational in general.
The question of whether or not a Nielsen zeta function is rational has been
studied recently in various papers, e.g. [DD15; DTV18; Fel01; Li94; Rom11].

In [Fel91], Fel’shtyn defined the Reidemeister zeta function of a self-map f as

Rf (z) := exp
∞∑
n=1

R(fn)
n

zn.

He also defined the same Reidemeister zeta function for Reidemeister numbers
of group endomorphisms.
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Definition 2.6.5. Let ϕ be an endomorphism of a group G, such that R(ϕn) <
∞ for all n ∈ N. Then we can define the Reidemeister zeta function of ϕ as

Rϕ(z) := exp
∞∑
n=1

R(ϕn)
n

zn.

Note that a Reidemeister zeta function of a self-map f or an endomorphism ϕ
only exists if the Reidemeister numbers R(fn) or R(ϕn) are finite for all n ∈ N.

Example 2.6.6 (see [FH94, Lemma 5]). Let G be a finite abelian group and
ϕ ∈ End(G). We call g ∈ G periodic if there exists some k ∈ N such that
ϕk(g) = g, and we define its ϕ-periodic orbit by

[g] := {g, ϕ(g), . . . , ϕk−1(g)}.

In example 2.5.8, we have shown that R(ϕn) = # Fix(ϕn). But an element
g ∈ G is a fixed point of ϕn if and only if it is periodic and #[g]|n, hence

R(ϕn) =
∑
[g]

#[g]|n

#[g].

We can then calculate the Reidemeister zeta function of ϕ as

Rϕ(z) = exp
∞∑
n=1

∑
[g]

#[g]|n

#[g]
n

zn

= exp
∑
[g]

∞∑
n=1

#[g]
#[g]nz

#[g]n

=
∏
[g]

exp
∞∑
n=1

1
n
z#[g]n

=
∏
[g]

exp
(
− log(1− z#[g])

)

=
∏
[g]

1
1− z#[g] ,

which is rational and has radius of convergence 1.
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Example 2.6.7 (see [Fel00, Lemma 15]). Let G = Zn for some n ≥ 1, and let
D ∈ Zn×n be an endomorphism. We know from example 2.5.9 that R(D) =
|det(1n −D)|∞. If λ1, . . . , λn are the eigenvalues of D, then

|det(1n −Dk)| =
n∏
i=1
|1− λki |.

We now consider 4 cases:

1. λi ∈ R and |λi| < 1. Then |1− λki | = 1k − λki .

2. λi ∈ R and λi < −1. Then |1− λki | = −(−1)k + (−λi)k.

3. λi ∈ R and λi > 1. Then |1− λki | = −1k + λki .

4. λi ∈ C \ R. Then its complex conjugate λ̄i is an eigenvalue of D as well,
and

|1− λki ||1− λ̄ki | = 1k − λki − λ̄ki + |λi|2k.

Thus, the product
∏n
i=1 |1− λki | can be expanded as a sum of terms of the form

±
(
λi1λi2 · · ·λip

)k with p ∈ {0, 1, . . . , n}. For the sake of brevity, we write

n∏
i=1
|1− λki | =

a∑
i=1

µki −
b∑
j=1

νkj

for certain µi, νj ∈ C. We can then calculate the Reidemeister zeta function of
ϕ as

Rϕ(z) = exp
∞∑
n=1

 a∑
i=1

µki −
b∑
j=1

νkj

 1
n
zn

= exp

 a∑
i=1

∞∑
n=1

µki
n
zn −

b∑
j=1

∞∑
n=1

νkj
n
zn



= exp

− a∑
i=1

log(1− µiz) +
b∑
j=1

log(1− νjz)



=
∏b
j=1(1− νjz)∏a
i=1(1− µiz)

,
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which is rational and has radius of convergence r given by

r = 1
max{|µ1|, . . . , |µa|, |ν1|, . . . , |νb|}

.

Applying corollary 2.6.3 to the previous two examples, we also find the following.
This result was obtained through different means in [Fel91, Theorem 2].

Example 2.6.8. Let G = Zn ⊕ τ(G) be a finitely generated abelian group and
ϕ ∈ End(G). From example 2.5.11, we know that R(ϕ) = R(ϕ|τ(G))R(ϕ′), with
ϕ′ the induced endomorphism on G/τ(G) ∼= Zn. But then Rϕ(z) is exactly
the convolution Rϕ|τ(G)(z) ∗ Rϕ′(z) of two rational functions, which must be
rational by corollary 2.6.3.

Combining corollary 2.6.3 with lemma 2.5.18, we obtain:

Corollary 2.6.9. Let G = G1 ×G2 be a direct product of groups, and consider
an endomorphism ϕ of the form ϕ = ϕ1×ϕ2. If Rϕ1(z) and Rϕ2(z) are rational,
then so is Rϕ(z).

Finally, let us end this chapter with some examples about the existence of
Reidemeister zeta functions:

Example 2.6.10. Let G = Z, whose endomorphisms ϕm are completely
determined by ϕm(1) = m. From example 2.6.7, we can see that the
Reidemeister zeta function Rϕm(z) will exist if and only if m /∈ {−1, 1}, or in
other words when ϕm is not an automorphism. We separate three cases:

• m = 0, then Rϕm(z) = 1
1−z ;

• m < −1, then Rϕm(z) = 1+z
1+mz ;

• m > 1, then Rϕm(z) = 1−z
1−mz .

Example 2.6.11. Let G = Zn for n ≥ 2. From example 2.6.7 we can see that
the Reidemeister zeta function RD(z) of an endomorphism D ∈ Zn×n will exist
if and only if D has no roots of unity as eigenvalues.

In contrast to the one-dimensional case, we have that for any n ≥ 2 there exists
an automorphism D ∈ GLn(Z) such that its Reidemeister zeta function RD(z)
exists. Let M2 ∈ GL2(Z) and M3 ∈ GL3(Z) be the matrices

M2 :=
(

0 1
1 1

)
, M3 :=

0 0 1
1 0 1
0 1 0

 ,
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neither of which have roots of unity as eigenvalues. Thus, depending on whether
n is even or odd, take D to be

D =


M2

M2
. . .

M2

 or D =


M2

M2
. . .

M2
M3


respectively. Then RD(z) exists.





Chapter 3

Almost-crystallographic
groups and infra-nilorbifolds

Almost-crystallographic groups are generalisations of crystallographic groups,
a family of groups well understood by the so-called Bieberbach theorems.
The almost-crystallographic groups arise as the fundamental groups of infra-
nilorbifolds (almost flat orbifolds), and similarly the torsion-free almost-
crystallographic groups, which are also called almost-Bieberbach groups, are
the fundamental groups of the infra-nilmanifolds (almost flat manifolds). This
allows an algebraic study of these spaces and their topological properties.

For more information on crystallographic groups and almost-crystallographic
groups, we refer to [Szc12] and [Dek96] respectively. For information on compact
flat manifolds and infra-nilmanifolds we refer to [Cha86] and [Dek18].

3.1 Nilpotent groups

For an arbitrary group G, we can define the k-fold commutator group γk(G)
inductively as

γ1(G) := G and γk+1(G) := [G, γk(G)].

Definition 3.1.1. The lower central series of a group G is the series of groups

G = γ1(G) ≥ γ2(G) ≥ · · · ≥ γk(G) ≥ · · ·

45
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If this series eventually becomes the trivial group, i.e. for some c ∈ N we have
γc(G) 6= 1 and γc+1(G) = 1, then we call G nilpotent. We say G has nilpotency
class c, and if c = 1 that G is abelian.

Example 3.1.2. The discrete Heisenberg group H3(Z) is defined as

H3(Z) := 〈a, b, c | [a, b] = c, [a, c] = 1, [b, c] = 1〉.

Its lower central series is given by

H3(Z) ≥ 〈c〉 ≥ 1,

hence H3(Z) has nilpotency class 2.

Proposition 3.1.3. The k-fold commutator groups γk(G) are fully char-
acteristic subgroups, i.e. for every ϕ ∈ End(G), ϕ(γk(G)) ⊆ γk(G).
Hence any endomorphism (automorphism) of G restricts to an endomorphism
(automorphism) of γk(G).

Corollary 3.1.4. Let G be a group and ϕ ∈ End(G) (Aut(G)). Then ϕ induces
an endomorphism (automorphism) (ϕ)k on γk(G)/γk+1(G).

While the k-fold commutator groups behave very well under endomorphisms,
they will sometimes not have the properties we require. In order to rectify this,
we first need to introduce the concept of isolators.

Definition 3.1.5. Let G be a group. For a subgroup H ≤ G, the isolator of
H in G is defined as

G
√
H = {g ∈ G | ∃n ∈ N : gn ∈ H}.

In general, the isolator of a subgroup H ≤ G need not be a subgroup itself, for
example the isolator of the trivial group is the set of torsion elements τ(G). The
isolators of k-fold commutator subgroups, however, satisfy some nice properties.

Lemma 3.1.6 (see [Dek96, Lemma 1.1.2 and Lemma 1.1.4]). Let G be a group.
Then

(i) ∀k ∈ N : G
√
γk(G) is a fully characteristic subgroup of G.

(ii) ∀k ∈ N : G/ G
√
γk(G) is torsion-free.

(iii) ∀k, l ∈ N : [ G
√
γk(G), G

√
γl(G)] ≤ G

√
γk+l(G).

(iv) ∀k, l ∈ N with l ≥ k: if N := G
√
γl(G), then

G/N
√
γk(G/N) = G

√
γk(G)/N.
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These properties allow us to define a new central series composed of isolators of
k-fold commutators.

Definition 3.1.7. The adapted lower central series of a group G is given by

G = G
√
γ1(G) ≥ G

√
γ2(G) ≥ · · · ≥ G

√
γk(G) ≥ · · ·

The adapted lower central series of a group G will eventually terminate if and
only if G is a torsion-free, nilpotent group. The main advantage of using this
central series over the lower central series is that the factors are torsion-free.

Proposition 3.1.8. All factors G
√
γk(G)/ G

√
γk+1(G) in the adapted lower

central series are torsion-free.

Proof. First note that G/ G
√
γk+1(G) is a torsion-free group for any k ∈ N. Since

G
√
γk(G)/ G

√
γk+1(G) is a subgroup of this group, it is torsion-free as well.

3.1.1 Finitely generated, torsion-free, nilpotent groups

We are particularly interested in the case where G is a finitely generated, torsion-
free, nilpotent group. These groups are the nilpotent generalisations of the free
abelian groups Zn.

Proposition 3.1.9. Let G be a finitely generated, torsion-free, nilpotent group.
Then the factors of the (adapted) lower central series are finitely generated,
(torsion-free), abelian groups, i.e. for all k ∈ N we have

γk(G)
γk+1(G)

∼= Znk ⊕ Fk,

G
√
γk(G)

G
√
γk+1(G)

∼= Znk ,

for some nk ∈ N and some finite, abelian group Fk.

Example 3.1.10. Fix some k ∈ N and consider the finitely generated, torsion-
free, nilpotent group

N := 〈a, b, c | [a, b] = ck, [a, c] = 1, [b, c] = 1〉.
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We find that γ2(N) = 〈ck〉, N
√
γ2(N) = 〈c〉 and γ3(N) = N

√
γ3(N) = 1. Thus,

the lower central series has factors

N

γ2(N)
∼= 〈a, b, c | [a, b] = 1, [a, c] = 1, [b, c] = 1, ck = 1〉 ∼= Z2 ⊕ Zk,

γ2(N)
γ3(N)

∼= 〈ck〉 ∼= Z.

The adapted lower central series, however, has factors

N
N
√
γ2(N)

∼= 〈a, b | [a, b] = 1〉 ∼= Z2,

N
√
γ2(N)

N
√
γ3(N)

∼= 〈c〉 ∼= Z.

Definition 3.1.11. A group G is called polycyclic if and only if it admits a
series of subgroups

G = G0 ≥ G1 ≥ · · · ≥ Gn−1 ≥ Gn = 1,

such that Gi+1 / Gi and the factors Gi/Gi+1 are cyclic. The number of infinite
cyclic factors in this series is called the Hirsch length h(G) of the group G.

Example 3.1.12. The discrete Heisenberg group

H3(Z) := 〈a, b, c | [a, b] = c, [a, c] = 1, [b, c] = 1〉

has the series of subgroups

H3(Z) ≥ 〈b, c | [b, c] = 1〉 ≥ 〈c〉 ≥ 1,

for which every factor is isomorphic to Z. Thus H3(Z) is polycyclic and has
Hirsch length 3.

Theorem 3.1.13 (see [KM79, Theorem 17.2.2]). Finitely generated, torsion-
free, nilpotent groups are poly-Z, i.e. they are of the form

(((Z o Z) o Z) · · · ) o Z.

Corollary 3.1.14. A finitely generated, torsion-free, nilpotent group is
polycyclic.
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3.1.2 Free nilpotent groups

Definition 3.1.15. The free nilpotent group Nr,c of rank r > 1 and nilpotency
class c is the quotient

Nr,c := Fr
γc+1(Fr)

,

where Fr is the free group on r generators.

We excluded the case r = 1 from the definition above. If r = 1, then Fr = Z,
and hence γk(Fr) = 1 for all k ≥ 2. Therefore N1,c = F1/γc+1(F1) = F1 for all
c, which means this group has nilpotency class 1 and not c.
Example 3.1.16. The following are examples of free nilpotent groups.

(1) For any r ∈ N, the free nilpotent group Nr,1 is isomorphic to Zr.

(2) The free nilpotent group N2,2 is isomorphic to the discrete Heisenberg
group H3(Z) from example 3.1.12.

Free nilpotent groups have the nice property that their lower central series
coincides with their adapted lower central series, hence the factors of the lower
central series are torsion-free. The following proposition makes this more exact.
Proposition 3.1.17. Let Nr,c be the free nilpotent group of rank r and
nilpotency class c. Then the factors of its lower central series, i.e. the groups

γk(Nr,c)
γk+1(Nr,c)

are isomorphic to Znk , where

nk = 1
k

∑
d|k

µ(d)rk/d,

with µ the Möbius function:

µ(d) =


1 if d = 1,
0 if d is not square-free,
(−1)n if d is the product of n distinct primes.

(3.1)

We will skip the proof of this proposition, but the formula for nk will follow
from proposition 3.2.29 later in this thesis. In particular, one finds the following:
Corollary 3.1.18. The Hirsch length of a free nilpotent group Nr,c is given by

h(Nr,c) =
c∑

k=1

1
k

∑
d|k

µ(d)rk/d,
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3.2 Lie groups and Lie algebras

In this section, we give a concise summary of the theory of Lie groups and Lie
algebras, with a focus on nilpotent Lie groups and algebras.

Definition 3.2.1. A Lie group G is a smooth manifold equipped with a group
structure, such that the maps

G×G→ G : (g1, g2) 7→ g1g2,

G→ G : g 7→ g−1,

are smooth.

Definition 3.2.2. A subgroup H of a Lie group G is called a Lie subgroup
if it is equipped with a manifold structure that makes it a Lie group and the
inclusion map H ↪→ G is an immersion.

Let us consider some standard examples:

Example 3.2.3. The real numbers R give rise to many examples of Lie groups.

(1) The n-dimensional real space Rn with addition and its natural manifold
structure is a Lie group.

(2) The non-zero real numbers R0 with multiplication and the positive real
numbers R+ with multiplication both form a Lie group.

(3) GLn(R) inherits a manifold structure when seen as a subset of Rn2 , and
forms a Lie group when we consider matrix multiplication as its operation.

(4) The Heisenberg group H3(R), defined as

H3(R) :=


1 x y

0 1 z
0 0 1

 | x, y, z ∈ R

 ,

is a Lie subgroup of GL3(R).

Definition 3.2.4. A Lie group morphism f : G→ H is a smooth map that is
also a group morphism. If f is bijective and f−1 is a Lie group morphism as
well, then f is called a Lie group isomorphism.

Note that it would suffice to define a Lie group morphism as a continuous group
morphism between Lie groups, since any such map is automatically smooth, see
for example [Fer98, Theorem 3.7.1].



LIE GROUPS AND LIE ALGEBRAS 51

Example 3.2.5. The following are examples of Lie group morphisms.

(1) If H is a Lie subgroup of a Lie group G, then the inclusion map H ↪→ G
is an injective Lie group morphism.

(2) If G is a Lie group and g ∈ G, then the inner automorphism

ιg : G→ G : h 7→ ghg−1

is a Lie group automorphism.

(3) The determinant map

det : GLn(R)→ R0 : M 7→ detM

is a surjective Lie group morphism.
Definition 3.2.6. A Lie algebra g is a vector space equipped with a bilinear
map

[., .] : g× g→ g : (X,Y ) 7→ [X,Y ]
called the Lie bracket, which satisfies:

Alternativity
For all X ∈ g:

[X,X] = 0.

Jacobi identity
For all X,Y, Z ∈ g:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.
Example 3.2.7. The following are examples of Lie algebras.

(1) Any vector space V becomes an abelian Lie algebra if we equip it with
the trivial Lie bracket, i.e. [X,Y ] = 0 for all X,Y ∈ V , e.g. Rn.

(2) Any associative algebra A becomes a Lie algebra if we equip it with the
Lie bracket

[a, b] = ab− ba,
e.g. the n× n-matrices over the real numbers Rn×n equipped with this
Lie bracket form a Lie algebra, which is usually denoted by gln(R).

Definition 3.2.8. If g and h are Lie algebras and φ : g → h is a linear map,
then φ is called a Lie algebra morphism if and only if

φ([X,Y ]) = [φ(X), φ(Y )]

for all X,Y ∈ g. If φ is bijective, it is called a Lie algebra isomorphism.



52 ALMOST-CRYSTALLOGRAPHIC GROUPS AND INFRA-NILORBIFOLDS

Example 3.2.9. The following are examples of Lie algebra morphisms.

(1) If V,W are vector spaces equipped with the trivial Lie bracket, then any
linear map V →W is a Lie algebra morphism.

(2) The trace map
tr : gln(R)→ R : M 7→ trM

is a Lie algebra morphism.

There is a very close connection between Lie groups and Lie algebras. Let G be
a Lie group with identity 1G, and define g as the tangent space at 1G, i.e.

g := T1GG.

An inner automorphism ιg of G is a Lie group isomorphism that fixes 1G, and
hence induces an automorphism (ιg)∗ on g. Define

Ad : G→ GL(g) : g 7→ (ιg)∗,

which is a smooth map and hence induces a linear map between the tangent
spaces:

Ad∗ : g→ Tid GL(g).

Now note that GL(g) is an open subset of Λ(g, g), the vector space of linear
self-maps on g. Thus, we may identify Tid GL(g) with TidΛ(g, g) = Λ(g, g). Now
define

ad = Ad∗ : g→ Λ(g, g).

Proposition 3.2.10. Let G be a Lie group with identity 1G and g its tangent
space at 1G. If we define a Lie bracket by

[., .] : g× g→ g : (X,Y ) 7→ [X,Y ] = ad(X)(Y ),

then g equipped with this bracket is a Lie algebra, called the Lie algebra associated
to G.

Example 3.2.11. The following are examples of Lie algebras associated to Lie
groups.

(1) Rn is the Lie algebra associated to the Lie group Rn.

(2) R is the Lie algebra associated to both of the Lie groups R0 and R+.

(3) gln(R) is the Lie algebra associated to GLn(R).
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A Lie group morphism f : G→ H must map 1G to 1H , and therefore induces a
map f∗ : T1GG→ T1HH. But these tangent spaces are exactly the associated
Lie algebras, and f∗ will actually be a Lie algebra morphism.

Definition 3.2.12. Let G,H be Lie groups with associated Lie algebras g, h
respectively. A Lie group morphism f : G→ H induces a Lie algebra morphism
f∗ : g→ h called the Lie algebra morphism induced by f .

Proposition 3.2.13. Let G be a Lie group with associated Lie algebra g. For
any X ∈ g, there exists a unique Lie group morphism ϕX : R → G such that
(ϕX)∗(1) = X.

Definition 3.2.14. Let G be a Lie group with associated Lie algebra g. We
define the exponential map as

exp : g→ G : X 7→ ϕX(1).

Lemma 3.2.15. Let G,H be Lie groups with associated Lie algebras g, h
respectively. Let f : G → H be a Lie group morphism inducing a Lie algebra
morphism f∗ : g→ h, then the following diagram commutes:

G H

g h

f

f∗

exp exp

Example 3.2.16. The following are examples of exponential maps.

(1) The exponential map from the Lie algebra Rn to the Lie group Rn is the
identity map.

(2) The exponential map from the Lie algebra R to the Lie group R0 is the
usual exponential map, and similarly for the Lie group R+.

(3) The exponential map from the Lie algebra gln(R) to the Lie group GLn(R)
is given by

exp : gln(R)→ GLn(R) : M 7→
∞∑
i=0

M i

i! . (3.2)

Also note that the induced morphism by the determinant map is exactly
the trace map, i.e.

det(expM) = exp(trM).
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(4) The Lie algebra h associated to the Heisenberg group H3(R) defined in
example 3.2.3(4) is given by

h :=


0 x y

0 0 z
0 0 0

 | x, y, z ∈ R

 .

Since M3 = 0 for any matrix M ∈ h, the exponential map from eq. (3.2)
reduces to

exp : h→ H3(R) : M 7→ 1+M + M2

2 ,

or equivalently,

exp : h→ H3(R) :

0 x y
0 0 z
0 0 0

 7→
1 x y + xz

2
0 1 z
0 0 1

 .

3.2.1 Nilpotent Lie groups and Lie algebras

We have already defined what a nilpotent group is, hence we can consider
nilpotent Lie groups. Let us define nilpotency for a Lie algebra g with Lie
bracket [., .]. We define γk(g) inductively as

γ1(g) := g and γk+1(g) := [g, γk(g)].

Definition 3.2.17. A Lie algebra g is called nilpotent if its lower central series

g = γ1(g) ≥ γ2(g) ≥ · · · ≥ γk(g) ≥ · · ·

eventually becomes trivial, i.e. for some c ∈ N we have γc(g) 6= {0} and
γc+1(g) = {0}. We then say g has nilpotency class c, and if c = 1 that g is
abelian.

Clearly, the definitions of nilpotency for a Lie group (definition 3.1.1) and a Lie
algebra (definition 3.2.17) are very similar. Knowing the connection between
a Lie group and its associated Lie algebra, it is natural to assume that there
must be some connection between their respective lower central series. This is
indeed the case:

Theorem 3.2.18 (see [Hoc65, Theorem XII.3.1]). Let G be a connected,
nilpotent Lie group with associated Lie algebra g. Every term γk(G) of the lower
central series of G will be a Lie subgroup of G and have γk(g) as its associated
Lie algebra. Thus, g is also nilpotent and its nilpotency class coincides with
that of G.
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Let us now focus on connected, simply connected, nilpotent Lie groups.

Theorem 3.2.19. Let G be a connected, simply connected, nilpotent Lie group
with associated Lie algebra g. Equipping g with the natural manifold structure,
the exponential map exp : g→ G is a diffeomorphism.

Example 3.2.20. The exponential map from R to R0 (which is not
connected) is not surjective, however, the exponential map from R to R+

is a diffeomorphism.

Definition 3.2.21. Let G be a connected, simply connected, nilpotent Lie
group with associated Lie algebra g. We may define the logarithmic map
log : G→ g as the inverse of the exponential map.

Example 3.2.22. The following are examples of logarithmic maps.

(1) The logarithmic map from the Lie group Rn to the Lie algebra Rn is the
identity map.

(2) The logarithmic map from the Lie group R+ to the Lie algebra R is the
usual logarithmic map.

(3) The logarithmic map from the Heisenberg group H3(R) to its associated
Lie algebra h is given by

log : H3(R)→ h : M 7→ (M − 1)− (M − 1)2

2 ,

or equivalently,

log : H3(R)→ h :

1 x y
0 1 z
0 0 1

 7→
0 x y − xz

2
0 0 z
0 0 0

 .

Proposition 3.2.23. Let G,H be connected, simply connected, nilpotent Lie
groups with associated Lie algebras g, h respectively. If φ : g→ h is a Lie algebra
morphism, then there exists a (unique) Lie group morphism f : G → H such
that f∗ = φ.

3.2.2 Lattices in nilpotent Lie groups

Lattices of connected, simply connected, nilpotent Lie groups are a vital
ingredient in the definition of (almost-)crystallographic groups.
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Definition 3.2.24. Let G be a connected, simply connected, nilpotent Lie
group. A lattice of G is a discrete, cocompact subgroup N of G. The compact
quotient space N\G is called a nilmanifold and its fundamental group is exactly
N .

Note that the dimension of the manifold N\G will coincide with the Hirsch
length h(N) of N .

Theorem 3.2.25 (see [Mal51; Rag72]).

(1) A lattice of a connected, simply connected, nilpotent Lie group must be a
finitely generated, torsion-free, nilpotent group.

(2) Conversely, if N is a finitely generated, torsion-free, nilpotent group, then
there exists a unique (up to isomorphism) connected, simply connected,
nilpotent Lie group G such that N is a lattice of G. This G is called the
Mal’cev completion of N .

(3) If ϕ is an endomorphism (automorphism) of a finitely generated, torsion-
free, nilpotent group N , then ϕ extends uniquely to a Lie group
endomorphism (automorphism) ϕ̃ : G → G of the Mal’cev completion
G of N .

3.2.3 Free Lie algebras and free nilpotent Lie algebras

In what follows, we will define a so-called Hall basis of a free (nilpotent) Lie
algebra. More details (and a more formal treatment) can be found in e.g. [Ser92,
Chapter IV].

Definition 3.2.26. The free Lie algebra fr is the Lie algebra generated by r
elements X1, X2, . . . , Xr, on whose Lie bracket we only impose the relations of
alternativity and the Jacobi identity.

Note that this does not mean that r is the dimension of the vector
space underlying fr. For example, the element [X1, X2] is not spanned by
X1, X2, . . . , Xr.

A Hall basis H of fr is a vector space basis of fr that is totally ordered, and
which is constructed inductively as a union H = ∪n∈NHn with Hn consisting of
n-fold Lie brackets, according to the following rules:

• H1 := {X1, X2, . . . , Xr}, and the order is given by X1 < X2 < · · · < Xr.
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We now proceed inductively: let n ≥ 2 and assume that Hk has been defined
for all k < n and that ∪n−1

k=1Hk has been given a total order.

• We define Hn as the set of elements of the form [Y,Z] with Y ∈ Hk,
Z ∈ Hl where

– k + l = n,
– Y < Z,
– if Z = [Z1, Z2] for some Z1 ∈ Hl1 , Z2 ∈ Hl2 , then Z1 ≤ Y .

• We extend the order on ∪n−1
k=1Hk to an order on ∪nk=1Hk by choosing any

total order on Hn, and setting X < Y for all X ∈ Hk, Y ∈ Hn with k < n.
Example 3.2.27. The elements of H2 are of the form

[Xi, Xj ], with 1 ≤ i < j ≤ r.

The elements of H3 are of the form

[Xi, [Xj , Xk]], with 1 ≤ j < k ≤ r and 1 ≤ j ≤ i ≤ r.

The elements of H4 depend on the choice of ordering we took for the elements
of H2.

In a way similar to how we defined free nilpotent groups as quotients of free
groups, we can define free nilpotent Lie algebras.
Definition 3.2.28. Let fr be the free Lie algebra with r generators. For any
c ≥ 1, the quotient

gr,c := fr
γc+1(fr)

is a Lie algebra of nilpotency class c called the free nilpotent Lie algebra of rank
r and nilpotency class c.

Let Gr,c be the Mal’cev completion of Nr,c, the free nilpotent group of rank r
and nilpotency class c. Then the Lie algebra corresponding to Gr,c is exactly
the free nilpotent Lie algebra gr,c. If H = ∪n∈NHn is a Hall basis of fr, then the
natural projections of the elements of length at most c (i.e. H1 ∪H2 ∪ · · · ∪Hc)
form a basis of gr,c, which we also call a Hall basis.
Proposition 3.2.29 (see [Wit37, Satz 3]). Let H = ∪ck=1Hk be a Hall basis
of gr,c and let k ≤ c. The dimension of γk(gr,c)/γk+1(gr,c) is given by

#Hk = 1
k

∑
d|k

µ(d)rk/d,

with µ the Möbius function from eq. (3.1).
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3.3 Crystallographic groups

The class of almost-crystallographic groups is a natural generalisation of the class
of crystallographic groups, hence, let us start with exploring the crystallographic
groups. Let Rn be the Euclidean space, and denote the set of isometries on this
space by Isom(Rn). Any isometry can be seen as a map

Rn → Rn : x 7→ Ax+ a,

with A ∈ O(n) and a ∈ Rn. Thus, we can identify this isometry with an element
(a,A) ∈ Rn×O(n). In particular, the composition of two elements (a,A), (b, B)
is the map

Rn → Rn : x 7→ A(Bx+ b) + a = ABx+Ab+ a,

hence (a,A)(b, B) = (Ab+a,AB), and thus Isom(Rn) is actually the semidirect
product group Rn o O(n). Similarly, we can see that the affine group Aff(Rn)
is the semidirect product Rn oGLn(R), and clearly Isom(Rn) ⊆ Aff(Rn). Note
that the groups Isom(Rn) and Aff(Rn) are both Lie groups.

Definition 3.3.1. An n-dimensional crystallographic group is a discrete,
cocompact subgroup of Isom(Rn). A Bieberbach group is a torsion-free
crystallographic group.

Example 3.3.2. We list some examples of crystallographic groups.

(1) We may identify Zn with the subgroup Zn × {1n} of Isom(Rn), which is
an n-dimensional Bieberbach group.

(2) Consider the group generated by the isometries

a := (
(

1
0

)
,

(
1 0
0 1

)
),

b := (
(

0
1
2

)
,

(
−1 0
0 1

)
).

This is a two-dimensional Bieberbach group, and can be presented by〈
a, b | ab = ba−1〉 .

(3) The semidirect product ZoZ2, where Z2 = {−1, 1} acts on Z by (±1)·x =
±x, is isomorphic to the subgroup of Isom(R) generated by (1, 1) and
(0,−1). This is a one-dimensional crystallographic group that is not
torsion-free, and is isomorphic to the infinite dihedral group D∞ and the
free product Z2 ∗ Z2.



CRYSTALLOGRAPHIC GROUPS 59

3.3.1 Bieberbach theorems

The structure of crystallographic groups is described by the so-called Bieberbach
theorems which were proved by Bieberbach and Frobenius [Bie11; Bie12; Fro11].

Theorem 3.3.3 (First Bieberbach theorem). Let Γ ⊆ Isom(Rn) be an n-
dimensional crystallographic group. Then the group of translations N := Γ∩Rn
is a lattice of Rn and has finite index in Rn.

Being a lattice in Rn implies being isomorphic to Zn. In particular, this means
a crystallographic group fits in a short exact sequence

1 Zn Γ F 1i

with i(Zn) maximal abelian in Γ and F finite. We call F the holonomy group
of Γ. This short exact sequence induces a faithful representation ρ : F →
Aut(Zn) = GLn(Z) called the holonomy representation, meaning that we can
see F as a finite subgroup of GLn(Z). Also note that i(Zn) being maximal
abelian implies it is a characteristic subgroup of Γ, though it is not necessarily
a fully characteristic subgroup.

Example 3.3.4. Consider the crystallographic group Γ generated by

a :=
((

1
0

)
,

(
1 0
0 1

))
, b :=

((
0
1

)
,

(
1 0
0 1

))
, c :=

((
0
0

)
,

(
1 0
0 −1

))
.

The map ϕ defined by ϕ(a) = c and ϕ(b) = ϕ(c) = 1 is an endomorphism of Γ
that does not leave the translation subgroup invariant.

In [Zas48], Zassenhaus proved the following converse to the first Bieberbach
theorem.

Theorem 3.3.5. Let G be any group that fits in a short exact sequence as
above, where F is finite and i(Zn) is maximal abelian in G. Then there exists an
embedding j : G→ Isom(Rn) such that j(G) is an n-dimensional crystallographic
group.

The second Bieberbach theorem describes the structure of isomorphisms between
crystallographic groups.

Theorem 3.3.6 (Second Bieberbach theorem). Let Γ,Γ′ be n-dimensional
crystallographic groups and ϕ : Γ→ Γ′ be an isomorphism. Then there exists
some δ ∈ Aff(Rn) such that

ϕ(γ) = δγδ−1
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for all γ ∈ Γ, i.e. ϕ is the restriction to Γ of some inner automorphism ιδ of
Aff(Rn).

Since the translation subgroup of a crystallographic group Γ is isomorphic to
Zn and the holonomy group is isomorphic to a subgroup of GLn(Z), there
exists a finite set of vectors a1, a2, . . . , ak ∈ Rn and a finite set of matrices
A1, A2, . . . , Ak ∈ GLn(Z) such that

Γ ∼= 〈(Zn,1n), (a1, A1), (a2, A2), . . . , (ak, Ak)〉,

F ∼= 〈A1, A2, . . . , Ak〉.

The group Γ′ generated by Zn and the set {(a1, A1), (a2, A2), . . . , (ak, Ak)} is
isomorphic to Γ, but may no longer be a subgroup of Isom(Rn). We will also
call such Γ′ ⊆ Aff(Rn) with translation subgroup Zn a crystallographic group,
and remark that Γ′ is conjugate to Γ inside Aff(Rn).

While we lose the geometric aspect of being a group of isometries, this allows
us to restate the second Bieberbach theorem in the following (helpful) way.

Proposition 3.3.7. Let Γ be an n-dimensional crystallographic group whose
translation subgroup is exactly Zn and whose holonomy group F is a subgroup of
GLn(Z). Let ϕ ∈ Aut(Γ) be an automorphism. Then there exist some d ∈ Rn,
D ∈ NGLn(Z)(F ) such that

ϕ(γ) = (d,D)γ(d,D)−1

for all γ ∈ Γ.

Proof. Γ is conjugate (in Aff(Rn)) to a crystallographic group Γ′ ⊆ Isom(Rn),
hence from the second Bieberbach theorem, we know that there exist d ∈ Rn,
D ∈ GLn(R) such that ϕ(γ) = (d,D)γ(d,D)−1 for all γ ∈ Γ. Because Zn is a
characteristic subgroup of Γ, ϕ induces an automorphism ϕ′ : F → F : A 7→
DAD−1, and therefore D ∈ NGLn(Z)(F ).

This normaliser NGLn(Z)(F ) gives us information about the (in)finiteness of the
outer automorphism group Out(Γ).

Theorem 3.3.8 (see [Szc12, Section 5.1]). Let Γ be an n-dimensional
crystallographic group whose translation subgroup is exactly Zn and whose
holonomy group F is a subgroup of GLn(Z). Then #NGLn(Z)(F ) =∞ if and
only if # Out(Γ) =∞.



CRYSTALLOGRAPHIC GROUPS 61

Let us now agree on some notation. If Γ is a crystallographic group with
holonomy group F ⊆ GLn(Z), and ϕ ∈ Aut(Γ) is conjugation by (d,D) ∈
Aff(Rn), we set:

NF := NGLn(Z)(F ),

ξ(d,D) := Γ→ Γ : γ 7→ (d,D)γ(d,D)−1.

The third Bieberbach theorem talks about the finiteness of the number of
crystallographic groups.
Theorem 3.3.9 (Third Bieberbach theorem). For any n ∈ N, there are (up to
isomorphism) only finitely many n-dimensional crystallographic groups.

The crystallographic groups have been classified up to dimension 6. In table 3.1
we give the number of crystallographic groups and Bieberbach groups in every
(known) dimension. We also mention the number of crystallographic groups
with finite outer automorphism group, as this property will be crucial later in
this thesis.

dim # cryst. groups # with #NF <∞ # Bieberbach groups
1 2 2 1
2 17 15 2
3 219 204 10
4 4 783 4 388 74
5 222 018 204 768 1 060
6 28 927 915 26 975 265 38 746

Table 3.1: Number of crystallographic groups

The 2-dimensional groups were classified by Fedorov and Pólya [Fed91; Pól24],
the 3-dimensional groups by Barlow, Fedorov and Schönflies [Bar94; Fed91;
Sch91], the 4-dimensional groups by Brown, Bülow, Neubüser, Wondratscheck
and Zassenhaus [Bro+78] and the 5- and 6-dimensional groups by Plesken and
Schulz [PS00], who made use of CARAT [Car06].

3.3.2 Flat manifolds and orbifolds

There is a geometrical interpretation of crystallographic groups.
Proposition 3.3.10. Let Γ be an n-dimensional crystallographic group. Then
Γ (as a subgroup of Aff(Rn)) acts on Rn, and this action has the following
properties:
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• Γ acts properly discontinuously on Rn, i.e.

#{γ ∈ Γ | γ ·K ∩K 6= ∅} <∞

for any compact subset K ⊆ Rn.

• Γ acts cocompactly on Rn, i.e. the orbit space Γ\Rn is compact.

• The action of Γ on Rn is free if and only if Γ is torsion-free.

In particular, this means that Γ\Rn is a compact topological space, and the
manifold structure from Rn induces a manifold (orbifold) structure on Γ\Rn
if Γ is a Bieberbach (crystallographic) group, and the (orbifold) fundamental
group is exactly Γ.
Remark 3.3.11. Note that it is important that we talk about the orbifold
fundamental group and not the usual topological fundamental group when Γ is
not torsion-free. It can be proven that the topological fundamental group of
Γ\Rn is exactly Γ/〈τ(Γ)〉, whereas the orbifold fundamental group is Γ.

Moreover, because Γ (as a subgroup of Isom(Rn)) acts on Rn by isometries,
the (flat) Riemannian metric on Rn induces a metric on Γ\Rn. Thus, Γ\Rn
is a compact, flat manifold (orbifold). The converse is also true: any flat
manifold (orbifold) can be obtained as a quotient Γ\Rn with Γ a Bieberbach
(crystallographic) group.
Example 3.3.12. Consider the crystallographic groups from example 3.3.2.

(1) Zn\Rn is the n-dimensional (flat) torus, the direct product of n copies of
the circle S1.

(2) If Γ ∼= 〈a, b | ab = ba−1〉, then Γ\R2 is the Klein bottle.

(3) If Γ = Z o Z2, then Γ\R is a closed interval.

This allows us to interpret the second and third Bieberbach theorems
geometrically. The second Bieberbach theorem states that, up to affine
equivalence, a flat manifold (orbifold) is completely determined by its (orbifold)
fundamental group. The third Bieberbach theorem states that for any dimension
n ∈ N, there are only finitely many compact, flat manifolds (orbifolds).

3.3.3 Generalised Hantzsche-Wendt groups and manifolds

A subclass of the Bieberbach groups that has received special attention, is
the class of (generalised) Hantzsche-Wendt groups, see for example [DDM04;
DHS09; DP09; MR99b; RS05].
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Definition 3.3.13. An n-dimensional Bieberbach group Γ with holonomy
group isomorphic to Zn−1

2 is called a generalised Hantzsche-Wendt group, or
GHW group. If Γ is orientable, i.e. det(A) = 1 for every A ∈ F , it is called a
Hantzsche-Wendt group, or HW group.

The corresponding flat manifolds are generalised Hantzsche-Wendt manifolds,
or Hantzsche-Wendt manifolds if they are orientable.

Example 3.3.14. The (classical) Hantzsche-Wendt group is the Bieberbach
group generated by the isometries

(

 1
2
0
0

 ,

1 0 0
0 −1 0
0 0 −1

), (

0
1
21
2

 ,

−1 0 0
0 1 0
0 0 −1

).

The corresponding flat manifold is called the Hantzsche-Wendt manifold [HW35].
In fact, it is the only Hantzsche-Wendt group of dimension 3.

Theorem 3.3.15 (See [RS05, Section 2]). A Hantzsche-Wendt group is
necessarily of odd dimension.

We need the following theorem to provide a nice presentation of a GHW group.

Theorem 3.3.16 (see [RS05, Theorem 3.1]). Let Γ be an n-dimensional GHW
group. Then there exists a presentation of Γ such that for every A ∈ F , A is a
diagonal matrix.

Definition 3.3.17. We say that a HW group is in standard form if it is
generated by Zn and (a1, A1), . . . , (an, An) where Ai is the diagonal matrix
with 1 on the i-th place and −1 on the other places, and where ai ∈ {0, 1/2}n.

Every HW group is isomorphic to a HW group in standard form, hence from
now on we will always assume that a HW group is in standard form. Let Γ be
a Hantzsche-Wendt group with standard generators (a1, A1), . . . , (an, An). We
define the n× n-matrix A as

A := (aij)ij ,

where aij is the j−th coordinate of ai. This is called the matrix associated to a
HW group.

Example 3.3.18. The Hantzsche-Wendt group with the generators given in
example 3.3.14 is in standard form with associated matrix 1

2 0 1
2

0 1
2

1
2

0 1
2

1
2

 .
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One can then consider the problem of which matrices with entries in {0, 1/2}
are associated matrices of HW groups. The following proposition provides a
necessary and sufficient condition for this.
Proposition 3.3.19 (see [MR99b, Proposition 1.2]). Consider the crystallo-
graphic group Γ = 〈Zn, (a1, A1), . . . , (an, An)〉, with n odd, Ai as before and
ai ∈ {0, 1/2}n. Then Γ is a HW group if and only if, for any I ( {1, 2, . . . , n}
with #I odd we have:

∃j ∈ I : #{i ∈ I | aij = 1/2} is odd.
In particular, for each fixed j, we have that ajj = 1/2 and #{i | aij = 1/2} is
even.

This was used by Miatello en Rossetti to classify the Hantzsche-Wendt groups
up to dimension 7 in [MR99a].

3.4 Almost-crystallographic groups

In this section, we generalise the previous section by going from abelian groups
to nilpotent groups. Let G be a connected, simply connected, nilpotent Lie
group. We define Aff(G) as the semidirect product Aff(G) = GoAut(G) where
multiplication is defined by (d1, D1)(d2, D2) = (d1D1(d2), D1 ◦ D2). Then
Aff(G) acts on G by

(d,D)(g) = dD(g) for all (d,D) ∈ Aff(G) and all g ∈ G.
We will often consider G as a subgroup of Aff(G) by identifying g ∈ G with
(g, idG). Let C be a maximal compact subgroup of Aut(G), then G o C is a
subgroup of Aff(G). Such C is unique up to inner conjugation in Aut(G). Note
that the group G o C can be interpreted as a group of isometries of G, see
[Dek18, Section 3].
Definition 3.4.1. An n-dimensional almost-crystallographic group modelled
on the Lie group G is a discrete, cocompact subgroup of GoC. The dimension of
Γ is defined as the dimension of G. An almost-Bieberbach group is a torsion-free
almost-crystallographic group.
Example 3.4.2. Consider the following examples of almost-crystallographic
groups:

(1) Consider the family of groups Nk defined as

Nk :=


1 x y

k
0 1 z
0 0 1

 | x, y, z ∈ Z

 ,
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with k ∈ N. Every group in this family is a lattice of the Heisenberg
group H3(R). Note that Nk is actually isomorphic to the group from
example 3.1.10.

(2) Let k ∈ 2N and define the automorphism ϕ : H3(R)→ H3(R) as follows:

ϕ(

1 x y
0 1 z
0 0 1

) :=

1 −z y − xz
2

0 1 x
0 0 1

 .

Fix some k ∈ N, and define Γ as

Γ := 〈(Nk, id), (

1 0 1
4

0 1 0
0 0 1

 , ϕ)〉.

This is an almost-Bieberbach group. If we replace the 1
4 by 0, we get an

almost-crystallographic group which is not torsion-free.

3.4.1 Generalised Bieberbach theorems

The three Bieberbach theorems have been generalised to almost-crystallographic
groups.

Theorem 3.4.3 (Generalised first Bieberbach theorem, see [Aus60]). Let Γ be
an almost-crystallographic group modelled on the Lie group G. Then the group
of translations N := Γ ∩G is a lattice in G and has finite index in G.

Similar to the crystallographic case, being a lattice implies that the translation
group is a finitely generated, torsion-free, nilpotent group. Thus, an almost-
crystallographic group fits in a short exact sequence

1 N Γ F 1i

with N a finitely generated, torsion-free, nilpotent group, i(N) maximal
nilpotent in Γ and F finite. Once again, we call F the holonomy group of Γ and
i(N) is a characteristic subgroup of Γ. Due to the bijectivity of the log-map,
there is a one-to-one relation between Aut(G) and Lie algebra automorphisms
of g, the Lie algebra associated with G. Hence, by fixing a basis for g, there
exists a faithful representation ρ : F → GLn(R).

Again, i(N) is not necessarily fully characteristic, but it does contain a fully
characteristic subgroup of finite index.
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Lemma 3.4.4 (see [LL06, Lemma 3.1]). Let Γ be an almost-crystallographic
group with translation subgroup N . Then Γ contains a fully characteristic, finite
index subgroup H ⊆ N .

The converse to the generalised first Bieberbach theorem holds as well.

Theorem 3.4.5 (see [Lee88]). Let Γ be any group that fits in a short exact
sequence as above, where F is finite, N is finitely generated, torsion-free and
nilpotent, and i(N) is maximal nilpotent in Γ. Then Γ is (isomorphic to) an
almost-crystallographic group.

Theorem 3.4.6 (Generalised second Bieberbach theorem, see [LR85]). Let
Γ,Γ′ be n-dimensional almost-crystallographic groups modelled on a Lie group
G and ϕ : Γ→ Γ′ be an isomorphism. Then there exists some δ ∈ Aff(G) such
that

ϕ(γ) = δγδ−1

for all γ ∈ Γ, i.e. ϕ is the restriction to Γ of some inner automorphism ιδ of
Aff(G).

We will again use ξδ to denote an automorphism that is conjugation by δ ∈
Aff(G).

Generalising the third Bieberbach theorem is more tricky: for any dimension
n ≥ 3, there are infinitely many (non-isomorphic) almost-crystallographic
groups. This is true even if we only consider the almost-crystallographic groups
modelled on a fixed connected, simply connected, nilpotent Lie group. For
example, example 3.4.2(1) gives an infinite family of almost-crystallographic
groups modelled on the Heisenberg group H3(R).

From an algebraic point of view, however, the translation subgroup of a
crystallographic group is always isomorphic to Zn. Hence, we can reformulate
the third Bieberbach theorem as saying that for any dimension n, there are only
finitely many crystallographic groups with translation subgroup (isomorphic to)
Zn. This statement can then be generalised to the almost-crystallographic case.

Theorem 3.4.7 (Generalised third Bieberbach theorem, see [DIM94; Lee88]).
Let N be a finitely generated, torsion-free, nilpotent group. There are (up to
isomorphism) only finitely many almost-crystallographic groups for which the
translation subgroup is isomorphic to N .

The 3-dimensional almost-crystallographic groups were fully classified by
Dekimpe in [Dek96]. This book also contains a partial classification of the
4-dimensional almost-crystallographic groups, including a complete classification
of the 4-dimensional almost-Bieberbach groups.
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The following lemma is at the basis of this classification:

Lemma 3.4.8 (see [Dek96, Lemma 2.4.2]). Let Γ be an almost-crystallographic
group with translation subgroup N of nilpotency class c, and define Z :=
N
√
γc(N). Then Γ/Z is an almost-crystallographic group with translation

subgroup N/Z of nilpotency class c− 1.

Using lemma 3.1.6(iv), we may upgrade this lemma.

Corollary 3.4.9 (see [Dek96, Lemma 2.4.2]). Let Γ be an almost-crystallo-
graphic group with translation subgroup N of nilpotency class c, and define
Z := N

√
γk(N) with k ≤ c. Then Γ/Z is an almost-crystallographic group with

translation subgroup N/Z of nilpotency class k− 1. In particular, if k = 2, then
Γ/Z is crystallographic.

This means that every almost-crystallographic group has a quotient group that
is crystallographic. We may thus classify the almost-crystallographic groups
into families based on the nilpotency class of their translation subgroups and
on this crystallographic quotient.

3.4.2 Infra-nilmanifolds and orbifolds

The entirety of proposition 3.3.10 generalises to the case of almost-crystallo-
graphic groups. Hence, Γ\G is again a compact manifold (orbifold) if Γ is an
almost-Bieberbach (almost-crystallographic) group modelled on the Lie group
G. We call such manifold (orbifold) an infra-nilmanifold (infra-nilorbifold).

A nice result by Gromov and Ruh shows that infra-nilmanifolds are generalisa-
tions of flat manifolds.

Theorem 3.4.10 (see [Gro78; Ruh82]). A compact manifold M is infra-nil
if and only if it is almost flat, i.e. for any ε > 0, there exists a Riemannian
metric gε such that

• diam(M, gε) ≤ 1,

• |Kgε | < ε with Kgε the sectional curvature.

This result has been generalised to infra-nilorbifolds and almost flat orbifolds
by Ghanaat [Gha97].

The following diagram summarises the underlying relations between most of
the concepts introduced in this chapter.
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Fin. gen.
t.-f. abelian

group
Bieberbach

group
Crystallographic

group

Flat torus Compact flat
manifold

Compact flat
orbifold

Fin. gen.
t.-f. nilpotent

group

Almost-
Bieberbach

group
Almost-

crystallographic
group

Nilmanifold Infra-
nilmanifold

Infra-
nilorbifold

3.4.3 Self-maps on infra-nilmanifolds

Define the semigroup
aff(G) := Go End(G).

The following theorem generalises the generalised second Bieberbach theorem
even further, namely from automorphisms to endomorphisms.

Theorem 3.4.11 (see [Lee95, Theorem 1.1]). Let Γ be an n-dimensional
almost-crystallographic group modelled on a Lie group G and ϕ : Γ→ Γ be an
endomorphism. Then there exists some (d,D) ∈ aff(G) such that

ϕ(γ) ◦ (d,D) = (d,D) ◦ γ

for all γ ∈ Γ.

In fact, this can even be generalised to any morphism between two almost-
crystallographic groups, not necessarily modelled on the same Lie group, see
[Dek18, Theorem 5.1].

This theorem allows us to construct a self-map on an infra-nilmanifold induced
by an endomorphism.

Lemma 3.4.12. Let Γ be an almost-Bieberbach group modelled on a Lie group
G, and let ϕ = ξ(d,D) be an endomorphism on Γ. Then

fϕ := (d,D) : Γ\G→ Γ\G : Γ · g 7→ Γ · dD(g)

is a well-defined map.

Remark 3.4.13. If we take (d,D) as the reference lift of fϕ = (d,D), then the
equation ϕ(γ) ◦ (d,D) = (d,D) ◦ γ means that the induced endomorphism on
the fundamental group of Γ\G is exactly ϕ, i.e. fϕ∗ = ϕ. Picking a different
lift will change the induced morphism by an inner automorphism.
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Theorem 3.4.14. Let f, g be two self-maps on an infra-nilmanifold Γ\G. If
the induced endomorphisms f∗, g∗ on Γ (with respect to certain lifts) are equal
up to inner automorphism, then f and g are homotopic.

Corollary 3.4.15. Let f : Γ\G→ Γ\G be a self-map on an infra-nilmanifold.
Then there exists an affine map (d,D) ∈ aff(G) such that the induced map
(d,D) on Γ\G is homotopic to f . We call (d,D) an affine homotopy lift of f .

In general, the affine map (d,D) is far from unique. The Lie group endomorphism
D is determined up to an inner automorphism of G, and the translation part d
is determined up to an element of Fix(F ) ⊆ G, the elements that are invariant
under the action of the holonomy group F on G [Lee95, Proposition 1.4]. A
first remark we can make, is that if Γ is crystallographic, then D is unique. A
second remark is that if we consider a self-map on a nilmanifold, then we may
always pick d = 1G for the affine homotopy lift. This leads us to the following
theorem.

Theorem 3.4.16 (see [McC97, Lemma 2.7]). Let f : N\G→ N\G be a self-
map on a nilmanifold. Then there exists a Lie group endomorphism D : G→ G
such that D is an affine homotopy lift of f .

The situation for infra-nilorbifolds is more difficult, since many (often non-
equivalent) notions of an orbifold map exist. For all common notions of orbifold
maps, it is possible to generalise lemma 3.4.12: any endomorphism of the
orbifold fundamental group will induce an orbifold map. However, the converse
need not be true: an orbifold map does not necessarily admit a “global” lift to
the universal orbifold cover.





Chapter 4

Reidemeister-Nielsen fixed
point theory on
almost-crystallographic
groups

Having introduced both Reidemeister-Nielsen fixed point theory and almost-
crystallographic groups, we are now ready to combine the two. This will
result in algebraic formulas to compute Lefschetz, Nielsen and Reidemeister
numbers for infra-nilmanifolds, and some results on Reidemeister numbers of
almost-crystallographic groups.

4.1 Nilmanifolds

Theorem 4.1.1 (Anosov theorem, see [Ano85; FH86]). Let f : N → N be a
self-map on a nilmanifold. Then N(f) = |L(f)|.

The idea behind this theorem is that every fixed point class of a self-map f on a
nilmanifold has the same index, and this index is always −1, 0 or 1. In general,
we say that the Anosov relation holds for a self-map f whenever N(f) = |L(f)|.

There exist easy formulas for the Nielsen, Lefschetz and Reidemeister number
of self-maps on nilmanifolds.
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Theorem 4.1.2 (see [Ano85]). Let f : M →M be a self-map on a nilmanifold
M = N\G. Let D : G→ G be an affine homotopy lift of f , then

L(f) = det(1−D∗),

N(f) = |det(1−D∗)|,

R(f) = |det(1−D∗)|∞.

Theorem 4.1.3 (see [HK97]). Let f : N → N be a self-map on a nilmanifold.
Then either all fixed point classes are essential, or all of them are inessential.

In the literature, a space for which this property holds is called weakly Jiang.

Corollary 4.1.4. Let f : N → N be a self-map on a nilmanifold. Then
R(f) = |N(f)|∞.

Due to the connection between nilmanifolds and finitely generated, torsion-free,
nilpotent groups, theorem 4.1.2 also implies the following:

Theorem 4.1.5. Let N be a finitely generated, torsion-free, nilpotent group,
and ϕ ∈ End(N). Let G be the Mal’cev completion of N and let D : G→ G be
an affine homotopy lift of ϕ. Denote by D∗ the induced endomorphism on g.
Then

R(ϕ) = |det(1−D∗)|∞.

Theorem 4.1.6 (see [Rom11, Theorem 2.6]). Let N be a finitely generated,
nilpotent group. Let

N = N1 ≥ N2 ≥ · · · ≥ Nc ≥ Nc+1 = 1

be a central series of N , such that all factors Nk/Nk+1 are torsion-free. If
ϕ ∈ End(N) and ϕ(Nk) ⊆ Nk for all k, then

R(ϕ) =
c∏

k=1
R((ϕ)k),

where (ϕ)k is the induced endomorphism on the factor Nk/Nk+1.

Proof. We prove this by induction on the length c of the central series. If c = 1,
the result follows trivially. Let c > 1 and assume the theorem holds for a central
series of length c− 1. Let ϕ ∈ End(N), then ϕ(Nc) ⊆ Nc and hence we have
the following commutative diagram of short exact sequences:
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1 Nc N N/Nc 1

1 Nc N N/Nc 1

i

(ϕ)c

p

ϕ ϕ′

i p

The quotient N/Nc is a finitely generated, nilpotent group with central series

N1/Nc ≥ N2/Nc ≥ · · · ≥ Nc−1/Nc ≥ 1

of length c− 1. Every factor of this series is of the form (Nk/Nc)/(Nk+1/Nc),
which is isomorphic to Nk/Nk+1 by the third isomorphism theorem, hence it is
also torsion-free. Moreover, because of this natural isomorphism we know that
for every induced automorphism (ϕ′)k on (Nk/Nc)/(Nk+1/Nc) it holds that

R((ϕ′)k) = R((ϕ)k).

First, assume that R(ϕ′) = ∞, in which case we find R(ϕ) = ∞ by
lemma 2.5.10(1). Then by the induction hypothesis R((ϕ)k) = R((ϕ′)k) =∞
for some k ∈ {1, . . . , c− 1}, so the theorem holds in this case.

Next, suppose that R(ϕ′) < ∞ and R(ϕc) = ∞. We then know from the
induction hypothesis that R((ϕ′)k) <∞ for every k ∈ {1, . . . , c− 1}. Note that
(Nk/Nc)/(Nk+1/Nc) is isomorphic to Zn for some n ∈ N, so (ϕ′)k can be seen
as a matrix in GLn(Z) and hence

R((ϕ′)k) = |det(1− (ϕ′)k)|∞ <∞,

or equivalently Fix((ϕ′)k) = {1}. Suppose that |Fix(ϕ′)| =∞. Because N/Nc is
a finitely generated, torsion-free, nilpotent group, there exists some gNc ∈ N/Nc
of infinite order such that

ϕ′(gNc) = gNc.

Suppose that gNc ∈ Nk/Nc but gNc /∈ Nk+1/Nc. Then

(ϕ′)k(gNk+1/Nc) = gNk+1/Nc,

which contradicts the fact that Fix((ϕ′)k) = {1} for all k. Thus |Fix(ϕ′)| <∞
and by lemma 2.5.10(2) R(ϕ) =∞. Again, the theorem holds in this case.

The final case is the one where R(ϕ′) <∞ and R((ϕ)c) <∞. Let [g1Nc]ϕ′ , . . . ,
[gnNc]ϕ′ represent the Reidemeister classes of ϕ′ and [c1](ϕ)c , . . . , [cm](ϕ)c the
Reidemeister classes of (ϕ)c. Since Nc ⊆ Z(N), we can apply lemma 2.5.10(3),
hence it suffices to prove that every class [cigj ]ϕ represents a different
Reidemeister class of ϕ to obtain

R(ϕ) = R(ϕc)R(ϕ′),
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and then the theorem follows from the induction hypothesis.

Suppose there exists some h ∈ N such that

cigj = hcagbϕ(h)−1.

Then by taking the projection to N/Nc we find

gjNc = p(cigj) = p(hcagbϕ(h)−1) = (hNc)(gbNc)ϕ′(hNc)−1

hence [gjNc]ϕ′ = [gbNc]ϕ′ . Now assume that

cigj = hcagjϕ(h)−1.

If h ∈ Nc ⊆ Z(N), then [ci](ϕ)c = [ca](ϕ)c , so assume h /∈ Nc and let Nk be the
smallest group in the central series that contains h. Then

cic
−1
a Nk+1 = g−1

j hgjϕ(h)−1Nk+1 = [gj , h−1](hϕ(h)−1)Nk+1.

As cic−1
a ∈ Nc ⊆ Nk+1 and [gj , h−1] ∈ Nk+1, we find that

(ϕ)k(hNk+1) = hNk+1.

This would mean that Fix((ϕ′)k) 6= 1, which in turn would imply that R(ϕ′) =
∞, which is a contradiction. Hence the result follows.

We may also take a quick look at the zeta functions.

Theorem 4.1.7 (see [Fel00, Theorem 45]). Let f be a self-map on a nilmanifold.
Then the Nielsen zeta function Nf (z) is rational. If the Reidemeister zeta
function Rf (z) exists, it equals the Nielsen zeta function (and is hence rational).

One can simply mimic example 2.6.7 to prove this, with the addition of the
case where λ = 1 for an eigenvalue λ of D∗.

4.2 Infra-nilmanifolds and almost-crystallographic
groups

Just like for nilmanifolds, there exist algebraic formulas to calculate the Lefschetz,
Nielsen and Reidemeister numbers of a self-map on an infra-nilmanifold.
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Theorem 4.2.1 (see [KLL05; LL09] and [HLP12, Theorem 6.11]). Let Γ\G be
an infra-nilmanifold and let F ⊆ Aut(G) be the holonomy group of Γ. If f is a
self-map on Γ\G with affine homotopy lift (d,D) : G→ G, then

L(f) = 1
#F

∑
A∈F

det(1−A∗D∗),

N(f) = 1
#F

∑
A∈F
|det(1−A∗D∗)|,

R(f) = 1
#F

∑
A∈F
|det(1−A∗D∗)|∞.

As one can expect from these formulas, for infra-nilmanifolds it is not true in
general that N(f) = |L(f)| and R(f) = |N(f)|∞.

Example 4.2.2. We provide a counterexample for each statement.

(1) Consider the group introduced in example 3.3.2(2), which was the
fundamental group of the Klein bottle. Let f be a self-map on the
Klein bottle inducing the automorphism f∗ = ξ(0,D) with

D =
(

1 0
0 −1

)
.

Then using the formulas from theorem 4.2.1, we find that N(f) = 2 but
R(f) =∞.

(2) Consider the Bieberbach group generated by Zn and

(

0
0
1
2

 ,

−1 0 0
0 −1 0
0 0 1

).

Let f be a self-map inducing the endomorphism f∗ = ξ(0,D) with

(0,

5 2 0
3 1 0
0 0 3

).

Then using the formulas from theorem 4.2.1, we find that N(f) = 12 but
L(f) = 0.

However, the Nielsen and Reidemeister numbers are still closely related. The
following easily follows from the averaging formulas.
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Theorem 4.2.3. Let f be a self-map on an infra-nilmanifold. Then:

• |L(f)| ≤ N(f),

• If R(f) <∞, then N(f) = R(f).

Proposition 4.2.4 (see [FL15, Remark 9.4]). Let M = Γ\G be an infra-
nilmanifold and ϕ = ξ(d,D) an endomorphism of Γ inducing a self-map fϕ =
(d,D) : M →M . If N(fϕ) 6= 0, then N(fϕ) = # Fix(fϕ).

The above proposition says that when N(fϕ) 6= 0, every map homotopic to fϕ
has at least as many fixed points as the map fϕ.

There is also an easy criterion to determine whether a map has finite Reidemeister
number. This criterion can be stated purely on the level of the almost-
crystallographic group, hence we will talk about the Reidemeister number
R(ϕ) instead of R(fϕ). In fact, this is corollary 2.5.15 adapted to the case of
almost-crystallographic groups.

Theorem 4.2.5 (see [DP11, Corollary 3.12]). Let Γ be an almost-crystallo-
graphic group with holonomy group F . Let ϕ = ξ(d,D) be an automorphism of Γ.
Then

R(ϕ) =∞ ⇐⇒ ∃A ∈ F such that det(1−A∗D∗) = 0.

The averaging formula for the Reidemeister number of a self-map given in
theorem 4.2.1 can naturally be restated for endomorphisms, which we do below.
The original proof of this formula was done in a topological way, though it is
possible to give a purely group-theoretic proof.

Theorem 4.2.6 (averaging formula, see [HLP12, Theorem 6.11]). Let Γ be an
almost-Bieberbach group modelled on the Lie group G and with holonomy group
F , and let ϕ = ξ(d,D) be an endomorphism of Γ. Then

R(ϕ) = 1
#F

∑
A∈F
|det(1−A∗D∗)|∞.

Proof. Let H ⊆ N be a fully invariant, finite index subgroup of Γ, which exists
due to lemma 3.4.4. H is, just like N , a finitely generated, torsion-free, nilpotent
group. For any α = (a,A) ∈ Γ, the map ιαϕ|H : H → H is a well-defined
endomorphism with ιaA(d)AD : G→ G as affine homotopy lift. One can verify
that

Fix(ιαϕ|H) 6= 1 ⇐⇒ det(1− ιaA(d)∗A∗D∗) = 0 ⇐⇒ R(ιαϕ|H) =∞.
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However, the inner automorphism ιaA(d) has little impact here, since

det(1− ιaA(d)∗A∗D∗) = det(1−A∗D∗).

If R(ιαϕ|H) = ∞, then also R(ϕ) = ∞ by lemma 2.5.10(2) and hence the
formula holds in this case. So now assume that Fix(ιαϕ|H) = 1 for all α ∈ Γ.

Consider the short exact sequence of finite groups

1 N/H Γ/H F 1.i p

Fix a preimage p−1(A) for any A ∈ F . There is a one-to-one correspondence
between the elements αH ∈ Γ/H and the products i(aH)p−1(A) with aH ∈
N/H and A ∈ F . By proposition 2.5.16 and theorem 4.1.5, we have:

R(ϕ) = 1
[Γ : H]

∑
αH∈Γ/H

R(ιαϕ|H)

= 1
[Γ : N ][N : H]

∑
aH∈N/H

∑
A∈F

R(ιi(aH)p−1(A)ϕ|H)

= 1
[Γ : N ]

1
[N : H]

∑
aH∈N/H

∑
A∈F
|det(1−A∗D∗)|∞

= 1
#F

∑
A∈F
|det(1−A∗D∗)|∞.

This averaging formula does not hold in general for almost-crystallographic
groups. See propositions 7.1.6, 10.1.6 and 10.2.1 for counterexamples.

Finally, let us again consider dynamical zeta functions. Theorem 4.2.3 says
that if the Reidemeister number is finite, it equals the Nielsen number. We
immediately obtain the following implication for the zeta functions.

Corollary 4.2.7. Let M be an infra-nilmanifold and f : M →M a self-map.
If Rf (z) exists, then Rf (z) = Nf (z).

The rationality of Reidemeister and Nielsen zeta functions on infra-nilmanifolds
was first studied in [Won01], and was proven by Dekimpe and Dugardein in
[DD15, Corollary 4.7].

Theorem 4.2.8. Nielsen zeta functions on infra-nilmanifolds are rational.
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This theorem is proven by showing that a Nielsen zeta function Nf (z) must
always equal one of Lf (z), Lf (z)−1, Lf (−z), Lf (−z)−1, or the quotient of two
Lefschetz zeta functions. Since Lefschetz zeta functions are always rational, the
result follows.

Of course, since Reidemeister zeta functions coincide with Nielsen zeta functions,
Reidemeister zeta functions on infra-nilmanifolds are always rational. This was
also mentioned in [FL15, Proposition 3.2].

The proof of theorem 4.2.8 is topological in nature, since it uses the existence
of Lefschetz numbers, Lefschetz zeta functions, etc. To the author’s knowledge,
Reidemeister-Nielsen theory has not been developed for orbifolds, hence these
techniques cannot be used to research the rationality of Reidemeister zeta
functions of almost-crystallographic groups.



Part II

Nilpotent groups
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Chapter 5

Finitely generated,
torsion-free, nilpotent groups

In this chapter, we will determine the (extended) Reidemeister spectra of certain
finitely generated, torsion-free, nilpotent groups. Let us start by proving that
any such group has ∞ in its Reidemeister spectrum, so that we may omit this
calculation later.

Proposition 5.0.1. Let idN be the identity map on a finitely generated, torsion-
free, nilpotent group N . Then R(idN ) =∞.

Proof. If G is the Mal’cev completion of N , then idG : G → G is an affine
homotopy lift of idN , and the induced morphism on the associated Lie algebra g is
the identity as well. By applying theorem 4.1.5 we obtain that R(idN ) =∞.

5.1 Abelian groups

A finitely generated, torsion-free, nilpotent group is abelian if and only if its
nilpotency class is 1. Such group is isomorphic to the group Zn, where n is its
Hirsch length. The Reidemeister spectra of these groups are well-known (see
for example [Rom11, Section 3]), but for the sake of completeness we will prove
them anyway.

Theorem 5.1.1. The group Z has Reidemeister spectrum {2,∞} and full
extended Reidemeister spectrum.
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Proof. Any endomorphism of Z is uniquely determined by the image of 1, since
this element generates Z. Let us use ϕn to denote the endomorphism satisfying
ϕn(1) = n. From example 2.5.9 we know that

R(ϕn) = |1− n|∞.

If m ∈ N, then R(ϕ1−m) = m and R(ϕ1) = ∞, hence Z has full extended
Reidemeister spectrum. The only values of n for which ϕn is an automorphism
are n ∈ {−1, 1}. These have Reidemeister numbers 2 and ∞ respectively, hence
Z has Reidemeister spectrum {2,∞}.

Theorem 5.1.2. The groups Zn with n ≥ 2 have full (extended) Reidemeister
spectrum.

Proof. Consider the family of n× n-matrices

Dm :=



0 · · · · · · 0 1

1 . . . ... 0

0 . . . . . . ...
...

... . . . . . . 0 0
0 · · · 0 1 −m


,

with m ∈ N. By expanding the determinant of the matrix 1n −Dm along its
n-th column, we obtain

det(1n −Dm) = det



1 0 · · · 0 −1

−1 . . . . . . ... 0

0 . . . . . . 0
...

... . . . . . . 1 0
0 · · · 0 −1 1 +m


= (−1)2n−1 + (−1)2n(1 +m)

= m.

Each matrix Dm is an automorphism of Zn, hence using the formula from
example 2.5.9, we obtain that Zn with n ≥ 2 has full (extended) Reidemeister
spectrum.
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5.2 Nilpotent groups

To calculate the Reidemeister number of an automorphism of a finitely generated,
torsion-free, nilpotent group, we will make use of theorem 4.1.6.

The extended Reidemeister spectrum can be calculated for any such group in a
fairly straightforward way.
Theorem 5.2.1. A finitely generated, torsion-free, nilpotent group has full
extended Reidemeister spectrum.

Proof. Let N be a finitely generated, torsion-free, nilpotent group. Since N is
poly-Z (see theorem 3.1.13), there exists a normal subgroup M /N such that
N is the semidirect product N = M oψ Z. Let

p : M oψ Z→ Z : (m, z) 7→ z,

i : Z→M oψ Z : z 7→ (1, z),

be the projection to and inclusion in the second factor respectively. From any
endomorphism

ϕn : Z→ Z : z 7→ nz,

we can construct an endomorphism φn := i ◦ ϕn ◦ p on M oψ Z. Two elements
(m1, z1), (m2, z2) are φn-equivalent if and only if

(m1, z1) ∼φn (m2, z2) ⇐⇒ ∃(m′, z′) : (m1, z1) = (m′, z′)(m2, z2)φn(m′, z′)−1

⇐⇒ ∃(m′, z′) : (m1, z1) = (m′, z′)(m2, z2)(1, nz′)−1

⇐⇒ ∃(m′, z′) : (m1, z1) = (m′ψz′(m2), z′ + z2 − nz′).

Since we can always pick m′ = m1ψz′(m2)−1, we continue with the following
equivalences:

⇐⇒ ∃z′ : z1 = z′ + z2 − nz′

⇐⇒ z1 ∼ϕn z2.

This is just the ϕn-twisted conjugacy on Z, so R(φn) = R(ϕn). From
theorem 5.1.1 we then find that N has full extended Reidemeister spectrum.

5.2.1 Dimension 3

A finitely generated, torsion-free, nilpotent group of dimension 3 can have
nilpotency class at most 2. It is known (see [Seg83, Chapter 11, Proposition 5])
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that such group is isomorphic to one of the groups

Nk = 〈a, b, c | [b, a] = ck, [c, a] = [c, b] = 1〉,

with k ∈ N, which we already introduced in example 3.1.10. We also mentioned
there that the adapted lower central series of Nk is given by

Nk ≥ 〈c〉 ≥ 1.

Theorem 5.2.2 (see [Dug16, Theorem 9.2.8]). Let N be a finitely generated,
torsion-free, nilpotent group of rank 3 and nilpotency class 2. Then its
Reidemeister spectrum is 2N ∪ {∞}.

Proof. Assume that N = Nk (as defined above) for some k ∈ N. Let ϕ ∈ Aut(N)
and assume that R(ϕ) <∞. Then ϕ induces the automorphisms

(ϕ)1 : N/〈c〉 → N/〈c〉, (ϕ)2 : 〈c〉 → 〈c〉,

on the factors of its adapted lower central series. We know from theorem 4.1.6
that R(ϕ) = R((ϕ)1)R((ϕ)2). Since 〈c〉 is isomorphic to Z, theorem 5.1.1 tells
us that R((ϕ)2) = 2, and hence R(ϕ) ∈ 2N.

Let us now prove that for every m ∈ N, there exists an automorphism ϕm with
R(ϕm) = 2m. Define ϕm as

ϕm(a) = b, ϕm(b) = ab−m, ϕm(c) = c−1.

This is a well-defined automorphism on N , since

[ϕm(b), ϕm(a)] = bma−1b−1ab−mb

= bmb−1a−1c−kab−mb

= bmb−1a−1ab−mbc−k

= c−k

= ϕm(c)k.

The automorphism (ϕm)1 on N/〈c〉 ∼= Z2 is the matrix

(ϕm)1 =
(

0 1
1 −m

)
,

which has Reidemeister number R((ϕm)1) = m as proven in theorem 5.1.2.
We also have that R((ϕm)2) = 2, hence R(ϕm) = 2m and thus SpecR(N) =
2N ∪ {∞}.
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5.2.2 Dimension 4

A finitely generated, torsion-free, nilpotent group of dimension 4 can have
nilpotency class at most 3. In [Dek96, Corollary 6.2.4], it is shown that such
group with nilpotency class 2 is isomorphic to a group

Nk =
〈
a, b, c, d |

[b, a] = dk [c, b] = 1
[c, a] = 1 [d, b] = 1
[d, a] = 1 [d, c] = 1

〉
,

for some k ∈ N.

Theorem 5.2.3 (see [Dug16, Theorem 9.2.9]). Let N be a finitely generated,
torsion-free, nilpotent group of rank 4 and nilpotency class 2. Then its
Reidemeister spectrum is 4N ∪ {∞}.

Proof. Assume that N = Nk (as defined above) for some k ∈ N. Consider the
central series given by

N ≥ 〈c, d | [c, d] = 1〉 ≥ 〈d〉 ≥ 1.

The second group is exactly Z(N) and the third is N
√
γ2(N), hence this central

series satisfies the conditions needed to apply theorem 4.1.6. Let ϕ ∈ Aut(N)
and assume that R(ϕ) <∞. Then ϕ induces automorphisms

(ϕ)1 : N/〈c, d〉 → N/〈c, d〉,

(ϕ)2 : 〈c, d〉/〈d〉 → 〈c, d〉/〈d〉,

(ϕ)3 : 〈d〉 → 〈d〉,

on the factors of the central series, and

R(ϕ) = R((ϕ)1)R((ϕ)2)R((ϕ)3).

Since both 〈c, d〉/〈d〉 and 〈d〉 are isomorphic to Z, theorem 5.1.1 tells us that
R((ϕ)2) = R((ϕ)3) = 2, and hence R(ϕ) ∈ 4N.

Let us now prove that for every m ∈ N, there exists an automorphism ϕm with
R(ϕm) = 4m. Define ϕm as

ϕm(a) = b, ϕm(b) = ab−m, ϕm(c) = c−1, ϕm(d) = d−1,

then just like in the proof of theorem 5.2.2, ϕm is a well-defined automorphism,
and we can calculate that R(ϕm) = 4m. Thus SpecR(N) = 4N ∪ {∞}.
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Next, let us consider the case of nilpotency class 3. In [Dek96, Proposition
6.2.6], it is shown that such group is isomorphic to

Nk1,k2,k3 =
〈
a, b, c, d |

[b, a] = ck1dk2 [c, b] = 1
[c, a] = dk3 [c, d] = 1
[d, a] = 1 [d, c] = 1

〉
,

with k1, k3 ∈ N and k2 ∈ Z.
Theorem 5.2.4 (see [Dug16, Theorem 9.2.10]). A finitely generated, torsion-
free, nilpotent group of rank 4 and nilpotency class 3 has the R∞-property.

Proof. Assume that N = Nk1,k2,k3 (as defined above) for some k1, k2, k3. The
adapted lower central series of such group N is given by

N ≥ 〈c, d | [c, d] = 1〉 ≥ 〈d〉 ≥ 1.

Let ϕ ∈ Aut(N) and assume that R(ϕ) <∞. Then ϕ induces automorphisms

(ϕ)1 : N/〈c, d〉 → N/〈c, d〉,

(ϕ)2 : 〈c, d〉/〈d〉 → 〈c, d〉/〈d〉,

(ϕ)3 : 〈d〉 → 〈d〉.

By theorem 4.1.6 we have that R(ϕ) = R((ϕ)1)R((ϕ)2)R((ϕ)3). Note that if
R((ϕ)2) <∞ and R((ϕ)3) <∞, then (ϕ)2(c〈d〉) = c−1〈d〉 and (ϕ)3(d) = d−1.
So in turn ϕ(c) = c−1dγ for some γ ∈ Z, and ϕ(d) = d−1. Let us now set

ϕ(a) = aα1bα2cα3dα4 ,

ϕ(b) = aβ1bβ2cβ3dβ4 .

Since ϕ is an automorphism, one can compute that

d−k3 = ϕ(d)k3 = [ϕ(c), ϕ(a)] = d−k3α1 ,

1 = [ϕ(c), ϕ(b)] = d−k3β1 .

Thus, α1 = 1 and β1 = 0. But then the matrix corresponding to (ϕ)1 is of the
form

(ϕ)1 =
(

1 ∗
0 ∗

)
.

Using example 2.5.9 we then find that

R((ϕ)1) = |det(12 −
(

1 ∗
0 ∗

)
)|∞ =∞,

hence also R(ϕ) =∞.



Chapter 6

Free nilpotent groups

Most of the results of this chapter can be found in [DTV17].

6.1 Reidemeister theory on free nilpotent groups

We would like to use theorem 4.1.6 to calculate the Reidemeister numbers
of free nilpotent groups. Thus, it is essential for us to be able to compute
the determinants det(1 − (ϕ)i) for a given endomorphism ϕ of Nr,c. This is
equivalent to understanding the eigenvalues of the matrices (ϕ)i. The lemma
below (which is a more explicit version of [DG14, Lemma 2.4]) shows that these
are completely determined by the eigenvalues of (ϕ)1.

Definition 6.1.1. Fix an r-tuple of complex numbers λ = (λ1, λ2, . . . , λr).
Let H = ∪n∈NHn be a Hall basis of the free Lie algebra fr. We define a map
fλ : H → C inductively by

• ∀i ∈ {1, 2, . . . , r}: fλ(Xi) := λi.

Let n ≥ 2 and assume that fλ(X) has been defined for all X ∈ Hk with
1 ≤ k ≤ n− 1.

• Consider X ∈ Hn, then X = [U, V ] for some U ∈ Hk and V ∈ Hl with
k + l = n. We set fλ(X) := fλ(U)fλ(V ).

We will say that fλ is the map associated to λ.

87
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Example 6.1.2. We have that

fλ([Xi, Xj ]) = λiλj and fλ([Xi, [Xj , Xk]] = λiλjλk.

Lemma 6.1.3. Let r ≥ 2 and c ≥ 1 be positive integers and assume that
ϕ ∈ End(Nr,c) is an endomorphism inducing endomorphisms (ϕ)k on the
quotients γk(Nr,c)/γk+1(Nr,c) (1 ≤ k ≤ c).

Let λ1, λ2, · · · , λr be the eigenvalues of (ϕ)1 (each eigenvalue is listed as many
times as its multiplicity). Let H be a Hall basis of the free Lie algebra fr and
λ = (λ1, λ2, . . . , λr). Let fλ : H → C be the map associated to λ. Then the
eigenvalues of (ϕ)k (1 ≤ k ≤ c) are given by

Spec((ϕ)k) = {fλ(X) | X ∈ Hk}.

In this way each eigenvalue is then listed as many times as its multiplicity.

Proof. Let ϕ∗ denote the corresponding morphism on the Lie algebra gr,c. As
mentioned before, the eigenvalues of (ϕ)i are the same as the eigenvalues of (ϕ∗)i,
the morphism induced by ϕ∗ on γi(gr,c)/γi+1(gr,c) (as they can be represented
by the same matrix). It is well known that the semisimple part of ϕ∗ is also an
automorphism of gr,c (See for example [Seg83, Corollary 2, page 135]) having the
same eigenvalues as ϕ∗ (also on each quotient γi(gr,c)/γi+1(gr,c)). Therefore, we
may assume that ϕ∗ is semisimple. Let gCr,c = gr,c ⊗R C be the complexification
of gr,c, then there exists a basis of gCr,c consisting of eigenvectors for ϕ∗ (which
we can also consider as being a morphism of gCr,c). It follows that we can
find r eigenvectors X1, X2, . . . , Xr of gCr,c such that their canonical projections
X̄1, X̄2, . . . , X̄r ∈ gCr,c/γ2(gCr,c) form a basis of gCr,c/γ2(gCr,c). This implies that
X1, X2, . . . , Xr are free generators of the free nilpotent Lie algebra gCr,c. We
can assume that H is a Hall basis with H1 = {X1, X2, . . . , Xr} and that Xj is
an eigenvector with eigenvalue λj . By induction, it now follows that if X ∈ Hi

(1 ≤ i ≤ c), then X is an eigenvector for ϕ∗ with eigenvalue fλ(X). Indeed,
assume that i ≥ 2 and the claim already holds for smaller values of i, then X is
of the form X = [U, V ] with U ∈ Hk and V ∈ Hl for some k, l < i. Then

ϕ∗(X) = ϕ∗([U, V ]) = [ϕ∗(U), ϕ∗(V )]

= [fλ(U)U, fλ(V )V ] = fλ(U)fλ(V )[U, V ] = fλ(X)X.

As the canonical projections of the vectors in Hi form a basis for the vector
space γi(gCr,c)/γi+1(gCr,c), it follows that the collection of eigenvalues of (ϕ∗)i,
and hence also of (ϕ)i, is exactly the collection of values fλ(X), where X ranges
over all vectors in Hi.
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Example 6.1.4. Continuing example 3.2.27 and example 6.1.2 we find that
when λ1, λ2, . . . , λr are the eigenvalues of (ϕ)1, then the eigenvalues of (ϕ)2 are

λiλj with 1 ≤ i < j ≤ r,

and those of (ϕ)3 are

λiλjλk with 1 ≤ j < k ≤ r and 1 ≤ j ≤ i ≤ r.

We are especially interested in the case that ϕ is an automorphism. In this case
the induced map (ϕ)1 will be an automorphism of Zr. We can consider the
morphism

ψ : Aut(Nr,c)→ Aut(Zr) : ϕ 7→ (ϕ)1,

which is surjective. Indeed, it is well known that the analogous map Aut(Fr)→
Aut(Zr) for the free group is surjective (see [MKS76, Theorem N4, Section 3.5]).
Since all automorphisms of Fr induce an automorphism on Nr,c, the surjectivity
of ψ follows immediately.

As explained above, R(ϕ) only depends on the eigenvalues of ϕ∗, which are
completely determined by the eigenvalues of (ϕ)1 (by lemma 6.1.3). Hence, it
is enough to know the characteristic polynomial of (ϕ)1, which is of the form

p(x) = xr + ar−1x
r−1 + · · ·+ a1x+ a0, ai ∈ Z, a0 ∈ {−1, 1}, (6.1)

since a0 = (−1)r det((ϕ)1).

Conversely, any monic polynomial p(x) of degree r of the form (6.1) (still with
ai ∈ Z and a0 = ±1) is the characteristic polynomial of its companion matrix
Cp ∈ GLn(Z), where

Cp =


−a0

1 −a1
. . . ...

1 −ar−1

 .

As ψ is surjective, we know that there exists an automorphism ϕ ∈ Aut(Nr,c)
with (ϕ)1 = Cp. So instead of focusing on the automorphisms ϕ, we will
in the sequel focus on the corresponding characteristic polynomial. Let
p(x) be a polynomial of the form (6.1). We will denote by Rc(p(x))
the Reidemeister number of any automorphism ϕ of Nr,c, such that the
corresponding automorphism (ϕ)1 has p(x) as its characteristic polynomial.

Thus, in order to calculate the Reidemeister spectrum of Nr,c, we have to
compute all possible numbers Rc(p(x)) for all possible polynomials p(x).
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6.1.1 Elementary symmetric polynomials

Our approach to calculating the Reidemeister numbers Rc(p(x)) makes use of the
so-called elementary symmetric polynomials, i.e. the multivariate polynomials
ek defined as

ek(x1, x2, . . . , xn) :=
∑

1≤i1<i2<···<ik≤n
xi1xi2 · · ·xik .

If p(x) is any monic polynomial

p(x) = xr + ar−1x
r−1 + · · ·+ a1x+ a0,

with complex roots λ1, λ2, . . . , λr, then p(x) can be written as

p(x) =
r∏
i=1

(x− λi) = xr +
r∑
i=1

(−1)iei(λ1, λ2, . . . , λr)xr−i,

or in terms of the coefficients this means that

ar−i = (−1)iei(λ1, λ2, . . . , λr),

for all 1 ≤ i ≤ r.

Theorem 6.1.5 (Fundamental theorem of elementary symmetric polynomials,
see [Mac95, Section I.2]). Let A be any commutative ring and q(x1, x2, . . . , xn)
a symmetric polynomial in A[x1, x2, . . . , xn]. Then there exists a polynomial
r(x1, x2, . . . , xn) in A[x1, x2, . . . , xn] such that

q(x1, . . . , xn) = r(e1(x1, . . . , xn), . . . , en(x1, . . . , xn)).

This theorem tells us that if we have a symmetric polynomial q ∈ Z[λ1, . . . , λr]
whose variables λi are the roots of a monic polynomial p(x) = xr +

∑r−1
i=0 aix

i

with integral coefficients, then actually q ∈ Z[a0, . . . , ar−1].

To calculate the Reidemeister spectrum of Nr,c, we will adopt a “divide and
conquer” strategy, splitting up Rc(p(x)) in factors that are each symmetric
polynomials in the roots λi, and calculating these factors in terms of the
coefficients ai.

Example 6.1.6. Let ϕ be an automorphism of Nr,c, let p be the characteristic
polynomial of (ϕ)1 and λ1, . . . , λr the roots of p (and hence the eigenvalues of
(ϕ)1). Then

det(1− (ϕ)1) =
r∏
i=1

(1− λi) = p(1) =
r−1∑
i=0

ai + 1.
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6.1.2 Results on general free nilpotent groups

For a general free nilpotent group, there exists a sufficient (but not necessary)
criterion such that its Reidemeister spectrum is not full.

Proposition 6.1.7. Let Nr,c be a free nilpotent group with c ≥ r. Then the
Reidemeister spectrum of Nr,c is not full.

Proof. For any polynomial p(x), the r-th factor of Rc(p(x)) will be a product
of the form ∏

(1− λi1λi2 · · ·λir ).

Splitting this further up in factors that are each symmetric polynomials, one of
them will be

(1− λ1λ2 · · ·λr) = 1− a0,

which is 0 or 2 depending on the constant term a0. Hence either Rc(p(x)) =∞
or Rc(p(x)) ∈ 2N, and therefore SpecR(Nr,c) ⊆ 2N ∪ {∞}.

In section 6.2.2 we will show that the Reidemeister spectrum of N3,2 is not full,
illustrating that the criterion above is not necessary.

For the R∞-property, there does exist a necessary and sufficient criterion. Let
us first recall the following:

Lemma 6.1.8 (see [DG14, Proposition 2.3]). For any r ∈ N, there exists a
matrix Ar ∈ GLr(Z) with r distinct eigenvalues λ1, λ2, . . . , λr such that

∀k ∈ {1, 2, . . . , 2r − 1},∀i1, i2, . . . , ik ∈ {1, 2, . . . , r} : λi1λi2 · · ·λik 6= 1.

Theorem 6.1.9 (see [DG14, Theorem 2.5]). A free nilpotent group Nr,c has
the R∞ property if and only if c ≥ 2r.

Proof. We first prove that if c ≥ 2r, then Rc(p(x)) =∞. For any polynomial
p(x), the 2r-th factor of Rc(p(x)) will be a product of the form∏

(1− λi1λi2 · · ·λi2r ).

Splitting this further up in factors that are each symmetric polynomials, one of
them will be

(1− λ2
1λ

2
2 · · ·λ2

r) = 1− (a0)2 = 0,

hence Rc(p(x)) =∞.
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Conversely, let c < 2r and let p(x) be the characteristic polynomial of a matrix
Ar as defined in lemma 6.1.8. Then Rc(p(x)) is the product of factors of the
form

(1− λi1λi2 · · ·λik)

with k < 2r. Because of the choice of Ar, all of these factors are non-zero and
hence Rc(p(x)) <∞.

6.2 Nilpotency class 2

In this section we want to prove that the Reidemeister spectrum of Nr,2 is full
for all r ≥ 4, as well as calculate the spectra of N2,2 and N3,2. The Reidemeister
number R2(p(x)) is given by

R2(p(x)) =

∣∣∣∣∣∣
∏
i

(1− λi)
∏
i<j

(1− λiλj)

∣∣∣∣∣∣
∞

.

6.2.1 Rank 2

We are dealing with a polynomial p(x) given by

p(x) = x2 + a1x+ a0,

with a1 ∈ Z and a0 ∈ {−1, 1}. The polynomial p has two roots λ1, λ2, for which
λ1λ2 = a0 and λ1 + λ2 = −a1. As shown in example 6.1.6 the first product of
R2(p(x)) is p(1) = 1 + a1 + a0. The second product is 1− λ1λ2 = 1− a0. Thus,

R2(p(x)) = |(a0 + a1 + 1)(1− a0)|∞.

If we assume that the Reidemeister number is finite, then we must have a0 = −1.
Then R2(p(x)) = 2|a1|∞ and hence R2(p(x)) ∈ 2N.

We define the family of polynomials qn(x) := x2 + nx − 1 with n ∈ N, then
R2(qn(x)) = 2n, hence SpecR(N2,2) = 2N∪{∞}. The result of this computation
coincides with theorem 5.2.2 (since N2,2 is isomorphic to N1 as defined above
said theorem), and with [Rom11, Section 3], where SpecR(N2,2) was computed
via other techniques.
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6.2.2 Rank 3

We are dealing with a polynomial p(x) given by

p(x) = x3 + a2x
2 + a1x+ a0,

with a1, a2 ∈ Z and a0 ∈ {−1, 1}. The polynomial p has three roots λ1, λ2, λ3,
for which

a0 = −λ1λ2λ3,

a1 = λ1λ2 + λ1λ3 + λ2λ3,

a2 = −λ1 − λ2 − λ3.

The first product of R2(p(x)) is p(1) = 1 + a2 + a1 + a0. The second product
can be calculated as follows:

∏
i<j

(1− λiλj) =
[∏
k

λk

]−1 ∏
i6=k 6=j
i<j

(λk − λiλjλk)

= −a−1
0

∏
k

(λk + a0)

= a−1
0 p(−a0)

= −a2
0 + a0a2 − a1 + 1

= a0a2 − a1,

where we used that a2
0 = 1 in the last step. Hence we obtain

R2(p(x)) = |(1 + a2 + a1 + a0)(a0a2 − a1)|∞

=
{
|a2 + a1|2∞ if a0 = −1,
|(a2 + 1)2 − (a1 + 1)2|∞ if a0 = 1.

Thus R2(p(x)) is a square or the difference of two squares, so it must be a
multiple of four or an odd number. We define two families of polynomials. First,
set qn(x) := x3 + nx2 + (n − 1)x + 1 with n ∈ N, then R2(qn(x)) = 2n + 1.
Second, set rn(x) := x3 + nx2 + (n− 2)x+ 1 with n ∈ N, then R2(rn(x)) = 4n.
Hence SpecR(N3,2) = (2N− 1) ∪ 4N ∪ {∞}. Again, this result coincides with
that of [Rom11, Section 3].
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6.2.3 Even rank at least 4

Let r = 2m for some m ∈ N with m ≥ 2, and let n ∈ N be arbitrary. For the
polynomial

p2m,n(x) = x2m − xm+1 + (n− 1)xm + 1

with roots λ1, λ2, . . . , λ2m, we will show that R2(p2m,n(x)) = n. This
polynomial was first considered in [Mij14] where it was also conjectured that
indeed R2(p2m,n(x)) = n. In her thesis M. Mijle verified this conjecture for
m = 2, 3, . . . , 9.

In the computations below, we will simply write p(x) instead of p2m,n(x). The
first factor in the computation of R2(p(x)) is p(1) = n (see example 6.1.6), so it
suffices to prove that∏

i<j

(1− λiλj)

2

=
∏
i 6=j

(1− λiλj) = 1. (6.2)

We note that
∏
i λi = 1 because p(x) has even degree and has constant term

equal to 1. Also, if λi is a root of p(x) then

λ2m
i + (n− 1)λmi + 1 = λm+1

i ,

so

λ2m
i p(λ−1

i ) = λ2m
i + (n− 1)λmi − λm−1

i + 1

= λm+1
i − λm−1

i

= −λm−1
i (1− λ2

i ),

giving
p(λ−1

i ) = −λ−m−1
i (1− λ2

i ). (6.3)

We want a polynomial whose roots include λiλj , so to this end we define

q(x) :=
∏
i

p

(
x

λi

)
.
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We then calculate

q(x) =
∏
i

p

(
x

λi

)

=
∏
i,j

(
x

λi
− λj

)

=
[∏

i

λi

]−2m∏
i,j

(x− λiλj)

=
∏
i,j

(x− λiλj)

=
∏
i6=j

(x− λiλj)
∏
i

(x− λ2
i ), (6.4)

where in the second-to-last line we used the noted fact that
∏
i λi = 1. Consider

q(1) =
∏
i 6=j

(1− λiλj)
∏
i

(1− λ2
i ). (6.5)

For comparison, from (6.3) we obtain an alternate representation for q(1):

q(1) =
∏
i

p
(
λ−1
i

)
=
∏
i

[
−λ−m−1

i (1− λ2
i )
]

=
[∏

i

λi

]−m−1∏
i

(1− λ2
i )

=
∏
i

(1− λ2
i ), (6.6)

where we have again used the fact that
∏
i λi = 1. Since n ∈ N and p(1) = n, 1

is not a root of p.

If −1 is not a root of p, then λ2
i 6= 1 for all i, so the factor

∏
i(1− λ2

i ) in both
(6.5) and (6.6) is non-zero. The desired identity (6.2) then follows.
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Now suppose that −1 is a root of p, then 0 = p(−1) = 2 + n(−1)m and hence
n = 2(−1)m+1. For the derivative p′ of p we find that

p′(−1) = 2m(−1)2m−1 − (m+ 1)(−1)m +m(n− 1)(−1)m−1

= −2m+ (m+ 1)(−1)m+1 +m(2(−1)m+1 − 1)(−1)m−1

= (−1)m+1. (6.7)

Hence −1 is not a double root, so we can call this root λ1. For x 6= 1 we can
divide both sides of (6.4) by x− 1 to get

q(x)
x− 1 =

∏
i 6=j

(x− λiλj)
∏
i>1

(x− λ2
i ),

and hence
lim
x→1

q(x)
x− 1 =

∏
i 6=j

(1− λiλj)
∏
i>1

(1− λ2
i ). (6.8)

Alternatively,
q(x)
x− 1 = p(−x)

x− 1
∏
i>1

p

(
x

λi

)
,

so that using l’Hôpital’s rule we find

lim
x→1

q(x)
x− 1 = d

dx
p(−x)

∣∣∣∣
x=1

∏
i>1

p(λ−1
i )

= −p′(−1)
∏
i>1

[
−λ−m−1

i (1− λ2
i )
]

= p′(−1)
[∏
i>1

λi

]−m−1∏
i>1

(1− λ2
i )

=
∏
i>1

(1− λ2
i ), (6.9)

where in the second line we used identity (6.3) and in the last line we used both
(6.7) and the fact that ∏

i>1
λi = λ−1

1 = λ1 = −1.

By comparing (6.8) and (6.9) the desired identity (6.2) follows.

As a conclusion of this computation we find:
Theorem 6.2.1. Let m ≥ 2 be an integer, then SpecR(N2m,2) is full.
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6.2.4 Odd rank at least 5

Let r = 2m+ 1 for some m ∈ N with m ≥ 2, and let n ∈ N be arbitrary. For
the polynomial

p2m+1,n(x) := x2m+1 + (n+ 1)xm+2 + (1− n)xm+1

+ (n− 1)xm − nxm−1 − 1,

with roots λ1, λ2, . . . , λ2m+1, we will show that R2(p2m+1,n(x)) = n + c(m),
where

c(m) = 2 + cos
(
m
π

3

)
+
√

3 sin
(
m
π

3

)

=


0 if m ≡ 4 (mod 6),
1 if m ≡ 3 (mod 6) or m ≡ 5 (mod 6),
3 if m ≡ 0 (mod 6) or m ≡ 2 (mod 6),
4 if m ≡ 1 (mod 6).

It then follows that R2(p2m+1,n−c(m)(x)) = n. The proof uses similar techniques
as for the case where r is even. Again, during the computations, we will simply
write p(x) instead of p2m+1,n(x).

As always, the first factor of R2(p(x)) is p(1) = 1, so it suffices to prove that∣∣∣∣∣∣
∏
i<j

(1− λiλj)

∣∣∣∣∣∣ = n+ c(m). (6.10)

We first calculate some specific values of p(x):

p(1) =
∏
i

(1− λi) = 1, (6.11)

p(−1) = −
∏
i

(1 + λi) = (−1)m(4n− 1)− 2. (6.12)

We find that both 1 and −1 are not roots of p(x). Also, for any root λi we have

−λ2m+1
i = (n+ 1)λm+2

i + (1− n)λm+1
i + (n− 1)λmi − nλm−1

i − 1,
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so

λ2m+1
i p(λ−1

i ) = −λ2m+1
i − nλm+2

i + (n− 1)λm+1
i

+ (1− n)λmi + (n+ 1)λm−1
i + 1

= λm+2
i + λm−1

i

= λm−1
i

(
1 + λ3

i

)
= λm−1

i (1 + λi)
(
e
π
3 i − λi

) (
e−

π
3 i − λi

)
,

giving
p(λ−1

i ) = λ−m−2
i (1 + λi)

(
e
π
3 i − λi

) (
e−

π
3 i − λi

)
. (6.13)

Again, we define a new polynomial q(x) as

q(x) :=
∏
i

p

(
x

λi

)
,

and once again
q(x) =

∏
i6=j

(x− λiλj)
∏
i

(x− λ2
i ).

Let us evaluate q(x) in x = 1:

q(1) =
∏
i 6=j

(1− λiλj)
∏
i

(
1− λ2

i

)
=
∏
i 6=j

(1− λiλj)
∏
i

(1− λi)
∏
i

(1 + λi)

= −p(−1)
∏
i 6=j

(1− λiλj) , (6.14)

where we used (6.11) and (6.12) in the last step.
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We evaluate q(x) in x = 1 again, this time using (6.13):

q(1) =
∏
i

p(λ−1
i )

=
∏
i

λ−m−2
i (1 + λi)

(
e
π
3 i − λi

) (
e−

π
3 i − λi

)

=
[∏

i

λj

]−m−2∏
i

(1 + λi)
∏
i

(
e
π
3 i − λi

)∏
i

(
e−

π
3 i − λi

)
= −p(−1)p

(
e
π
3 i
)
p
(
e−

π
3 i
)

= −p(−1)
∣∣p (eπ3 i)∣∣2 . (6.15)

Comparing equations (6.14) and (6.15) now gives∏
i 6=j

(1− λiλj) =
∣∣p (eπ3 i)∣∣2 ,

or by using that the product on the left-hand side is symmetric in the indices,
that ∣∣∣∣∣∣

∏
i<j

(1− λiλj)

∣∣∣∣∣∣ =
∣∣p (eπ3 i)∣∣ .

One may now evaluate
∣∣p (eπ3 i)∣∣ to obtain∣∣p (eπ3 i)∣∣ =

∣∣∣n+ 2 + cos
(
m
π

3

)
+
√

3 sin
(
m
π

3

)∣∣∣ = n+ c(m).

This proves the following theorem:

Theorem 6.2.2. Let m ≥ 2 be an integer, then SpecR(N2m+1,2) is full.

6.3 Rank 2

We are dealing with a polynomial p(x) given by

p(x) = x2 + a1x+ a0,

with a1 ∈ Z and a0 ∈ {−1, 1}. The polynomial p has two roots λ1, λ2, for
which λ1λ2 = a0 and λ1 + λ2 = −a1. The spectrum of N2,2 has already been
calculated in the section on nilpotency class 2.
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6.3.1 Nilpotency class 3

If the nilpotency class c is 3, then R3(p(x)) is given by

R3(p(x)) =

∣∣∣∣∣∣∣∣
∏
i

(1− λi)
∏
i<j

(1− λiλj)
∏
j<k
j≤i

(1− λiλjλk)

∣∣∣∣∣∣∣∣
∞

.

Again, let us assume this Reidemeister number is finite. From the calculations
we made for N2,2, we know that λ1λ2 = a0 = −1 and that the first two products
are a1 and 2 respectively. The third product becomes∏
j<k
j≤i

(1− λiλjλk) = (1− λ2
1λ2)(1− λ1λ

2
2) = (1 + λ1)(1 + λ2) = p(−1) = a1,

so all factors combined give R3(p(x)) = 2|a1|2∞, hence R3(p(x)) ∈ 2N2.

Defining the polynomials qn := x2 +nx−1 with n ∈ N, we find R3(qn(x)) = 2n2,
hence SpecR(N2,3) = 2N2 ∪ {∞}. This result was also obtained, using another
approach, in [Rom11, Section 3].

6.4 Rank 3

We are dealing with a polynomial p(x) given by

p(x) = x3 + a2x
2 + a1x+ a0,

with a1, a2 ∈ Z and a0 ∈ {−1, 1}. The polynomial p has three roots λ1, λ2, λ3,
for which

a0 = −λ1λ2λ3,

a1 = λ1λ2 + λ1λ3 + λ2λ3,

a2 = −λ1 − λ2 − λ3.

We have already computed the spectrum of N3,2 in the section on nilpotency
class 2.
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6.4.1 Nilpotency class 3

If the nilpotency class c is 3, then R3(p(x)) is given by

R3(p(x)) =

∣∣∣∣∣∣∣∣
∏
i

(1− λi)
∏
i<j

(1− λiλj)
∏
j<k
j≤i

(1− λiλjλk)

∣∣∣∣∣∣∣∣
∞

.

From our calculations for N3,2, we already know the first two products. We can
split the third product in two symmetric polynomials in the λi:∏

j<k
j≤i

(1− λiλjλk) = (1− λ1λ2λ3)2
∏
i 6=j

(1− λ2
iλj).

The first polynomial equals (1 + a0)2. If we assume that R3(p(x)) is finite, then
a0 = −λ1λ2λ3 must equal 1, and then this polynomial equals 4. Let us tackle
the second polynomial.

∏
i 6=j

(1− λ2
iλj) =

[∏
k

λk

]−2 ∏
i 6=j 6=k 6=i

(
λk − λ2

iλjλk
)

= (−1)−2
∏
i 6=k

(λk + λi)

=

∏
j

(−a2 − λj)

2

= p(−a2)2

= (1− a1a2)2.

Putting everything together we find

R3(p(x)) = 4
∣∣(2 + a1 + a2)(a1 − a2)(1− a1a2)2∣∣

∞ .

Substituting a = 1 + a1 and b = 1 + a2, we may rewrite this as

R3(p(x)) = 4|(a2 − b2)(a+ b− ab)2|∞,

and in particular, if a 6= ±b, then |a2−b2| ≥ |a|+|b|, hence R3(p(x)) ≥ 4(|a|+|b|).
This allows us to, in some sense, calculate the Reidemeister spectrum of N3,3.
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By calculating R3(p(x)) for all pairs (a, b) with |a| < |b| ≤ 250, we know that
the Reidemeister numbers less than 1000 are exactly 4, 12, 20, 32, 60, 64, 96,
108, 140, 192, 252, 300, 320, 324, 396, 480, 500, 572, 672, 700, 756, 780, 800,
896 and 980.

To give a general idea on what numbers can be in the spectrum, consider the
different values of a and b mod 2:

• a, b ≡ 0 mod 2. Then |a2−b2| is a multiple of 4 and a+b−ab is a multiple
of 2. Hence R3(p(x)) ∈ 64N.

• a ≡ 0, b ≡ 1 mod 2 or vice versa. Then both |a2 − b2| and a+ b− ab are
odd. Hence R3(p(x)) ∈ 4(2N− 1).

• a, b ≡ 1 mod 2. Then |a2 − b2| is a multiple of 8 and a + b − ab is odd.
Hence R3(p(x)) ∈ 32N.

Together with the calculated Reidemeister numbers mentioned earlier, we may
then state that SpecR(N3,3) ( 32N ∪ 4(2N− 1) ∪ {∞}.

6.4.2 Nilpotency class 4

If the nilpotency class c is 4, we require a total order on H2 (the elements of
length 2 in the Hall basis). Let us use < to denote the lexicographic order on
N2, i.e. (i, j) < (k, l) if and only if i < k or i = k and j < l. We then put a
total order on H2 by saying that [Xi, Xj ] < [Xk, Xl] if and only if (i, j) < (k, l).
The elements of H4 are then given by

• [Xi, [Xj , [Xk, Xl]]] with k < l, k ≤ j ≤ i,

• [[Xi, Xj ], [Xk, Xl]] with i < j, k < l, (i, j) < (k, l).

Thus R4(p(x)) is given by

R4(p(x)) = R3(p(x))

∣∣∣∣∣∣∣∣∣∣
∏

k≤j≤i
k<l

(1− λiλjλkλl)
∏
i<j
k<l

(i,j)<(k,l)

(1− λiλjλkλl)

∣∣∣∣∣∣∣∣∣∣
∞

.

Since the rank is 3, the two products at the end can be rewritten as the following
three products, based on the number of distinct roots in every factor.∏

i 6=j
(1− λ3

iλj)
∏
i<j

(1− λ2
iλ

2
j )
∏
j 6=i 6=k
j<k

(1− λ2
iλjλk)3.
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Because we are interested in finite Reidemeister numbers, we must assume that
a0 = −λ1λ2λ3 = 1. We start with the first product.

∏
i 6=j

(1− λ3
iλj) =

[∏
k

λk

]−2 ∏
i 6=j 6=k 6=i

(λk − λ3
iλjλk)

= (−1)−2
∏
i 6=k

(λk + λ2
i )

=
[∏

i

(λi + λ2
i )
]−1∏

i,k

(λk + λ2
i )

=
[∏

i

λi

]−1 [∏
i

(1 + λi)
]−1∏

i,k

(i
√
λk − λi)(−i

√
λk − λi)

= p(−1)−1
∏
k

p(i
√
λk)p(−i

√
λk).

We now calculate what p(i
√
λk)p(−i

√
λk) is for any root λk of f :

p(i
√
λk)p(−i

√
λk) = λ3

k + (a2
2 − 2a1)λ2

k + (a2
1 − 2a2)λk + 1

= (a2
2 − a2 − 2a1)λ2

k + (a2
1 − a1 − 2a2)λk

= (a2
2 − a2 − 2a1)λk

(
λk + a2

1 − a1 − 2a2

a2
2 − a2 − 2a1

)
.

Hence∏
i6=j

(1− λ3
iλj) = p(−1)−1(a2

2 − a2 − 2a1)3
∏
k

λk

(
λk + a2

1 − a1 − 2a2

a2
2 − a2 − 2a1

)

= (a2
2 − a2 − 2a1)3

a2 − a1
p

(
−a

2
1 − a1 − 2a2

a2
2 − a2 − 2a1

)
= −a5

1 − a5
2 − 3a4

1a2 − 3a1a
4
2 − a4

1 − a4
2 + a3

1a
3
2

+ 5a3
1a2 + 5a1a

3
2 + a3

1 + a3
2 + 10a2

1a
2
2 − a2

1a2

− a1a
2
2 − 7a2

1 − 7a2
2 − 13a1a2.
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The second product is less troublesome:

∏
i<j

(1− λ2
iλ

2
j ) =

[ 3∏
k=1

λk

]−2 ∏
i 6=k 6=j
i<j

(λ2
k − λ2

iλ
2
jλ

2
k)

= (−1)−2
∏
k

(λ2
k − 1)

=
∏
k

(1− λk)(−1− λk)

= p(1)p(−1)

= (a1 + a2 + 2)(a2 − a1).

Finally, for the third product, we have:∏
j 6=i6=k
j<k

(1− λ2
iλjλk)3 =

∏
i

(1 + λi)3

= −p(−1)3

= (a1 − a2)3.

All products together give us that

R4(p(x)) = 4
∣∣(a1 − a2)5(a1 + a2 + 2)2(1− a1a2)2(a5

1 + · · ·+ 13a1a2)
∣∣
∞ ,

or if we again substitute a = a1 + 1 and b = a2 + 1, we get

R4(p(x)) = 4
∣∣(a− b)3(a2 − b2)2(a+ b− ab)2(a5 + · · · − 94ab)

∣∣
∞ .

One can show that every such Reidemeister number is divisible by 32. The 10
smallest Reidemeister numbers are

(1) 32,

(2) 288,

(3) 416,

(4) 6400,

(5) 8192,
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(6) 69984,

(7) 139264,

(8) 559872,

(9) 980000,

(10) 1138688.

6.4.3 Nilpotency class 5

If the nilpotency class c is 5, then the elements of H5 are given by

• [Xi, [Xj , [Xk, [Xl, Xm]]]] with l < m, l ≤ k ≤ j ≤ i,

• [[Xi, Xj ], [Xk, [Xl, Xm]]] with i < j, l < m, l ≤ k.

Thus R5(p(x)) is given by

R5(p(x)) = R4(p(x))

∣∣∣∣∣∣∣∣∣∣
∏

l≤k≤j≤i
l<m

(1− λiλjλkλlλm)
∏
i<j
l<m
l≤k

(1− λiλjλkλlλm)

∣∣∣∣∣∣∣∣∣∣
∞

.

Since the rank is 3, the two products at the end can be rewritten as the following
four products, based on the number of distinct roots in every factor.∏

i 6=j
(1− λ4

iλj)
∏
i 6=j

(1− λ3
iλ

2
j )2

∏
j 6=i 6=k
j<k

(1− λ3
iλjλk)4

∏
i 6=k 6=j
i<j

(1− λ2
iλ

2
jλk)6.

Because we are interested in finite Reidemeister numbers, we must assume that
a0 = −λ1λ2λ3 = −1. The first factor is once again the hardest to express in
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terms of a1 and a2. We will work as follows:

∏
i 6=j

(1− λ4
iλj) =

[ 3∏
k=1

λk

]−2 ∏
i 6=j 6=k 6=i

(λk − λ4
iλjλk)

= (−1)−2
∏
i 6=k

(λk + λ3
i )

=
[∏

i

(λi + λ3
i )
]−1∏

i,k

(λk + λ3
i )

= −
[∏

i

λi(i− λi)(−i− λi)
]−1

·
∏
i,k

(− 3
√
λk − λi)(e

π
3 i 3
√
λk − λi)(e−

π
3 i 3
√
λk − λi)

= −
[∏

i

λi

]−1

p(i)−1p(−i)−1

·
∏
k

p(− 3
√
λk)p

(
e
π
3 i 3
√
λk

)
p
(
e−

π
3 i 3
√
λk

)
= |p(i)|−2

∏
k

p(− 3
√
λk)p

(
e
π
3 i 3
√
λk

)
p
(
e−

π
3 i 3
√
λk

)
.

For any root λk of p, the expression p(− 3
√
λk)p

(
e
π
3 i 3
√
λk
)
p
(
e−

π
3 i 3
√
λk
)
equals

− λ3
k + (a3

2 − 3a1a2 + 3)λ2
k + (−a3

1 + 3a1a2 − 3)λk + 1

= (a3
2 − 3a1a2 + a2 + 3)λ2

k + (−a3
1 + 3a1a2 + a1 − 3)λk + 2

= A

(
λk + B +

√
D

2A

)(
λk + B −

√
D

2A

)
,
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with

A = a3
2 − 3a1a2 + a2 + 3,

B = −a3
1 + 3a1a2 + a1 − 3,

D = −8a3
2 + 9a2

1a
2
2 − 6a4

1a2 + 6a2
1a2 + 6a1a2

− 8a2 + a6
1 − 2a4

1 + 6a3
1 + a2

1 − 6a1 − 15.

Hence:

∏
i 6=j

(1− λ4
iλj) = |p(i)|−2A3

∏
k

(
λk + B +

√
D

2A

)(
λk + B −

√
D

2A

)

= A3

(a2
1 + a2

2 − 2a1 − 2a2 + 2)p
(
−B +

√
D

2A

)
p

(
−B −

√
D

2A

)

= a7
1 + a7

2 + 2a6
1 + 2a6

2 − 4a5
1a

2
2 − 4a2

1a
5
2 − 7a5

1a2 − 7a1a
5
2 + a5

1

+ a5
2 + a4

1a
4
2 − 7a4

1a2 − 7a1a
4
2 + 7a4

1 + 7a4
2 + 17a3

1a
3
2

+ 14a3
1a

2
2 + 14a2

1a
3
2 − 10a3

1a2 − 10a1a
3
2 + 11a3

1 + 11a3
2

− 19a2
1a

2
2 − 22a2

1a2 − 22a1a
2
2 + 11a2

1 + 11a2
2 − a1a2 + 10a1

+ 10a2 + 4.
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The second product is still somewhat troublesome:

∏
i6=j

(1− λ3
iλ

2
j ) =

[∏
k

λk

]−2 ∏
i 6=j 6=k 6=i

(λ2
k − λ3

iλ
2
jλ

2
k)

= (−1)−2
∏
i 6=k

(λ2
k − λi)

=
[∏

i

(λ2
k − λk)

]−1∏
i,k

(λ2
k − λi)

=
[∏

i

λk(λk − 1)
]−1∏

i,k

(
√
λi − λk)(−

√
λi − λk)

= −p(1)−1
∏
i

p(
√
λi)p(−

√
λi).

We now calculate what p(
√
λi)p(−

√
λi) is for any root λk of p:

f(
√
λi)f(−

√
λi) = −λ3

i + (−2a1 + a2
2)λ2

i + (−a2
1 + 2a2)λi + 1

= (−2a1 + a2
2 + a2)λ2

i + (−a2
1 + a1 + 2a2)λi + 2

= A

(
λi + B +

√
D

2A

)(
λi + B −

√
D

2A

)
,

with

A = −2a1 + a2
2 + a2,

B = −a2
1 + a1 + 2a2,

D = a4
1 − 2a3

1 − 4a2
1a2 + a2

1 + 4a1a2 + 16a1 − 4a2
2 − 8a2.
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Hence:

∏
i 6=j

(1− λ3
iλ

2
j )2 = −p(1)−1A3

∏
i

(
λi + B +

√
D

2A

)(
λi + B −

√
D

2A

)

= − A3

a1 + a2 + 2p
(
−B +

√
D

2A

)
p

(
−B −

√
D

2A

)

= a5
1 + a5

2 − 3a4
1a2 − 3a1a

4
2 + a4

1 + a4
2 + a3

1a
3
2 − 5a3

1a2

− 5a1a
3
2 + a3

1 + a3
2 + 10a2

1a
2
2 + 3a2

1a2 + 3a1a
2
2

+ 3a2
1 + 3a2

2 − 13a1a2 − 2a1 − 2a2 + 4.

The third product is not too hard.∏
j 6=i 6=k
j<k

(1− λ3
iλjλk) =

∏
i

(1 + λ2
i )

=
∏
i

(i− λi)(−i− λi)

= p(i)p(−i)

= |p(i)|2

= a2
1 + a2

2 − 2a1 − 2a2 + 2.

Finally, the fourth product is quite easy as well.

∏
i 6=k 6=j
i<j

(1− λ2
iλ

2
jλk) =

[ 3∏
k=1

λk

]−1 ∏
i6=k 6=j
i<j

(λk − λ2
iλ

2
jλ

2
k)

= −
∏
k

(λk − 1)

= −p(1)

= −a1 − a2 − 2.
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All products together give us that

R5(p(x)) = 4
∣∣(a1 − a2)5(a1 + a2 + 2)8(1− a1a2)2(a2

1 + · · ·+ 2)4

(a5
1 + · · ·+ 13a1a2)(a5

1 + · · ·+ 4)2(a7
1 + · · ·+ 4)

∣∣
∞ ,

or if we again substitute a = a1 + 1 and b = a2 + 1, we get

R5(p(x)) = 4
∣∣(a+ b)3(a2 − b2)5(a+ b− ab)2(a2 + · · ·+ 8)4

(a5 + · · · − 94ab)(a5 + · · ·+ 18ab)2(a7 + · · ·+ 18ab)
∣∣
∞ .

One can show that every such Reidemeister number is divisible by 2048. The
10 smallest Reidemeister numbers are

(1) 1280000,

(2) 631535616,

(3) 9885304832,

(4) 646400000000,

(5) 11433202941952,

(6) 2304141516914688,

(7) 23464505849675776,

(8) 84943913980852224,

(9) 173876382269440000,

(10) 973098408800000000.

6.5 Direct products of free nilpotent groups

This section builds greatly on results obtained by K. Godecharle, as part of her
Master’s thesis [God16]. The goal of this thesis was to determine which direct
products Nr,c ×Nr′,c′ of two free nilpotent groups have the R∞-property.

The aim of this section is to generalise this to a general direct product N of
free nilpotent groups, and to obtain results for the Reidemeister spectrum as
well. This product N can be written as

N =
m∏
i=1

ni∏
j=1

Nri,ci ,
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where ni ∈ N and (ri, ci) 6= (rj , cj) if i 6= j. Moreover, by combining the abelian
factors (Zr × Zs = Zr+s), we may assume that at most one factor is abelian.

First, let us set some notation. We define the maps

ιi,j : Nri,ci → N : x 7→ (1, . . . , 1, x︸︷︷︸
j-th factor Nri,ci

, 1, . . . , 1),

pi,j : N → N : (x1,1, . . . , xi,j , . . . , xm,nm) 7→ (1, . . . , 1, xi,j , 1, . . . , 1).

Note that any automorphism ϕ ∈ Aut(N) is completely determined by the
morphisms

(ϕ ◦ ιi,j) : Nri,ci → N.

The following proposition is a direct consequence of combining [God16, Lemma
4.1.1], [God16, Lemma 4.2.1] and [God16, Lemma 4.3.2].
Proposition 6.5.1. For any i ∈ {1, . . . ,m}, there exists a permutation σi ∈ Sni
such that for every j ∈ {1, . . . , ni}, we have that

im(ϕ ◦ ιi,j) ⊆ Z1,1 × · · · × Zi,σi(j)−1 ×Nri,ci × Zi,σi(j)+1 × · · · × Zn,nn ,

where

Zk,l =
{
Z(Nrk,ck) if ck ≤ ci or ci = 1,
γci(Nrk,ck) if ck > ci > 1.

The next proposition again follows from results by Godecharle, in particular the
proofs of [God16, Theorem 4.1.2], [God16, Theorem 4.3.3], [God16, Theorem
4.3.1] and [God16, Theorem 4.3.4].
Proposition 6.5.2. Let ϕ be an automorphism of a direct product N of free
nilpotent groups, and let σi be the permutations as defined in proposition 6.5.1.
Define ϕ̄ as the morphism such that

pi,σi(j) ◦ ϕ ◦ ιi,j = ϕ̄ ◦ ιi,j .

Then ϕ̄ is an automorphism of N and

(ϕ)k = (ϕ̄)k
for all k = 1, . . . , c, with c = max{c1, . . . , cm} the nilpotency class of N .

From the above and theorem 4.1.6, me way conclude that R(ϕ) = R(ϕ̄). At the
same time, we may now decompose ϕ̄ as a product. Let σi,1, . . . , σi,li be the
cycles appearing in the disjoint cycle notation of σi, then

ϕ̄ =
m∏
i=1

li∏
j=1

ϕi,j ,
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with
ϕi,j = σi,j ◦ (ϕi,j,1 × ϕi,j,2 × · · · × ϕi,j,#σi,j ),

where the ϕi,j,k are automorphisms of Nri,ci . Thus,

R(ϕ̄) =
m∏
i=1

li∏
j=1

R(ϕi,j).

It then suffices to calculate Reidemeister numbers R(ϕi,j). Because a
Reidemeister number is invariant under conjugation by an automorphism,
we may assume that

σi,j = (#σi,j 1 2 · · · #σi,j − 1),

ϕi,j = σi,j ◦ (ψi,j × id× · · · × id),

with ψi,j ∈ Aut(Nri,ci). We will now show that

R(ϕi,j) = R(ψi,j).

For any k = 1, . . . , c, we have that (ϕi,j)k is of the form
1

. . .
1

A

 ,

for some invertible matrix A with integral coefficients. Now,

R((ϕi,j)k) = |det(1−


1

. . .
1

A

)|∞

= |det


1 −1

. . . . . .
. . . −1

−A 1

 |∞.
Row operations do not change the determinant of a matrix. So add the bottom
row of block matrix to the second to last, then add the (new) second to last



DIRECT PRODUCTS OF FREE NILPOTENT GROUPS 113

row to the third to last, and repeat until we add the new second row to the first
row. We then get

R((ϕi,j)k) = |det


1−A
−A 1
... . . .
−A 1

 |∞
= |det(1−A)|∞

= R((ψi,j)k),

and hence R(ϕi,j) = R(ψi,j). We thus obtain that

R(ϕ) =
m∏
i=1

li∏
j=1

R(ψi,j).

The following theorem now follows.

Theorem 6.5.3. Let N be the direct product of free nilpotent groups Nri,ci .
Then N has the R∞-property if and only if at least one of the factors Nri,ci has
the R∞-property.

Remark 6.5.4. In [God16, Section 4.2.1], it is claimed that the direct products
N2,4 × N2,4 and N2,5 × N2,5 do not have the R∞-property; an explicit
automorphism ϕ with (supposedly) finite Reidemeister number is given.
However, there is a mistake in the calculation of the eigenvalues of (ϕ)4, which
falsely implies that R((ϕ)4) <∞ and hence R(ϕ) <∞.

Theorem 6.5.5. Consider a direct product N of identical free nilpotent groups
Nr,c, say

N =
m∏
i=1

Nr,c,

with c > 1. Then the spectrum of N is given by

SpecR(N) =
m⋃
i=1


i∏

j=1
Rj

∣∣∣∣∣∣ Rj ∈ SpecR(Nr,c)

 .

Theorem 6.5.6. Consider a direct product N of free nilpotent groups given by

N =
m∏
i=1

ni∏
j=1

Nri,ci ,
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with (ri, ci) 6= (rj , cj) if i 6= j, and at most one factor Nri,ci is abelian. Then
the spectrum of N is given by

SpecR(N) =


m∏
i=1

Ri

∣∣∣∣∣∣ Ri ∈ SpecR

 ni∏
j=1

Nri,ci

 .

Example 6.5.7. Let us consider some easy examples of Reidemeister spectra
of direct products of free nilpotent groups.

(1) Let N =
∏m
i=1N2,2 for some m ∈ N. Then the Reidemeister spectrum of

N is given by
SpecR(N) = 2N ∪ {∞}.

(2) Let N =
∏m
i=1N2,3 for some m ≥ 2. Then the Reidemeister spectrum of

N is given by
SpecR(N) = 2N2 ∪ 4N2 ∪ {∞}.

(3) Let N = N2,2 ×N2,3. Then the Reidemeister spectrum of N is given by

SpecR(N) = 4N2 ∪ {∞}.

(4) Let N = N3,2 × Z2. Then the Reidemeister spectrum of N is full.



Part III

Almost-crystallographic
groups
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Chapter 7

Crystallographic groups with
diagonal holonomy Z2

In this chapter, we consider crystallographic groups with diagonal holonomy
F ∼= Z2, i.e. the crystallographic groups which are isomorphic to a group

Λn/k/ε :=
〈
Zn,




0
...
0
ε/2

 ,

(
−1k 0

0 1n−k

)
〉
,

with n ∈ N, 1 ≤ k ≤ n and ε ∈ {0, 1}. Note that Λn/n/1 ∼= Λn/n/0, all other
choices of parameters give rise to non-isomorphic groups. We have already
encountered two such groups in example 3.3.2, namely Λ1/1/0 and Λ2/1/1,
the (orbifold) fundamental groups of the closed interval and the Klein bottle
respectively.

The following proposition gives us more insight in the structure of these groups.
Proposition 7.0.1. The group Λ := Λn/k/ε has characteristic subgroups

• Λ
√
γ2(Λ) = 〈e1, . . . , ek〉,

• Z(Λ) = 〈ek+1, . . . , en〉.

In particular, if ε = 0, then
Λ ∼= Λk/k/0 × Zn−k,

with both factors characteristic.

117
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7.1 The R∞-property and Reidemeister spectrum

Most of the results in this section were published in [DKT19].

Just like for the finitely generated, torsion-free, nilpotent groups, let us start
by proving that any almost-crystallographic group has ∞ in its Reidemeister
spectrum, so that we may omit this calculation later.

Proposition 7.1.1. Let idΓ be the identity morphism on an almost-crystallo-
graphic group Γ. Then R(idΓ) =∞.

Proof. The restriction of idΓ to the translation subgroup N is of course the
identity idN . In proposition 5.0.1 we have proven that R(idN ) =∞, hence by
lemma 2.5.10(2) we find that R(idΓ) =∞ as well.

7.1.1 Non-Bieberbach groups

First, we will study the groups Λn/k/ε that are not torsion-free, i.e. those
with ε = 0. Using proposition 7.0.1, lemma 2.5.18 and the results obtained
in section 5.1, it suffices to calculate the Reidemeister spectra of the groups
Λk/k/0 ∼= 〈Zk, (0,−1k)〉. Let us first determine the automorphism group of
Λk/k/0.

Proposition 7.1.2. Let Λ := Λk/k/0. Then the map

Φ : Zk o GLk(Z)→ Aut(Λ) : (d,D) 7→ ξ(d/2,D)

is an isomorphism.

Proof. First, let us confirm the map is well-defined, i.e.

(d/2, D)(x,±1k)(d/2, D)−1 ∈ Λ

for any x ∈ Zk, where D ∈ GLk(Z) and d ∈ Zk. We have that

(d/2, D)(x,1k)(d/2, D)−1 = (Dx,1k),

(d/2, D)(x,−1k)(d/2, D)−1 = (Dx+ d,−1k),

hence the map is indeed well-defined. Second, it is straightforward to see that it
is a group homomorphism. Finally, to prove that it is actually an isomorphism,
we will give a homomorphism Ψ that is both a left and right inverse of Φ, i.e.

Φ ◦Ψ = idAut(Λ), Ψ ◦ Φ = idZkoGLk(Z) .
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If ϕ = ξ(d,D) ∈ Aut(Λ), then

(d,D)(x,1k)(d,D)−1 = (Dx,1k),

(d,D)(x,−1k)(d,D)−1 = (Dx+ 2d,−1k),

hence we must have that D ∈ GLk(Z) and 2d ∈ Zk. Thus, the map

Ψ : Aut(Λ)→ Zk o GLk(Z) : ξ(d,D) 7→ (2d,D)

is both a left and right inverse to Φ, which is therefore an isomorphism.

The following theorem gives us the Reidemeister spectrum of Λk/k/0.

Theorem 7.1.3. Let Λk/k/0 ∼= 〈Zk, (0,−1k)〉. Then

SpecR(Λk/k/0) =


{∞} if k = 1,
2N ∪ {3,∞} if k = 2,
N \ {1} ∪ {∞} if k ≥ 3.

The proof of this theorem is far from straightforward. We will first introduce
some lemmas and intermediate results.

Lemma 7.1.4. Let B ∈ Zn×n and b ∈ Zn. Define O(B, b) as the number
of solutions x̄ over Z2 of the linear system of equations B̄x̄ = b̄, where the
bar-notation stands for the element-wise projection to Z2. Then we have the
following:

• when det(B) is odd, O(B, b) = 1 (so is also odd),

• when det(B) is even, O(B, b) = 0, 2, 4, . . . , 2n (so is also even).

Lemma 7.1.5. Define an equivalence relation on Zn, determined by a matrix
B ∈ Zn×n and an element b ∈ Zn, where

∀x, y ∈ Zn : x ∼ y ⇐⇒ ∃z ∈ Zn : x− y = Bz or x+ y + b = Bz.

The number of equivalence classes is then given by

E(B, b) = |det(B)|∞ +O(B, b)
2 .

Proof. It is obvious from the definition that

x ∼ y ⇐⇒ y ∈ x+ im(B) or y ∈ −x− b+ im(B).
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From this it follows easily that the equivalence class of x, denoted by [x]∼,
equals

[x]∼ = (x+ im(B)) ∪ (−x− b+ im(B)). (7.1)
Moreover we have that either (x+im(B))∩(−x−b+im(B)) = ∅ or x+im(B) =
−x− b+ im(B). From example 2.5.9 we know there are |det(B)|∞ cosets of
im(B).

In general, elements x and −x− b will not belong to the same coset of im(B)
and the union in (7.1) will be a disjoint union. Let N denote the number of
cosets x+ im(B) such that x+ im(B) = −x− b+ im(B). Then these N cosets
form N equivalence classes for the relation ∼, while the other |det(B)|∞ −N
cosets come in pairs (x+im(B),−x−b+im(B)) and so determine the remaining
(|det(B)|∞ −N)/2 equivalence classes of ∼. Therefore

E(B, b) = |det(B)|∞ −N
2 +N = |det(B)|∞ +N

2 .

We now determine this number N . We have that x+ im(B) and −x− b+ im(B)
are actually the same coset if and only if

∃z ∈ Zn : 2x+ b = Bz. (7.2)

We have to count for how many cosets x+ im(B) this equation holds. For it to
hold, it must definitely do so over Z2, i.e. B̄z̄ = b̄. So we have O(B, b) solutions
z̄ over Z2. Next, we show that each solution z̄ over Z2 produces a unique coset
x + im(B) satisfying equation (7.2). Let z̄ be a solution of B̄z̄ = b̄. Choose
any lift z ∈ Zn of z̄, then Bz − b ∈ 2Zn, so there exists a unique x ∈ Zn such
that Bz − b = 2x. Hence for this x we have that equation (7.2) holds and so
x+ im(B) = −x− b+ im(B). However, the x we found depends on the choice
of the lift z. Let z′ ∈ Zn be another element projecting down to z̄ (so there
exists a c ∈ Zn with z − z′ = 2c) and giving rise to x′ satisfying 2x′ = Bz′ + b.
Then

2(x− x′) = Bz − b− (Bz′ − b) = 2Bc =⇒ x− x′ = Bc

=⇒ x+ im(B) = x′ + im(B),

from which we see that the choice of the lift z is of no influence on the coset
x+ im(B): while x and x′ may be different, they are both representatives of
one and the same coset.

Hence every solution z̄ gives rise to a unique coset with representative x
satisfying equation (7.2). Note that if det(B) 6= 0, each solution z̄ produces a
different coset: suppose by contradiction that two different solutions z̄1 and z̄2
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produce the same coset x + im(B). This means there exist z1, z2 ∈ Zn, with
z1 6= z2, such that 2x+ b = Bz1 = Bz2, but then B(z1 − z2) = 0 and therefore
det(B) = 0, which we assumed was not the case. So the number N of cosets
x+ im(B) satisfying equation (7.2) is exactly O(B, b) when det(B) 6= 0. So in
case det(B) 6= 0, we have that

E(B, b) = |det(B)|∞ +O(B, b)
2 .

If det(B) = 0, there are infinitely many cosets x+ im(B), so there are infinitely
many pairs of disjoint cosets that together form one equivalence class, and at
most O(B, b) cosets that form an equivalence class on their own. Hence E(B, b)
is infinite and the formula above also holds in this case.

Proposition 7.1.6. Let Λ = 〈Zn, (0,−1n)〉 and ϕ = ξ(d,D) ∈ Aut(Λ). Then
the Reidemeister number of ϕ is given by

R(ϕ) =
(

1
#F

∑
A∈F
|det(1n −AD)|∞

)
+O(1n −D, 2d). (7.3)

Proof. The holonomy group of Λ is given by F = {±1n} = Z(GLn(Z)). Let ϕ =
ξ(d,D) be an automorphism. Recall from proposition 7.1.2 that necessarily d ∈( 1

2Z
)n, whereasD can be any matrix in GLn(Z). Two elements (x,Ax), (y,Ay) ∈

Λ are Reidemeister equivalent if and only if there exists an element (z,Az) ∈ Λ
such that

(y,Ay) = (z,Az)(x,Ax)ϕ(z,Az)−1

= (z,Az)(x,Ax)(d,D)(z,Az)−1(d,D)−1

= (z +Azx+AzAxd−AxDz −Axd,AzAxDA−1
z D−1)

= (Azx+ (1n −AxD)z − (1n −Az)(Axd), Ax).

Thus a necessary requirement for (x,Ax) to be equivalent to (y,Ay) is that
Ax = Ay. So an element (x,1n) and an element (y,−1n) can never be in the
same Reidemeister class, and in particular R(ϕ) ≥ 2. Now for two elements
(x,A), (y,A) with the same holonomy part A, (x,A) ∼ (y,A) if and only if
there exists some z ∈ Zn such that

x− y = (1n −AD)z or x+ y + 2Ad = (1n −AD)z,
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where the first case corresponds to Az = 1n and the second case to Az = −1n.
From the definition of E(B, b) in lemma 7.1.5, we obtain that

R(ϕ) = E(1n −D, 2d) + E(1n +D,−2d)

= |det(1n −D)|∞ +O(1n −D, 2d)
2

+ |det(1n +D)|∞ +O(1n +D,−2d)
2 .

But over Z2, 1n −D = 1n +D and 2d = −2d, hence

O(1n −D, 2d) = O(1n +D,−2d).

So we find the proposed formula:

R(ϕ) = |det(1n −D)|∞ + |det(1n +D)|∞
2 +O(1n −D, 2d).

Proof of theorem 7.1.3. We will use the formula from proposition 7.1.6. Also,
recall from lemma 7.1.4 that O(B, b) is odd (in fact, it then necessarily equals
1) if and only if det(B) is odd.

First, let us consider n = 1. Then either D = 1 or D = −1, and det(1−D) or
det(1 +D) vanishes respectively, hence R(ϕ) =∞ and thus SpecR(Λ) = {∞}.

Next, we deal with the case n = 2. Since det(12 ±D) = 1 ± tr(D) + det(D)
and det(D) = ±1, we have that

det(12 ±D) ≡ tr(D) ≡ O(12 −D, 2d) (mod 2).

We now determine the value of R(ϕ):

1. det(D) = −1. Then the formula becomes

R(ϕ) = | tr(D)|∞ +O(12 −D, 2d).

Depending on the value of | tr(D)|, we have:

(a) | tr(D)| = 0, then R(ϕ) =∞,
(b) | tr(D)| ≥ 1, then R(ϕ) = | tr(D)|+O(12 −D, 2d) ∈ 2N.

2. det(D) = 1. Then the formula becomes

R(ϕ) = |2− tr(D)|∞ + |2 + tr(D)|∞
2 +O(12 −D, 2d).

Depending on the value of | tr(D)|, we have:
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(a) | tr(D)| = 0, then R(ϕ) = 2 +O(12 −D, 2d) ∈ 2N,
(b) | tr(D)| = 1, then R(ϕ) = 3,
(c) | tr(D)| = 2, then R(ϕ) =∞,
(d) | tr(D)| ≥ 3, then R(ϕ) = | tr(D)|+O(12 −D, 2d) ∈ 2N.

So indeed SpecR(Λ) ⊆ 2N ∪ {3,∞}. We now show that all these Reidemeister
numbers can actually be attained. To obtain an even Reidemeister number,
consider ϕm = ξ(d,Dm) with

Dm =
(

0 1
1 2m

)
, d =

(
1/2
0

)
,

with m ∈ N, then |det(12 −Dm)|∞ = |det(12 + Dm)|∞ = 2|m| and O(12 −
Dm, 2d) = 0, and hence R(ϕm) = 2|m|. Finally, to obtain Reidemeister number
3, consider ϕ = ξ(0,D) with

D =
(

0 −1
1 −1

)
,

then R(ϕ) = 3. Hence SpecR(Λ) = 2N ∪ {3,∞}.

Finally, consider the case n ≥ 3. As mentioned in the proof of proposition 7.1.6,
R(ϕ) ≥ 2. We show that every natural number greater than or equal to 2 can
be attained. Consider ϕm = ξ(0,Dm) with

Dm =



0 · · · · · · · · · 0 1

1 . . . ... 0

0 . . . . . . ...
...

... . . . . . . . . . ... 0

... . . . . . . 0 m
0 · · · · · · 0 1 m− 1


,

where m ∈ N. Then det(1n − Dm) = −2m + 1, det(1n + Dm) = (−1)n−1

and O(1n − Dm, 0) = 1, therefore R(ϕm) = m + 1 and thus SpecR(Λ) =
N \ {1} ∪ {∞}.

As we have now determined SpecR(Zn−k) and SpecR(Λk/k/0) for every k and n,
we quickly deduce SpecR(Λn/k/0) with the help of lemma 2.5.18. The spectra
can be found in table 7.1.
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n/k/ε SpecR(Λ)
1/1/0 {∞}
2/1/0 {∞}
2/2/0 2N ∪ {3,∞}
3/1/0 {∞}
3/2/0 4N ∪ {6,∞}
3/3/0 N \ {1} ∪ {∞}
4/1/0 {∞}
4/2/0 2N ∪ 3N ∪ {∞}
4/3/0 2N \ {2} ∪ {∞}
4/4/0 N \ {1} ∪ {∞}
n/1/0 {∞}
n/2/0 2N ∪ 3N ∪ {∞}
n/3/0 N \ {1} ∪ {∞}
...

...
n/n− 2/0 N \ {1} ∪ {∞}
n/n− 1/0 2N \ {2} ∪ {∞}
n/n/0 N \ {1} ∪ {∞}

Table 7.1: Reidemeister spectra of the groups Λn/k/0

7.1.2 Bieberbach groups

Next, we consider the Bieberbach groups, i.e. exactly those groups Λn/k/ε with
ε = 1 and 1 ≤ k ≤ n− 1. We will start with the case k = 1.

Theorem 7.1.7. The groups Λn/1/1 with n ≥ 2 all have the R∞-property.

Proof. Let n ≥ 2. From proposition 7.0.1 it follows that Λn/1/1/Z(Λn/1/1) ∼=
Λ1/1/1 ∼= Λ1/1/0. As shown in theorem 7.1.3, this (non-Bieberbach) quotient
group has the R∞-property, so by corollary 2.5.12 Λn/1/1 has the R∞-property
as well.

Before we can discuss the groups Λn/k/1 with k > 1, we need the following
lemma.

Lemma 7.1.8. Let D ∈ Zn×n. Then |det(1−D)|+ |det(1 +D)| ∈ 2N0.

Proof. When projected element-wise to Z2, the matrices 1 − D and 1 + D
are identical, hence their determinants have the same parity. As the absolute
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values have no influence on this parity, the sum of the absolute values of the
determinants must be even.

Theorem 7.1.9. The groups Λn/k/1 with 2 ≤ k ≤ n− 1 have SpecR(Λn/k/1) =
2N ∪ {∞}.

Proof. For ease of notation, set Λ := Λn/k/1 and let ϕ = ξ(d,D) ∈ Aut(Λ). Due
to proposition 7.0.1, D must be of the form D =

(
D1 0
0 D2

)
, where D1 ∈ GLk(Z)

and D2 ∈ GLn−k(Z).

Setting d = (d1, d2, . . . , dn), one can calculate that

ϕ(


0
...
0

1/2

 ,

(
−1k 0

0 1n−k

)
) = (



2d1
...

2dk

D2


0
...
0

1/2




,

(
−1k 0

0 1n−k

)
).

Thus, 2di ∈ Z for all i = 1, . . . , k and there must exist integers ak, ak+1, . . . , an
such that D2 is of the following form:

D2 =


∗ · · · ∗ 2ak+1

2ak+2
...

...
...

2an−1
∗ · · · ∗ 1 + 2an

 . (7.4)

Since Λn/k/1 is a Bieberbach group, we may apply theorem 4.2.6:

R(ϕ) = 1
2(
∣∣∣∣det

(
1n −

(
D1 0
0 D2

))∣∣∣∣
∞

+
∣∣∣∣det

(
1n −

(
−D1 0

0 D2

))∣∣∣∣
∞

)

= 1
2 |det(1n−k −D2)|∞ (|det(1k −D1)|∞ + |det(1k +D1)|∞) .

The last column of 1n−k−D2 is (−2ak+1, . . . ,−2an) and therefore |det(1n−k−
D2)|∞ ∈ 2N ∪ {∞}; from lemma 7.1.8 we know that the |det(1k − D1)|∞ +
|det(1k + D1)|∞ ∈ 2N ∪ {∞}. Combining this information, we obtain that
R(ϕ) ∈ 2N ∪ {∞}.

We now construct a family of automorphisms ϕm such that R(ϕm) = 2m with
m ∈ N. Set ϕm = ξ(0,Dm) where Dm1 and Dm2 are chosen as follows:
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• The matrix Dm1:

– If k = 2, take
Dm1 =

(
0 1
1 m

)
.

– If k ≥ 3, take

Dm1 =



0 · · · · · · · · · 0 1

1 . . . ... 0

0 . . . . . . ...
...

... . . . . . . . . . ... 0

... . . . . . . 0 m
0 · · · · · · 0 1 m− 1


.

In both cases |det(1k −Dm1)|+ |det(1k +Dm1)| = 2m.

• The matrix Dm2:

– If n− k = 1, take Dm2 = −1.
– If n− k = 2, take

Dm2 =
(

1 2
1 1

)
.

– If n− k ≥ 3, take

Dm2 =



0 · · · · · · · · · 0 1 0

1 . . . ... 0
...

0 . . . . . . ...
...

...
... . . . . . . . . . ...

...
...

... . . . . . . 0 0
...

... . . . 1 −1 0
0 · · · · · · · · · 0 0 −1


.

In all three cases |det(1−Dm2)| = 2.

We have now found a family of automorphisms ϕm such that R(ϕm) = 2m for
every m ∈ N. Hence SpecR(Λ) = 2N ∪ {∞}.
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7.2 Reidemeister zeta functions

Since the rationality of Reidemeister zeta functions of (almost-)Bieberbach
groups is known (see theorem 4.2.8), we can restrict ourselves to non-Bieberbach
groups in this section. Most of the results presented in this section were published
in [DTV18].

As shown in proposition 7.0.1, a non-torsion-free crystallographic group with
diagonal holonomy Z2 is of the form

Λn/k/0 = Λk/k/0 × Zn−k,

with both factors characteristic. Because of example 2.6.7 and corollary 2.6.9,
it suffices to find the Reidemeister zeta functions of Λk/k/0.

Let ϕ = ξ(d/2,D) be an automorphism of Λ := Λn/n/0, where d ∈ Zn and
D ∈ GLn(Z). Let λ1, . . . , λn be the eigenvalues of D. We may then write, using
proposition 7.1.6, that

R(ϕ) =
|
∏n
i=1(1− λi)|∞ + |

∏n
i=1(1 + λi)|∞

2 +O(1n −D, d)

=
∏n
i=1 |1− λi|∞ +

∏n
i=1 |1 + λi|∞

2 +O(1n −D, d).

Similarly, for any k ∈ N we have

R(ϕk) =
∏n
i=1 |1− λki |∞ +

∏n
i=1 |1 + λki |∞

2 +O

(
1n −Dk,

[
k−1∑
i=0

Di

]
d

)
.

We will deal with both terms separately. For the first term, we have the following
lemma, which is very similar to what we did in example 2.6.7.

Lemma 7.2.1. Let λ1, . . . , λn be the eigenvalues of some matrix D ∈ GLn(Z).
Then there exist non-negative integers a, b ∈ N0 and complex numbers
µ1, . . . , µa, ν1, . . . , νb such that∏n

i=1 |1− λki |+
∏n
i=1 |1 + λki |

2 = µk1 + µk2 + · · ·+ µka − νk1 − · · · − νkb

for each k ∈ N.

Proof. We now consider 4 cases:

1. λi ∈ R and |λi| < 1. Then |1− λki | = 1k − λki and |1 + λki | = 1k + λki ,
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2. λi ∈ R and λi < −1. Then |1 − λki | = −(−1)k + (−λi)k and |1 + λki | =
1k + λki ,

3. λi ∈ R and λi > 1. Then |1−λki | = −1k+λki and |1+λki | = (−1)k+(−λi)k.

4. λi ∈ C \ R. Then its complex conjugate λ̄i is an eigenvalue of D as well,
and

|1± λki ||1± λ̄ki | = 1k ± λki ± λ̄ki + |λi|2k.

Thus, we can expand both products
∏n
i=1 |1−λki | and

∏n
i=1 |1 +λki | and obtain

a sum of terms of the form ±λki1λ
k
i2
· · ·λkip = ±(λi1λi2 · · ·λip)k (where p varies

between 0 and n). Note that all of these terms are, up to sign, k-th powers
of terms which themselves do not depend on k. These two products will have
exactly the same terms, though the sign of said terms may differ. If two
matching terms have the same sign, their sum will have a factor 2 that cancels
out with the 2 in the denominator; and if two matching terms have the opposite
sign, they cancel out each other. So the entire term is indeed a sum and/or
difference of k-th powers of fixed terms (not depending on k).

With this lemma proven, it is now easy to show the rationality of the first term.

Lemma 7.2.2. Let λ1, . . . , λn be the eigenvalues of some matrix D ∈ GLn(Z).
The function

exp
∞∑
k=1

∏n
i=1 |1− λki |+

∏n
i=1 |1 + λki |

2
zk

k

is a rational function.

Proof. We invoke the previous lemma to obtain

exp
∞∑
k=1

∏n
i=1 |1− λki |+

∏n
i=1 |1 + λki |

2
zk

k

= exp
∞∑
k=1

zk

k

(
a∑
i=1

µki −
b∑
i=1

νki

)

= exp
(

a∑
i=1

∞∑
k=1

µki
k
zk −

b∑
i=1

∞∑
k=1

νki
k
zk

)

= exp
(
−

a∑
i=1

log(1− µiz) +
b∑
i=1

log(1− νiz)
)
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=
∏b
i=1(1− νiz)∏a
i=1(1− µiz)

,

which is a rational function.

The second term is far less straightforward. We first introduce a particular
family of sequences.
Definition 7.2.3. We define the sequence ai = (aik)k∈N by

aik =
{
i if k ≡ 0 mod i,
0 otherwise.

The theorem below is essentially what we need to prove the rationality for the
second term.
Theorem 7.2.4. Let D ∈ GLn(Z) and d ∈ Zn. Then there exist l ∈ N0 and
c1, . . . , cl ∈ N0 such that

O

(
1n −Dk,

[
k−1∑
i=0

Di

]
d

)
= c1a

1
k + c2a

2
k + · · ·+ cla

l
k

for all k ∈ N.

Before we really start with the proof of this theorem, let us note that we do not
need full information on the pair (d,D), but we only need to know their natural
projections modulo 2, namely the pair (d̄, D̄), see lemma 7.1.4. To avoid having
to write a bar above d and D each time we will assume from now onwards that
D ∈ GLn(Z2) and d ∈ Zn2 .

We will apply a change of base such that D has a more suitable form to work
with. With that in mind, we first need the following matrix decomposition.
Lemma 7.2.5. Let N be a nilpotent, upper-triangular k × k-matrix and D an
invertible l × l-matrix over a field F. For any k × l-matrix B, there exists a
(unique) k × l-matrix X such that

NX +XD = B. (7.5)

Proof. We prove this by induction on k. If k = 1, then N = 0 and X = BD−1.
Now let k ≥ 2 and suppose that the lemma holds for smaller values of k. Then
N , X and B can be seen as block matrices of the forms

N =

 N1 N2

0 · · · 0 0

 , X =

 X1

X2

 , B =

 B1

B2

 ,
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where N1 is a nilpotent, upper-triangular (k − 1) × (k − 1)-matrix, N2 is a
(k − 1) × 1-matrix, X1 and B1 are (k − 1) × l-matrices and X2 and B2 are
1× l-matrices. We can then split up (7.5) in the system of equations{

N1X2 +N2X2 +X1D = B1,

X2D = B2.

The second equation gives us X2 = B2D
−1, and substituting this into the first

equation gives
N1X1 +X1D = B1 −N2B2D

−1.

By applying the induction hypothesis, we get a solution X1. Together with X2
we have the full solution X of (7.5).

This decomposition allows us to put D in the required form.

Lemma 7.2.6. Let D be an n× n-matrix over a field F, then there exists an
invertible matrix P such that

PDP−1 =
(
D1 0
0 D2

)
,

where D1 is a unipotent, upper-triangular matrix, and D2 does not have
eigenvalue 1 (and hence 1−D2 is invertible).

Proof. Consider the linear map

f : Fn → Fn : ~x 7→ D~x.

It suffices to show that there exists a basis such that f has the required form
with respect to this basis. Suppose that D has eigenvalue 1, then take an
eigenvector corresponding to this eigenvalue and extend to a basis. With respect
to this basis, we have

D ∼


1 ∗ · · · ∗
0
0 D′

0

 .

We can then interpretD′ as a linear map Fn−1 → Fn−1 and proceed by induction
to obtain

D ∼
(
D1 B
0 D2

)
,

with D1 a unipotent upper-triangular k× k-matrix and D2 an l× l-matrix with
no eigenvalue 1. Hence D1−1k is a nilpotent upper-triangular k×k-matrix and
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1l −D2 is an invertible l× l-matrix. By lemma 7.2.5 there exists a k× l-matrix
X such that

(D1 − 1k)X +X(1l −D2) = B,

which in turn gives(
1k X
0 1l

)(
D1 B
0 D2

)(
1k X
0 1l

)−1
=
(
D1 0
0 D2

)
,

as required.

From this point onwards, we will work with F = Z2. To any pair (d,D), with
d ∈ Zn2 and D ∈ GLn(Z2), we associate the sets Vk and Wk defined as

Vk =
{
x ∈ Zn2

∣∣∣∣∣ (1−Dk)x =
[
k−1∑
i=0

Di

]
d

}
,

Wk = {x ∈ Vk | x /∈ Vl ∀l ∈ {1, 2, . . . , k − 1}} .

Let vk = |Vk| = O
(
1n −Dk,

[∑k−1
i=0 D

i
]
d
)

and wk = |Wk|. The Wk are
disjoint sets and their union is all of Zn2 . Hence, it is obvious that only for a
finite number of values of k we have that wk 6= 0, since their sum equals 2n. To
prove theorem 7.2.4, we need to determine what the sequence v = (vk)k∈N is.
As we have split up D in a unipotent block D1 and a block with no eigenvalue
1, D2, we will first restrict to these two blocks.

If D has no eigenvalue 1.

Let us first assume that D does not have eigenvalue 1, and therefore 1−D is
invertible. Then there exists some d0 such that (1−D)d0 = d, and hence we
can state [

k−1∑
i=0

Di

]
d =

[
k−1∑
i=0

Di

]
(1−D)d0 = (1−Dk)d0,

so we are actually searching for solutions of the linear system given by

(1−Dk)(x− d0) = 0.

The “shift” by d0 has no effect on the number of solutions of this system, so we
may assume without loss of generality that

Vk =
{
x ∈ Zn2 | (1−Dk)x = 0

}
.

We will now formulate and prove some properties of these sets Vk and Wk.
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Lemma 7.2.7. Let k < l. If x ∈ Vk ∩ Vl, then x ∈ Vl−k.

Proof. Let x ∈ Vk ∩ Vl. Then

0 = (1−Dl)x

= (1−Dk +Dk −Dl)x

= (1−Dk)x+Dk(1−Dl−k)x

= Dk(1−Dl−k)x,

and becauseD is invertible we are left with (1−Dl−k)x = 0, hence x ∈ Vl−k.

Corollary 7.2.8. Let k < l. If x ∈ Vk ∩ Vl, then

(1) x ∈ Vl mod k,

(2) x ∈ Vgcd(k,l).

Proof. The first property follows by repeatedly applying lemma 7.2.7. The
second property follows by repeatedly applying the first property.

On the other hand, we also have

Lemma 7.2.9. If x ∈ Vk, then x ∈ Vkl for all l ∈ N.

Proof. All we have to do is split (1−Dkl) in suitable factors:

(1−Dkl)x = (1+Dk + · · ·+D(l−1)k)(1−Dk)x = 0,

because (1−Dk)x = 0.

In conclusion, we can state that Vk is exactly the disjoint union

Vk =
⊔
d|k

Wd.

and hence we get
vk =

∑
d|k

wd =
∑
d|k

wd
d

(ad)k,
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where we used that the k-th element in the sequence ad is d, since k is a multiple
of d. Now, since (ad)k = 0 when d does not divide k we have that

vk =
k∑
d=1

wd
d

(ad)k =
∞∑
d=1

wd
d

(ad)k.

So we indeed seem to have a sum of sequences ad, but we still require the
coefficients of this sum to be integers.

Lemma 7.2.10. k divides wk for any k ∈ N.

Proof. We define an action of Z on Wk by

Z×Wk →Wk : (z, x) 7→ z · x = Dzx.

First, we verify that this action is well-defined. If x ∈Wk, then

(1−Dk)Dzx = Dz(1−Dk)x = 0,

hence Dzx ∈ Vk. On the other hand, if for some l < k we were to have that
Dzx ∈ Vl, then

0 = (1−Dl)Dzx = Dz(1−Dl)x.

Because D is invertible, this would mean that (1−Dl)x = 0, or in other words
x ∈ Vl. This is a contradiction since x ∈Wk. In fact, kZ acts trivially on Wk

since
(1−Dk)x = 0 ⇐⇒ Dkx = x,

so we can redefine the original action as an action of Zk on Wk, which is a free
action. Indeed, suppose that for some x ∈Wk we have that Dlx = x, where l
is not a multiple of k. Then x ∈ Vl and therefore x ∈ Vl mod k. This obviously
contradicts that x ∈Wk.

By the orbit-stabiliser theorem, we can now partition Wk into finitely many
orbits of length k, and thus k divides wk.

Putting everything together now, we can conclude that the sequence v = (vk)k∈N
equals

v =
∞∑
k=1

wk
k
ak,

which has integer coefficients since k divides wk. Recall that this is actually a
finite sum, since only finitely many of the wk are non-zero.



134 CRYSTALLOGRAPHIC GROUPS WITH DIAGONAL HOLONOMY Z2

If D is unipotent upper-triangular.

For the case where D is unipotent upper-triangular, we will have very similar
results as the previous case. The main difference here will be that we will end
up working mainly with powers of 2 as opposed to arbitrary k. Because we are
working over Z2, we have the following two statements:
Remark 7.2.11. If m is an odd positive integer, then for any integers
k1, k2, . . . , km, we have that Dk1 + Dk2 + · · · + Dkm is unipotent and upper-
triangular (and hence invertible).
Remark 7.2.12. If D is a unipotent, upper-triangular, n × n-matrix, then
D2n−1 = 1n, since 1n −D2n−1 = (1n −D)2n−1 = 0. This means that V2n = Zn2 .

The next lemma makes clear why we only really need to care about powers of 2.
Lemma 7.2.13. Decompose k as k = 2rm with m odd. Then Vk = V2r .

Proof. Let M = 1 + D2r + D2·2r + · · · + D(m−1)2r , which is invertible (see
remark 7.2.11). Then

1−Dk = 1−D2rm

= (1+D2r +D2·2r + · · ·+D(m−1)2r )(1−D2r )

= M(1−D2r ),

and [
k−1∑
i=0

Di

]
d =

[2rm−1∑
i=0

Di

]
d = M

[2r−1∑
i=0

Di

]
d.

We then obtain

(1−Dk)x =
[
k−1∑
i=0

Di

]
d ⇐⇒ M(1−D2r )x = M

[2r−1∑
i=0

Di

]
d

⇐⇒ (1−D2r )x =
[2r−1∑
i=0

Di

]
d,

and therefore Vk = V2r .

We conclude that wk = 0 if k is not a power of 2. Now let r0 be the smallest
power of 2 such that w2r0 6= 0, then there exists some d0 such that

(1−D2r0 )d0 =
[2r0−1∑
i=0

Di

]
d.
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Similarly to the other case, the number of elements v2r0 = w2r0 in V2r0 = W2r0
is equal to the number of solutions of the system

(1−D2r0 )(x− d0) = 0.

Lemma 7.2.14. 2r0 divides w2r0 .

Proof. As we are working over Z2, we have that 1−D2r0 = (1−D)2r0 . Since
D is unipotent upper-triangular, 1−D is nilpotent upper-triangular, and hence
taking the 2r0 -th power gives a matrix where the bottom r0 rows are zero. Thus
wr0 = | ker(1−D2r0 )| is a multiple of 2r0 .

We have already shown that if r = r0, we may work with the linear system
(1−D2r)(x− d0) = 0. This is, however, rather useless if we do not have this
for every r. For r > r0 we have

(1−D2r )x =
[2r−1∑
i=0

Di

]
d

= (1+D2r0 +D2·2r0 + · · ·+D(2r−r0−1)2r0 )
[2r0−1∑
i=0

Di

]
d

= (1+D2r0 +D2·2r0 + · · ·+D(2r−r0−1)2r0 )(1−D2r0 )d0

= (1−D2r )d0.

So indeed we end up with the linear system

(1−D2r )(x− d0) = 0,

and again we may assume without loss of generality that d0 = 0. Now that we
have this system for all r ≥ r0, we also want to generalise lemma 7.2.14 to all
r > r0.

Lemma 7.2.15. 2r divides w2r for all r > r0.

Proof. Analogously to lemma 7.2.10, we have an action of Z2r on W2r . Suppose
this action is not free. As subgroups of Z2r are generated by divisors of 2r,
there then exist some x ∈ W2r and some r′ < r such that D2r

′

x = x, which
contradicts that x ∈W2r . So 2r divides w2r .
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The following steps are identical to the case where D has no eigenvalue 1, hence
we leave these to the reader and we can conclude that also in this case

v =
∞∑
k=1

wk
k
ak,

where wk
k is an integer and the sum is in fact finite.

The general case

We now have all the necessary tools to prove theorem 7.2.4.

Proof of theorem 7.2.4. Earlier in this subsection we proved that, after a change
of basis, D is a block matrix of the form

D =
(
D1 0
0 D2

)
,

such that D1 is unipotent upper-triangular and D2 has no eigenvalue 1. We
may split the vector d in two pieces d1 and d2 matching the sizes of D1 and D2
respectively. So for any k, we have two linear systems of equations given by(1−Dk

1 )x1 =
[∑k−1

i=0 D
i
1

]
d1,

(1−Dk
2 )x2 =

[∑k−1
i=0 D

i
2

]
d2.

The total number of solutions x is of course the number of pairs (x1, x2). In
the previous subsections we have shown that both “subsystems” give sequences

v = (v1, v2, v3, . . . ),

v′ = (v′1, v′2, v′3, . . . ),

that are linear combinations of the sequences ai, say v =
∑n
k=1 cka

k and
v′ =

∑m
l=1 c

′
la
l. To solve the linear system as a whole, we are actually looking

for the sequence v · v′ given by the component-wise multiplication of v and v′:

v · v′ = (v1v
′
1, v2v

′
2, v3v

′
3, . . . ).

Using that ak · al = gcd(k, l)alcm(k,l), we get

v · v′ =
(

n∑
k=1

cka
k

)(
m∑
l=1

c′la
l

)
=
∑
k,l

ckc
′
l gcd(k, l)alcm(k,l),

and since ckc′l gcd(k, l) is a non-negative integer for all k and l, this proves the
theorem.
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Corollary 7.2.16. Let D ∈ GLn(Z) and d ∈ Zn. The function

exp
∞∑
k=1

O

(
1n −Dk,

[
k−1∑
i=0

Di

]
d

)
zk

k

is a rational function.

Proof. From theorem 7.2.4 we know that

O

(
1n −Dk,

[
k−1∑
i=0

Di

]
d

)
=

l∑
i=1

cia
i
k,

for certain c1, . . . , cl. Hence:

exp
∞∑
k=1

O

(
1n −Dk,

[
k−1∑
i=0

Di

]
d

)
zk

k
= exp

∞∑
k=1

[
l∑
i=1

cia
i
k

]
zk

k

= exp
l∑
i=1

ci

[ ∞∑
k=1

aik
zk

k

]

=
l∏
i=1

exp
[
−ci log(1− zi)

]

=
l∏
i=1

(1− zi)−ci ,

which is a rational function.

With both terms taken care of, we can now state the following theorem:

Theorem 7.2.17. Let ϕ be an automorphism of the group Λ = 〈Zn, (0,−1n)〉
such that R(ϕ) < ∞. Then there exist a, b, l ∈ N0, µ1, . . . , µa, ν1, . . . , νb ∈ C
and c1, . . . , cl ∈ N0 such that

Rz(ϕ) =
∏b
i=1(1− νiz)∏a

i=1(1− µiz)
∏l
i=1(1− zi)ci

.

The radius of convergence r of this function is given by

r = 1
max{1, |µ1|, . . . , |µa|, |ν1|, . . . , |νb|}
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if at least some ci 6= 0, otherwise it is given by

r = 1
max{|µ1|, . . . , |µa|, |ν1|, . . . , |νb|}

.

Finally, we may then conclude that all Reidemeister zeta functions of non-
torsion-free crystallographic groups with diagonal holonomy Z2 are rational.
Theorem 7.2.18. Let ϕ = ϕ1 × ϕ2 be an automorphism of a non-torsion-free
crystallographic group Λn/k/0 ∼= Λk/k/0×Zn−k with diagonal holonomy Z2, such
that R(ϕ) <∞. Then Rϕ(z) = Rϕ1(z) ∗Rϕ2(z), the convolution of Rϕ1(z) and
Rϕ2(z), is a rational function.

Combining this with theorem 4.2.8 gives finally gives us the following.
Corollary 7.2.19. Let ϕ be an automorphism of a crystallographic group with
diagonal holonomy Z2. If Rϕ(z) exists, it is a rational function.

While we have now determined the rationality, we have not yet proven that
these Reidemeister zeta functions actually exist.
Theorem 7.2.20. Let Λ = Λn/k/ε be a crystallographic group with diagonal
holonomy Z2. Then it admits Reidemeister zeta functions of automorphisms if
and only if k ≥ 2 and n− k 6= 1.

Proof. Let ϕ = ξ(d,D) be an automorphism, then D must necessarily be of the
form

D =
(
D1 0
0 D2,

)
,

with D1 ∈ GLk(Z), D2 ∈ GLn−k(Z). Moreover, if Λ is a Bieberbach group,
then D2 must be of the form (7.4) as well.

First, consider the case k = 1. Then by theorem 7.1.3 Λ has the R∞-property,
and therefore does not admit Reidemeister zeta functions of automorphisms.

Second, consider the case n− k = 1. Then D2 is either 1 or −1, so either way
D2

2 equals 1. But then
det(1n −D2) = det(1n−1 −D2

1) det(1−D2
2) = 0,

hence R(ϕ2) =∞ and thus Rϕ(z) does not exist.

Finally, assume that n− k 6= 1 and k ≥ 2. Let M2 ∈ GL2(Z) and M3 ∈ GL3(Z)
be the matrices

M2 :=
(

1 2
1 1

)
, M3 :=

0 1 2
1 0 0
1 0 1
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and note that all of their eigenvalues λ satisfy |λ| 6= 1. Depending on whether
k and n− k are even or odd, take D1 and D2 as

Di =


M2

M2
. . .

M2

 or Di =


M2

M2
. . .

M2
M3

 .

In the case n − k = 0, there is no D1 and we simply have that D = D2. Let
λ1, . . . , λn be the eigenvalues of D, which will satisfy |λki | 6= 1 for all k ∈ N, and
thus

det(1n ±Dk) =
n∏
i=1
|1± λki | 6= 0.

By theorem 4.2.5 we then find that R(ϕk) < ∞. Next, we study the radius
of convergence. Let λmax be the eigenvalue with the largest modulus, which
definitely satisfies |λmax| > 1. From proposition 2.5.14 we know that

R(ϕk) ≤ |det(1n −D)|+ |det(1n +D)|

=
n∏
i=1
|1− λki |+

n∏
i=1
|1 + λki |

≤ 2
n∏
i=1

(
|λi|k + 1

)
≤ 2

(
|λmax|k + 1

)n
≤ 2

(
2|λmax|k

)n
= 2n+1|λmax|nk,

hence for k ≥ 2n+1 we have that

R(ϕk)
k

≤ 2n+1|λmax|nk

k
≤ |λmax|nk.

Thus, the radius of converge r satisfies

r−1 = lim sup
k→∞

k

√
R(ϕk)
k

≤ |λmax|n,

hence r ≥ |λmax|−n > 0 and therefore Rϕ(z) exists.
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We conclude this section with an example of a Reidemeister zeta function on
Λ2/2/0.

Example 7.2.21. Let Γ = 〈Z2, (0,−12)〉 and let F ∈ GL2(Z) be the matrix

F :=
(

1 1
1 0

)
,

which is also known as the Fibonacci matrix, as its powers generate the Fibonacci
sequence:

Fn =
(
Fk+1 Fk
Fk Fk−1,

)
where Fk is the k-th Fibonacci number, i.e.

• F0 = 0,

• F1 = 1,

• Fk+1 = Fk + Fk−1.

Consider the automorphism ϕ = ξ(d/2,F ) for any d ∈ Z2. One can calculate that

|det(12 ± F k)| = φk + (1− φ)k ± (1 + (−1)k),

with φ the golden ratio, and

O

(
12 − F k,

[
k−1∑
i=0

F

]
d

)
=
{

4 if k ≡ 0 mod 3,
1 if k ≡ 1, 2 mod 3.

Thus,

Rϕ(z) = exp
∞∑
k=1

R(ϕk)
k

zk

= exp
∞∑
k=1

φk + (1− φ)k + a1
k + a3

k

k
zk

= 1
(1− φz)(1− (1− φ)z)(1− z)(1− z3)

= 1
(1− z − z2)(1− z)(1− z3) ,

which is indeed a rational function and has radius of convergence 1/φ.



Chapter 8

Generalised Hantzsche-Wendt
groups

This chapter is largely based on [DDP09] and extends the results of that paper.

8.1 Definitions and properties

Definition 8.1.1. A square n × n-matrix (aij)ij is called circulant if aij =
ai+1 j+1 for all 1 ≤ i, j ≤ n, where the indices are taken modulo n when
necessary. In other words, the j + 1-th row of the matrix is the j-th row shifted
one position to the right.

Definition 8.1.2. Let σ ∈ Sn be a permutation and k1, . . . , kn ∈ R. Define

Mσ(k1, . . . , kn) =

m11 · · · m1n
...

...
mn1 · · · mnn

 ,

where
mij =

{
kj if i = σ(j)
0 else .

The following proposition tells us what an automorphism of a GHW group must
look like.
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Proposition 8.1.3 (see [DDP09, Proposition 5.6]). Let Γ be a HW group in
standard form. Let ϕ = ξ(d,D) be an automorphism of Γ. Then there exist
ε1, . . . , εn ∈ {−1, 1} and a permutation σ ∈ Sn such that D = Mσ(ε1, . . . , εn).

The proposition below is, in some sense, a converse to the previous proposition.
Proposition 8.1.4 (see [DDP09, Proposition 5.7]). Let Γ be a HW group
in standard form with associated matrix (aij)ij. Let ε1, . . . , εn ∈ {−1, 1} and
σ ∈ Sn such that aij = aσ(i)σ(j) for all 1 ≤ i, j ≤ n. Then there exists an
automorphism ϕ = ξ(d,D) of Γ with D = Mσ(ε1, . . . , εn).

8.2 The Reidemeister spectra and zeta functions

The GHW groups that have the R∞-property have been determined by Dekimpe,
De Rock and Penninckx in [DDP09].
Theorem 8.2.1 (see [DDP09, Theorem 5.9]). A non-orientable GHW group
has the R∞-property. A HW group does not have the R∞-property if and only
if it is isomorphic to a HW group in standard form whose associated matrix is
circulant.

An important part of the proof of this theorem can be summarised in the
following proposition.
Proposition 8.2.2. Let Γ be a HW group in standard form with associated
matrix A = (aij)ij. Let ϕ = ξ(d,D) be an automorphism of Γ with D =
Mσ(ε1, . . . , εn). If σ is not a cycle of full length, then R(ϕ) =∞.

We will expand on theorem 8.2.1 by explicitly calculating the Reidemeister
spectrum for those HW groups that do not have the R∞-property. To do so,
we will need to slightly generalise the following lemma.
Lemma 8.2.3 (see [DDP09, Lemma 5.5]). Let σ ∈ Sn be the permutation
(1 2 · · · n) and let k1, . . . , kn ∈ R. Then

det(1n −Mσ(k1, . . . , kn)) = 1− k1 · · · kn.

Corollary 8.2.4. The above lemma holds for any cycle σ ∈ Sn of full length.

Proof. Since all cycles of the same length are conjugate, there exists a
permutation τ such that τ−1 ◦ σ ◦ τ is exactly the cycle (1 2 · · · n). Let
P := Mτ (1, . . . , 1), then

P−1Mσ(k1, . . . , kn)P = M(1 2 ··· n)(kτ(1), . . . , kτ(n)).
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The result then follows from applying lemma 8.2.3.

Theorem 8.2.5. Let Γ be a HW group in standard form whose associated
matrix is circulant. Then its Reidemeister spectrum is {2,∞}.

Proof. First, let us prove that any automorphism ϕ with finite Reidemeister
number must have R(ϕ) = 2. Let ϕ = ξ(d,D) be an automorphism of Γ with
finite Reidemeister number. By proposition 8.2.2, D = Mσ(ε1, . . . , εn) with σ a
cycle of full length.

Let A ∈ F , which is a diagonal matrix with an even number of −1’s on its
diagonal. Then

AD = Mσ(ε′1, . . . , ε′n) with ε′1ε′2 · · · ε′n = ε1ε2 · · · εn.

By corollary 8.2.4 we have that

det(1n −AD) = 1− ε′1ε′2 · · · ε′n = 1− ε1ε2 · · · εn.

Theorem 4.2.5 then implies that, since R(ϕ) <∞, we must have ε1ε2 · · · εn = −1
such that in turn

det(1n −AD) = 1− ε1ε2 · · · εn = 2,

for every A ∈ F . Applying the averaging formula (theorem 4.2.6) we find that
R(ϕ) = 2.

Conversely, we would like to show that Γ must admit such automorphism.
Let σ = (1 2 · · · n), which satisfies aij = aσ(i)σ(j) for all 1 ≤ i, j ≤ n.
By proposition 8.1.4, Γ then admits an automorphism ϕ = ξ(d,D) with D =
Mσ(−1, 1, . . . , 1).

We end this section with the following result on Reidemeister zeta functions.
Theorem 8.2.6. A GHW group does not admit Reidemeister zeta functions.

Proof. It suffices to prove that for any automorphism ϕ of a GHW group Γ, there
exists some k ∈ N such that R(ϕk) =∞. By theorem 8.2.1, the only non-trivial
case is when Γ is a HW group in standard form with circulant associated matrix.
As shown in theorem 8.2.5, the only automorphisms with finite Reidemeister
number are those of the form ϕ = ξ(d,D) with D = Mσ(ε1, . . . , εn), where σ is a
cycle of full length and ε1ε2 · · · εn = −1.

Now, consider ϕ2n with n the dimension of Γ. Since σ is a cycle of length n,
Dn is a diagonal matrix whose diagonal entries are either −1 or 1, and thus
D2n = 1n. Since ϕ2n = ξ(d′,D2n) for some d′ ∈ Rn, it is easy to check using
theorem 4.2.5 that R(ϕ2n) =∞.
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8.3 Uniqueness of HW groups without the R∞-
property

Miatello and Rossetti show in [MR99b] that for each odd dimension n > 1,
there exists a HW group Γ in standard form with circulant associated matrix.
In [DDP09], the authors conjecture that in every odd dimension n, this HW
group is unique (up to isomorphism), and they verified this conjecture for all
odd n ≤ 21.
Conjecture 8.3.1 (see [DDP09, Conjecture 5.11]). In every odd dimension
n > 1, there is (up to isomorphism) a unique HW group that does not have the
R∞-property, and its associated matrix (aij)ij satisfies

aij =
{

1/2 if j − i ≡ 0, 1 mod n,
0 otherwise.

(8.1)

A general idea of solving this conjecture is the following. Consider the set of
all circulant n× n-matrices whose entries are either 0 or 1/2. For every matrix
in this set, check using proposition 3.3.19 if it corresponds to a HW group Γ.
If it does, the conjecture above implies that Γ is isomorphic to the HW group
defined by (8.1).

The proposition below shows that we can more or less halve the number of
circulant matrices we need to check.
Proposition 8.3.2. Let Γ be an n-dimensional HW group in standard form
with circulant associated matrix. Then Γ is isomorphic to a HW group in
standard form with circulant associated matrix, for which every column has at
most n+1

2 non-zero entries.

Proof. The associated matrix (aij)ij of Γ is completely determined by any of
its columns ai, and every column has the same number of non-zero entries.
If ai has at most n+1

2 non-zero entries, there is nothing to prove. So assume
that ai has more than n+1

2 non-zero entries, and recall from proposition 3.3.19
that necessarily aii = 1/2. Let d = (1/4, 1/4, . . . , 1/4) and consider the inner
automorphism ι(d,−1n) : Aff(Rn)→ Aff(Rn). We have that

(d,−1n)(ai, Ai)(d,−1n)−1 = ((1n −Ai)d− ai, Ai),

hence if we set a′i := (1n −Ai)d− ai + ei, we find

a′ij =


1/2 if i = j,

1/2 if i 6= j, aij = 0,
0 if i 6= j, aij = 1/2.
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In particular, each a′i has less than n+1
2 non-zero entries. Then Γ′ := ι(d,−1n)(Γ)

is a HW group in standard form with circulant associated matrix (a′ij)ij , and is
isomorphic to Γ.

A circulant matrix is completely determined by its first column, hence
proposition 3.3.19 can be restated in terms of this first column. Using our
knowledge of HW groups and the proposition above, we can state the following
conjecture, which implies conjecture 8.3.1.

Conjecture 8.3.3. Let k ∈ N and x ∈ {0, 1}2k+1, and label the components
of x by x0, x1, . . . , x2k. Assume that x0 = 1 and #{i ∈ {1, 2, . . . , 2k} | xi = 1}
is odd and at most k. If for every I ( {0, 1, 2, . . . , 2k} with #I odd:

∃j ∈ I : #{i ∈ I | xi−j = 1} is odd, (8.2)

where the index i− j is taken modulo 2k + 1 when necessary, then exactly two
components are 1, i.e. there is a unique i ∈ {1, . . . , 2k} such that xi = 1.

We verified conjecture 8.3.3 for all k ≤ 13, which implies conjecture 8.3.1 holds
for all odd n ≤ 27.
Remark 8.3.4. In the conjecture above, it is not necessary to check every set I:

• If #I = 1, then the condition always holds.

• If condition (8.2) holds for some set I, then it also holds for I + 1 :=
{i+ 1 mod 2k + 1 | i ∈ I}, I + 2, ... , I + 2k.

Remark 8.3.5. The converse of conjecture 8.3.3 is not true. Consider the tuple
x = (1, 0, 0, 1, 0, 0, 0, 0, 0) and the set I = {0, 3, 6}. We have that

∀j ∈ I : #{i ∈ I | xi−j = 1} = 2.





Chapter 9

The R∞-property

The 1-, 2- and 3-dimensional almost-crystallographic groups that do not have
the R∞-property were determined by Dekimpe and Penninckx in [DP11, Section
4]. We extend these results to the 4-dimensional groups, and in the case of
crystallographic groups with finite outer automorphism group even up to the
6-dimensional groups.

9.1 Crystallographic groups

In this section, we determine which crystallographic groups have (or do not have)
the R∞-property. We do this for all crystallographic groups up to dimension 4,
and for the crystallographic groups with finite outer automorphism group up to
dimension 6. The results obtained in this section were published in [DKT19].

Multiple classification systems for crystallographic groups exist (especially in
dimensions 2 and 3). An important part of these classifications are the concepts
of Q-classes and Z-classes.

Definition 9.1.1. Two n-dimensional crystallographic groups are said to belong
to the same Q-class (Z-class) if their holonomy groups are conjugate in GLn(Q)
(GLn(Z)).

In particular, a Q-class consists of one or multiple Z-classes. After conjugation,
we may assume that every crystallographic group Γ in a fixed Z-class has the
exact same holonomy group F ⊆ GLn(Z), which we will also call the holonomy
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group of the Z-class. We can use this to create canonical generating sets for
crystallographic groups.

Let F be the holonomy group of a Z-class, and enumerate the elements of F by
A1, . . . , Ak. Now let Γ be any crystallographic group in the Z-class. For every
Ai, pick the unique element ai ∈ Rn with 0 ≤ ai < 1 such that (ai, Ai) ∈ Γ.
We define

Fext(Γ) := {(a1, A1), . . . , (ak, Ak)},

hence Γ = 〈Zn, Fext(Γ)〉. In particular, the Z-class contains the crystallographic
group Zn o F , for which

Fext(Zn o F ) = {(0, A1), . . . , (0, Ak)}.

This group is very useful for determining the R∞-property of groups in the
Z-class, as illustrated by the theorem below.

Theorem 9.1.2. Let F be the holonomy group of an n-dimensional Z-class
of crystallographic groups. If Zn o F has the R∞-property, then so does every
other crystallographic group in the same Z-class.

Proof. Consider a crystallographic group Γ belonging to the same Z-class as
Zn o F and let ϕ = ξ(d,D) ∈ Aut(Γ). Then D ∈ NF = NGLn(Z)(F ) and thus
ϕ′ = ξ(0,D) is an automorphism of Zn o F . Since Zn o F has the R∞-property
we find that R(ϕ′) =∞, and by theorem 4.2.5 we obtain

R(ϕ′) =∞ ⇐⇒ ∃A ∈ F : det(1n −AD) = 0 ⇐⇒ R(ϕ) =∞,

hence Γ has the R∞-property as well.

The converse is not necessarily true. For a crystallographic group Γ with
holonomy group F , the projection

p : Aut(Γ)→ NF : ξ(d,D) 7→ D

does not have to be surjective. In other words, given a matrix D ∈ NF , there
may not exist a d ∈ Rn such that the map ξ(d,D) : γ 7→ (d,D)γ(d,D)−1 is an
automorphism of Γ. We define NΓ as the image of the projection p above, which
is therefore a subgroup of NF .

Algorithm 1 provides a method to check whether or not a matrix D ∈ NF is
actually an element of NΓ. Moreover, if D ∈ NΓ, it calculates an explicit d ∈ Qn
such that ξ(d,D) ∈ Aut(Γ). The (more general) idea behind this algorithm is
described in [Lut13, Section 4.1].
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Algorithm 1 Determining if D ∈ NΓ

1: function ExtendsToAutomorphism(D,Γ)
2: σ ← Permutation in S#F for which Aσ(i) = DAiD

−1

3: M ←


1n −Aσ(1)
1n −Aσ(2)

...
1n −Aσ(k)



4: m←


Da1 − aσ(1)
Da2 − aσ(2)

...
Dak − aσ(k)


5: P,Q, S ← matrices such that PMQ = S, the Smith normal form of M
6: t← Pm
7: r ← rank(S)
8: if tr+1, . . . , tnk ∈ Z then
9: for i ∈ {1, . . . , r} do

10: d′i ← −ti/Si,i
11: end for
12: for i ∈ {r + 1, . . . , n} do
13: d′i ← 0
14: end for
15: d← Qd′

16: return d
17: else
18: return fail
19: end if
20: end function

Theorem 9.1.3. Let Γ be an n-dimensional crystallographic group with
holonomy group F . Given a matrix D ∈ NF , ExtendsToAutomorphism(D,Γ)
returns fail if D /∈ NΓ, or returns a d ∈ Qn such that ξ(d,D) ∈ Aut(Γ) if
D ∈ NΓ.

Proof. The map F → F : A 7→ DAD−1 is an automorphism of F since D ∈ NF .
If Fext(Γ) = {(a1, A1), . . . , (ak, Ak)}, we can associate a permutation σ ∈ S#F
to this map such that Aσ(i) is the image of Ai.
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If there exists a d ∈ Rn such that ξ(d,D) ∈ Aut(Γ), then it must satisfy
(d,D)(ai, Ai)(d,D)−1 ∈ Γ for every i = 1, . . . , k. Equivalently,

(d,D)(ai, Ai)(d,D)−1 ∈ Γ

⇐⇒ (d,D)(ai, Ai)(d,D)−1(aσ(i), Aσ(i))−1 ∈ Zn

⇐⇒ Dai − aσ(i) + (1n −Aσ(i))d ∈ Zn. (9.1)

Therefore, construct the matrices

M :=


1n −Aσ(1)
1n −Aσ(2)

...
1n −Aσ(k)

 ∈ Znk×n, m :=


Da1 − aσ(1)
Da2 − aσ(2)

...
Dak − aσ(k)

 ∈ Znk,

and calculate the matrices P ∈ GLnk(Z), S ∈ Znk×n and Q ∈ GLn(Z) such
that S is the Smith normal form of M and PMQ = S. With these matrices
known, calculate t := Pm and define d′ := Q−1d, and observe that condition
(9.1) is equivalent to

t+ Sd′ ∈ Znk. (9.2)
Let r be the rank of the matrix S and let s1, s2, . . . , sr be the (non-zero) invariant
factors of S. Writing out the components of t + Sd′, we find that condition
(9.2) means that ti + sid

′
i ∈ Z for i = 1, . . . , r and ti ∈ Z for i = r + 1, . . . , nk.

The latter condition does not depend on d. Thus, we verify if tr+1, . . . , tnk ∈
Z. If this is not the case, the required d does not exist and the algorithm
returns “fail”. Otherwise, we set d′i = −ti/si for i = 1, . . . , r and d′i = 0 for
i = r + 1, . . . , n, and calculate d = Qd′, which will be an element of Qn. The
map ξ(d,D) : Γ→ Γ : γ 7→ (d,D)γ(d,D)−1 is then an automorphism of Γ.

Remark 9.1.4. It is not necessary to use every (ai, Ai) in Fext(Γ) in algorithm 1.
If i1, . . . , ir are indices such that Ai1 , . . . , Air is a generating set of the holonomy
group F , we can construct M,m as

M :=

1n −Aσ(i1)
...

1n −Aσ(ir)

 ∈ Znr×n, m :=

Dai1 − aσ(i1)
...

Dair − aσ(ir)

 ∈ Znr,

where r may be much smaller than k = #F . This can significantly speed up
computations.

If a crystallographic group Γ has finite outer automorphism group, or equivalently
NF is finite, we can use algorithm 2 to determine whether Γ has the R∞-property
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Algorithm 2 Determining if a crystallographic group Γ has the R∞-property
1: function HasRinfinityProperty(Γ)
2: NF ← NGLn(Z)(F )
3: if #NF =∞ then
4: return fail . # Out(Γ) =∞
5: else
6: NΓ ← ∅ . Calculate NΓ
7: for D ∈ NF do
8: if ExtendsToAutomorphism(D,Γ) 6= fail then
9: NΓ ← NΓ ∪ {D}

10: end if
11: end for
12: for D ∈ NΓ do . Find D with R(ξ(d,D)) <∞
13: R∞ ← false
14: for A ∈ F do
15: if det(1n −AD) = 0 then
16: R∞ ← true
17: end if
18: end for
19: if R∞ = false then
20: return false
21: end if
22: end for
23: return true
24: end if
25: end function

or not. This is basically the algorithm from [DP11] combined with algorithm 1,
meaning no work has to be done by hand anymore.

However, in its presented form, algorithm 2 is not very efficient. Algorithm 3
is an extended version of algorithm 2 and takes an entire Z-class as input,
rather than a single crystallographic group. It outputs the list of groups in
this Z-class that do not have the R∞-property. Running algorithm 3 for a
Z-class is significantly faster than running algorithm 2 separately for every
crystallographic group in this Z-class. Remark that further improvements to
this algorithm can be made, using the following facts:

• If for some D ∈ NF we have that det(1n −AD) 6= 0 for all A ∈ F , then
the same holds for any matrix in the same coset of NF /F as D. This also
follows from lemma 2.5.19(1).
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• If for some D ∈ NF we have that det(1n −AD) 6= 0 for all A ∈ F , then
the same holds for any matrix in the same conjugacy class of NF as D.
This also follows from lemma 2.5.19(2).

• If for some D ∈ NΓ, there exists a d such that ξ(d,D) ∈ Aut(Γ), then the
same holds for any matrix in the same coset of NF /F as D. This follows
from taking the compositions of the form ι(a,A) ◦ ξ(d,D).

Algorithm 3 Determining which crystallographic groups in a Z-class Z do not
have the R∞-property

1: function HasRinfinityPropertyZClass(Z)
2: NF ← NGLn(Z)(F )
3: if #NF =∞ then
4: return fail . # Out(Γ) =∞
5: else
6: D<∞ ← ∅ . Find D with R(ξ(d,D)) <∞ whenever d exists
7: for D ∈ NF do
8: R∞ ← false
9: for A ∈ F do

10: if det(1n −AD) = 0 then
11: R∞ ← true
12: end if
13: end for
14: if R∞ = false then
15: D<∞ ← D<∞ ∪ {D}
16: end if
17: end for
18: Γ<∞ ← ∅ . Find Γ without R∞-property
19: for D ∈ D<∞ do
20: for Γ ∈ Z do
21: if ExtendsToAutomorphism(D,Γ) 6= fail then
22: Γ<∞ ← Γ<∞ ∪ {Γ}
23: end if
24: end for
25: end for
26: return Γ<∞
27: end if
28: end function

However, these algorithms fail when the outer automorphism group is infinite
(and hence NF is infinite), in which case we can try two things:
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1. Show that all crystallographic groups in a Z-class with holonomy group F
have the R∞-property, by finding a characteristic subgroup N of Zn o F
such that (ZnoF )/N has the R∞-property. This relies on corollary 2.5.12
and theorem 9.1.2.

2. Show that a crystallographic group Γ does not have the R∞-property, by
checking for random matrices D ∈ NF whether they belong to NΓ (using
algorithm 1) and whether any automorphism with D as linear part can
have finite Reidemeister number (using theorem 4.2.5).

However, unlike the aforementioned algorithms, these are trial-and-error
methods that have to be done manually.

We have applied algorithm 3 for all crystallographic groups up to dimension
6. Up to dimension 4, we also applied the methods mentioned above for the
crystallographic groups with infinite outer automorphism group, and for every
Z-class we either found that all groups have the R∞-property, or we found
an automorphism ϕ = ξ(d,D) with R(ϕ) < ∞ for every group in the Z-class.
Therefore, we have completely determined which crystallographic groups up to
dimension 4 have the R∞-property.

To create a library of crystallographic groups and calculate the normalisers NF ,
we used CARAT [Car06]. Our algorithms were implemented in GAP [GAP18],
and we used the GAP-package carat [Car18] to access the aforementioned
library.

For the crystallographic groups with finite outer automorphism group up to
dimension 6, the results of algorithm 3 can be found in tables B.1 to B.6. For
the groups with infinite outer automorphism group up to dimension 4, tables B.7
to B.9 provide pairs (d,D) for the groups that do not have the R∞-property,
and tables B.10 and B.11 provide quotient groups of Zn o F for the Z-classes
that do have the R∞-property. We summarise these results in table 9.1.

In these tables, we identify the groups using 3 different classification systems.
Up to dimension 3, there is the classification system from the International
Tables for Crystallography [Aro16], where groups are identified by n/IT , with
n the dimension and IT the specific group. Up to dimension 4, there is the
notation from [Bro+78], where groups are identified by n/c/q/z/s, with n the
dimension, c the crystal system, q the Q-class, z the Z-class and s the specific
group. In every dimension, there is the CARAT-notation [Car06], where groups
are identified by q-z-s, with q the Q-class, z the Z-class and s the specific group.
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dim # groups (# Out(Γ) <∞) no R∞ (# Out(Γ) <∞)
1 2 (2) 1 (1)
2 17 (15) 2 (1)
3 219 (204) 12 (7)
4 4783 (4 388) 91 (45)
5 222 018 (204 768) ? (146)
6 28 927 915 (26 975 265) ? (321)

Table 9.1: Crystallographic groups up to dimension 6 without the R∞-property

9.2 Almost-crystallographic groups

In this section we determine which almost-crystallographic groups up to
dimension 4 do not have the R∞-property. We first give two propositions, which
restrict which almost-crystallographic groups and automorphisms respectively
can have finite Reidemeister numbers. The results obtained in this section were
published in [Ter19].
Proposition 9.2.1. Let Γ be an almost-crystallographic group with translation
subgroup N of rank n ≥ 3 and nilpotency class c ≥ 2 with N

√
γc(N) ∼= Z. If the

holonomy group F acts non-trivially on N
√
γc(N), then Γ has the R∞-property.

Proof. Let A ∈ F arbitrary, ϕ = ξ(d,D) ∈ Aut(Γ) and x ∈ N such that
〈x〉 = N

√
γc(N). Since A acts on x by Ax = xεA with εA ∈ {−1, 1} and

ϕ(x) = xν with ν ∈ {−1, 1}, then (after a change of basis) A∗ and D∗ must
have the following forms:

A∗ =


εA ∗ · · · ∗

0
...

...
...

...
...

0 ∗ · · · ∗

 , D∗ =


ν ∗ · · · ∗

0
...

...
...

...
...

0 ∗ · · · ∗

 .

Thus, 1n −A∗D∗ is of the form

1n −A∗D∗ =


1− νεA ∗ · · · ∗

0
...

...
...

...
...

0 ∗ · · · ∗

 .

Now let us look at specific A ∈ F . First, let A be the neutral element of F ,
which necessarily acts trivially on x. The above matrix then has upper left
entry 1− ν, hence det(1n −D∗) 6= 0 if and only if ν = −1.
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Second, let A be an element of F for which εA = −1. Such element exists since
we assumed F acts non-trivially on N

√
γc(N). Then the matrix 1n −A∗D∗ has

upper left entry 1 + ν, and det(1n −A∗D∗) 6= 0 if and only if ν = 1.

As ν cannot be −1 and 1 at the same time, we always have some A ∈ F for
which det(1n −A∗D∗) = 0, and by theorem 4.2.5 this means that R(ϕ) =∞.
Since this holds for any automorphism, Γ has the R∞-property.

Proposition 9.2.2. Let Γ be an almost-crystallographic group with translation
subgroup N of rank n ≥ 3 and nilpotency class c ≥ 2, such that N

√
γc(N) ∼= Z.

If the restriction of ϕ ∈ Aut(Γ) to N
√
γc(N) is the identity, then R(ϕ) =∞.

Proof. Let ϕ = ξ(d,D) ∈ Aut(Γ) and x ∈ N such that 〈x〉 = N
√
γc(N). If

ϕ(x) = x, then (after a change of basis) D∗ has the form

D∗ =


1 ∗ · · · ∗

0
...

...
...

...
...

0 ∗ · · · ∗

 ,

and hence det(1n −D∗) = 0. By theorem 4.2.5 this means that R(ϕ) =∞.

9.2.1 Dimension 3

In this case the translation subgroup N is a finitely generated, torsion-free,
nilpotent group of rank 3 and nilpotency class at most 2. Nilpotency class 1 is
of course the crystallographic case, which was done in the previous section, so
let Γ be an almost-crystallographic group whose translation subgroup N is a
nilpotent group of rank 3 and nilpotency class 2. This group N can be given
the following presentation:〈

e1, e2, e3

∣∣∣∣∣ [e2, e1] = 1 [e3, e2] = el11
[e3, e1] = 1

〉
.

Moreover, let G be the Lie group that Γ is modelled on. By [Dek95, Theorem
4.1], there exists a faithful affine representation λ : GoAut(G)→ Aff(R3) such
that its restriction to Γ is again a faithful affine representation. In particular,

λ(e1) =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 , λ(e2) =


1 0 − l12 0
0 1 0 1
0 0 1 0
0 0 0 1

 , λ(e3) =


1 l1

2 0 0
0 1 0 0
0 0 1 1
0 0 0 1
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where the value of l1 is determined by the relation [e3, e2] = el11 .

Corollary 3.4.9 tells us that the subgroup 〈e1〉 = N
√
γ2(N) is characteristic and

the quotient Γ′ := Γ/〈e1〉 is a 2-dimensional crystallographic group. Using
corollary 2.5.15, we know that if Γ′ has the R∞-property, then so does Γ. In
[DE02; Dek96] the almost-crystallographic groups were classified into families
based on which crystallographic group Γ′ is. Since only three 2-dimensional
crystallographic groups do not have the R∞-property (min.2-1.1-0, group.1-1.1-
0 and min.5-1.1-0) we need only consider the corresponding three families of
3-dimensional almost-crystallographic groups. We will name these three families
after the quotient group Γ′.

Family min.2-1.1-0. This family consists of the finitely generated, torsion-free,
nilpotent groups of nilpotency class 2 and rank 3. We have already determined
in section 5.2.1 that these groups do not have the R∞-property.

Family min.5-1.1-0. Every group in this family has a presentation of the form

〈
e1, e2, e3, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α

[e3, e1] = 1 αe2 = ek2
1 e3α

[e3, e2] = ek1
1 αe3 = ek3

1 e
−1
2 e−1

3 α

α3 = ek4
1

〉
,

and the faithful representation λ is given by

λ(α) =


1 k2 −k1

2 + k3
k4
3

0 0 −1 0
0 1 −1 0
0 0 0 1

 .

Since the translation subgroup N and the isolator N
√
γ2(N) = 〈e1〉 are

characteristic, any automorphism ϕ = ξ(d,D) must be of the form

ϕ(e1) = e
det(M)
1 ,

ϕ(e2) = en1
1 em1

2 em2
3 ,

ϕ(e3) = en2
1 em3

2 em4
3 ,

ϕ(α) = en3
1 en4

2 en5
3 αε,

where
M =

(
m1 m3
m2 m4

)
∈ GL2(Z), ni ∈ Z, ε ∈ {−1, 1}.
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Then D∗ is of the form

D∗ =

det(M) ∗ ∗
0 m1 m3
0 m2 m4

 .

Let A ∈ F , and let A′ be the projection of A to F ′, the holonomy group of
Γ′ := Γ/〈e1〉 (this is of course the crystallographic group min.5-1.1-0). Then

det(13 −A∗D∗) = (1− det(M)) det(12 −A′M).

We may calculate that (using algorithm 1) that #NΓ′ = 12, and NΓ′ is exactly
the set of possible matrices M . Six of the matrices M in NΓ′ have determinant
1, in which case det(13 −A∗D∗) = 0 for all A ∈ F . Thus, using theorem 4.2.5,
we can see that these automorphisms have infinite Reidemeister number. For
the other six matrices M , there always exists some A′ ∈ F ′ such that det(12 −
A′M) = 0. Again, using theorem 4.2.5, these automorphisms have infinite
Reidemeister number. This result was also obtained in [DP11, Theorem 4.4].

Family group.1-1.1-0. Every group in this family has a presentation of the
form 〈

e1, e2, e3, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α

[e3, e1] = 1 αe2 = ek2
1 e
−1
2 α

[e3, e2] = ek1
1 αe3 = ek3

1 e
−1
3 α

α2 = ek4
1

〉
,

and the faithful representation λ is given by

λ(α) =


1 k2 k3

k4
2

0 −1 0 0
0 0 −1 0
0 0 0 1

 .

Define an automorphism ϕ = ξ(d,D) by

ϕ(e1) = e−1
1 ,

ϕ(e2) = ek1−k2−k3
1 e2e

2
3,

ϕ(e3) = e3k1−k2−2k3
1 e2

2e
3
3,

ϕ(α) = e−k4
1 α,
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then D∗ is of the form

D∗ =

−1 ∗ ∗
0 1 2
0 2 3

 .

We can apply theorem 4.2.5 to show that R(ϕ) <∞ and hence Γ does not have
the R∞-property. This result was also obtained in [DP11, Theorem 4.4].

9.2.2 Dimension 4

In this case the translation subgroup N is a finitely generated, torsion-free,
nilpotent group of rank 4 and nilpotency class at most 3. Nilpotency class 1 is
of course the crystallographic case, which was done in the previous section.

Nilpotency class 2

Let Γ be an almost-crystallographic group whose translation subgroup N is a
nilpotent group of rank 4 and nilpotency class 2. The group N can be given
the following presentation:〈

e1, e2, e3, e4

∣∣∣∣∣
[e2, e1] = 1 [e3, e2] = el11
[e3, e1] = 1 [e4, e2] = el21
[e4, e1] = 1 [e4, e3] = el31

〉
.

Moreover, let G be the Lie group that Γ is modelled on. By [Dek95, Theorem
4.1], there exists a faithful affine representation λ : GoAut(G)→ Aff(R4) such
that its restriction to Γ is again a faithful affine representation. In particular,

λ(e1) =


1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , λ(e2) =


1 0 − l12 − l22 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

λ(e3) =


1 l1

2 0 − l32 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 , λ(e4) =


1 l2

2
l3
2 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,

where the values of l1, l2 and l3 are determined by the relations [e3, e2] = el11 ,
[e4, e2] = el21 and [e4, e3] = el31 .
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Again, the subgroup 〈e1〉 = N
√
γ2(N) is characteristic and the quotient Γ′ :=

Γ/〈e1〉 is a 3-dimensional crystallographic group. Just like the three-dimensional
case, we need only consider the families whose quotient Γ′ does not have the R∞-
property. As calculated in the previous section, there are twelve such families.
These families can be split in smaller subfamilies, determined by the action of
F on N

√
γ2(N): every A ∈ F acts on e1 by Ae1 = eεA1 with εA ∈ {−1, 1}. By

proposition 9.2.1 we need only consider those subfamilies where F acts trivially
on N

√
γ2(N).

Remark 9.2.3. In the three-dimensional case, the action of F on N
√
γ2(N) was

always uniquely determined. If the crystallographic quotient group Γ′ := Γ/〈e1〉
has holonomy group F ′, then the action of A ∈ F on e1 is given by Ae1 = e

det(A′)
1 ,

with A′ the projection of A to F ′.

In the classification of the 4-dimensional almost-crystallographic groups in
[Dek96], it turned out (using techniques from [Dek96, Section 5.4]) that for
an almost-crystallographic group belonging to one of the families min.10-1.1-0,
min.10-1.1-3, min.10-1.3-0, min.10-1.4-0 or min.10-1.4-1, F acting trivially on
N
√
γ2(N) implies that the group is actually crystallographic. Therefore we may

omit these families and we are left with only 7 families to study.

Note that the presentations given below may vary from those in [DE02; Dek96].
Let Γ1 and λ1 denote a group and its faithful representation as given below,
and let Γ2 and λ2 be the corresponding group and representation as given by
[Dek96] or [DE02]. Table B.12 contains a matrix δ such that

λ1(Γ1) = δλ2(Γ2)δ−1,

hence λ1(Γ1) and λ2(Γ2) are conjugate subgroups of Aff(R4) and therefore Γ1
and Γ2 are isomorphic.

Family min.6-1.1-0. This family consists of the finitely generated, torsion-free,
nilpotent groups of nilpotency class 2 and rank 4. We have already determined
in section 5.2.2 that these groups do not have the R∞-property.

Families min.7-1.1-0, min.7-1.1-1 and min.7-1.2-0. Every group in one of
these families has a presentation of the form

〈
e1, e2, e3, e4, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α
[e3, e1] = 1 αe2 = e2α

[e4, e1] = 1 αe3 = ek2
1 e
−ν
2 e−1

3 α

[e3, e2] = 1 αe4 = ek3
1 e
−1
4 α

[e4, e2] = 1 α2 = ek4
1 e

µ
2

[e4, e3] = ek1
1

〉
,
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and the faithful representation λ is given by

λ(α) =


1 0 k2 k3

k4
2

0 1 −ν 0 µ
2

0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Family min.7-1.1-0 is given by µ, ν = 0, family min.7-1.1-1 by µ = 1, ν = 0 and
family min.7-1.2-0 by µ = 0, ν = 1. Define an automorphism ϕ = ξ(d,D) by

ϕ(e1) = e−1
1 ,

ϕ(e2) = e−1
2 ,

ϕ(e3) = ek1−k2−k3
1 eν2e3e

2
4,

ϕ(e4) = e3k1−k2−2k3
1 eν2e

2
3e

3
4,

ϕ(α) = e−k4
1 e−µ2 α,

then D∗ is of the form

D∗ =


−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 1 2
0 0 2 3

 .

We can apply theorem 4.2.5 to show that R(ϕ) <∞ and hence Γ does not have
the R∞-property.

Families min.13-1.1-0 and min.13-1.2-0. Every group in one of these families
has a presentation of the form

〈
e1, e2, e3, e4, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α
[e3, e1] = 1 αe2 = e2α

[e4, e1] = 1 αe3 = ek2
1 e4α

[e3, e2] = 1 αe4 = ek3
1 e

µ
2e
−1
3 e−1

4 α

[e4, e2] = 1 α3 = ek4
1

[e4, e3] = ek1
1

〉
,
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and the faithful representation λ is given by

λ(α) =


1 0 k2 −k1

2 + k3
k4
3

0 1 0 µ 0
0 0 0 −1 0
0 0 1 −1 0
0 0 0 0 1

 .

Family min.13-1.1-0 is given by by µ = 1 and family min.13-1.2-0 by µ = 0.
Since the translation subgroup N , the centre Z(N) = 〈e1, e2〉 and the isolator
N
√
γ2(N) = 〈e1〉 are characteristic, any automorphism ϕ = ξ(d,D) must be of

the form

ϕ(e1) = e
det(M)
1 ,

ϕ(e2) = en1
1 eτ2

ϕ(e3) = en2
1 en3

2 em1
3 em2

4 ,

ϕ(e4) = en4
1 en5

2 em3
3 em4

4 ,

ϕ(α) = en6
1 en7

2 en8
3 en9

4 αε,

where
M =

(
m1 m3
m2 m4

)
∈ GL2(Z), ni ∈ Z, ε, τ ∈ {−1, 1}.

Then D∗ is of the form

D∗ =


det(M) ∗ ∗ ∗

0 τ ∗ ∗
0 0 m1 m3
0 0 m2 m4

 .

Let A ∈ F , and let A′ be the projection of A to F ′, the holonomy group of
Γ′ := Γ/Z(N) (this is the crystallographic group min.5-1.1-0). Then

det(14 −A∗D∗) = (1− det(M))(1− τ) det(12 −A′M).

Just like in section 9.2.1, family min.5-1.1-0, there are only 12 possible matrices
M , and for each of them either det(M) = 1 or there exists some A′ ∈ F ′ such
that det(12 −A′M) = 0. By theorem 4.2.5, these automorphisms have infinite
Reidemeister number.
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Family group.5-1.1-0. Every group in this family has a presentation of the
form

〈
e1, e2, e3, e4, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α

[e3, e1] = 1 αe2 = ek4
1 e
−1
2 α

[e4, e1] = 1 αe3 = ek5
1 e
−1
3 α

[e3, e2] = ek1
1 αe4 = ek6

1 e
−1
4 α

[e4, e2] = ek2
1 α2 = ek7

1
[e4, e3] = ek3

1

〉
,

and the faithful representation λ is given by

λ(α) =


1 k4 k5 k6

k7
2

0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Set k := gcd(k1, k2, k3) and g := e
k3/k
2 e

−k2/k
3 e

k1/k
4 , then the centre Z(N) of

the translation subgroup is generated by e1 and g. Let ϕ : Γ → Γ be any
automorphism. Since 〈e1〉 and Z(N) are both characteristic in Γ, we have
that ϕ(g) = gεem1 for some ε ∈ {−1, 1} and m ∈ Z. Consider the induced
automorphism ϕ′ = ξ(d′,D′) on Γ′ := Γ/〈e1〉, the crystallographic group group.5-
1.1-0. Then

ϕ′(g〈e1〉) = D′(g〈e1〉) = ϕ(g)〈e1〉 = gε〈e1〉.

Depending on the value of ε, D′∗ has either eigenvalue 1, in which case det(13−
D′∗) = 0, or eigenvalue −1, in which case det(13 +D′∗) = 0. Since the holonomy
group of Γ′ is {13,−13}, we obtain by theorem 4.2.5 that R(ϕ′) = ∞ and
by lemma 2.5.10 that therefore R(ϕ) = ∞. Since this holds for an arbitrary
automorphism, Γ has the R∞-property.

Nilpotency class 3

In section 5.2.2, we have determined that the finitely generated, torsion-
free, nilpotent groups of nilpotency class 3 and rank 4 have the R∞-
property. Applying corollary 2.5.12 then proves that every 4-dimensional
almost-crystallographic group with translation subgroup of nilpotency class 3
has the R∞-property.



Chapter 10

Reidemeister spectra

10.1 Crystallographic groups

In this section, we will calculate the Reidemeister spectra of all crystallographic
groups of dimension at most 3 that do not have the R∞-property, with partial
results up to dimension 6. The results obtained in this section were published
in [DKT19] and [DTV19].

For crystallographic groups with finite outer automorphism group, we will
present algorithms that calculate the Reidemeister spectrum. For the remaining
groups, we will have to proceed by hand, which is feasible up to dimension 3.
For dimension 4, we limit ourselves to calculating the spectra of only a small
number of groups, mainly those where we have some extra tools to help us (for
example lemma 2.5.18 or theorem 4.2.6).

10.1.1 Finite outer automorphism group

To calculate the Reidemeister spectrum of a crystallographic group Γ with
finite outer automorphism group, we need two main algorithms: a first one to
calculate the Reidemeister number of a given automorphism ϕ = ξ(d,D), and a
second one to construct a set of representatives of Out(Γ).

163
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Calculating the Reidemeister number of an automorphism

We will start by explaining the approach to calculating Reidemeister numbers
in a more general setting. From proposition 2.5.13 and its proof, we obtain the
following theorem.

Theorem 10.1.1. Let G be a group with normal subgroup N /G, and let ϕ be
an endomorphism such that ϕ(N) ⊆ N . Denote by ϕ′ the induced endomorphism
on G/N . Then the set of Reidemeister classes of ϕ is given by

R(ϕ) =
⊔

[gN ]ϕ′∈R(ϕ′)

(ψg ◦ ι̂g)(R(ιgϕ|N )),

where ψg is the following bijective map:

ψg : p̂−1
g ([1N ]ιgNϕ′)→ p̂−1([gN ]ϕ′) : [h]ιgϕ 7→ [hg]ϕ.

The composite map (ψg ◦ ι̂g) in the above theorem is, in general, not injective.
We have that

(ψg ◦ ι̂g)([n1]ιgϕ|N ) = (ψg ◦ ι̂g)([n2]ιgϕ|N )

⇐⇒ ι̂g([n1]ιgϕ|N ) = ι̂g([n2]ιgϕ|N )

⇐⇒ ∃h ∈ G : n1 = hn2(ιgϕ)(h)−1

⇐⇒ ∃h ∈ G : n1g = hn2gϕ(h)−1

⇐⇒ n1g ∼ϕ n2g.

Thus, if we have a group G with a normal subgroup N and an endomorphism
ϕ as described in theorem 10.1.1, and we are able to do the following:

• calculating a set of representatives of the Reidemeister classes R(ϕ′) of
G/N ,

• calculating a set of representatives of the Reidemeister classes R(ιgϕ|N )
of N ,

• checking if two elements of G are ϕ-twisted equivalent,

then we can use theorem 10.1.1 to calculate a set of representatives of the
Reidemeister classes R(ϕ) of G.
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Let us now apply this to the setting of crystallographic groups. Let ϕ = ξ(d,D)
be an automorphism of a crystallographic group Γ. We will take N = Zn, the
translation subgroup of Γ, and then G/N = F , the holonomy group. Since
F is finite, it is not hard to calculate the Reidemeister classes of the induced
automorphism ϕ′ on this group. For example, algorithm 4 is a simple algorithm
to calculate a set of representatives.

Algorithm 4 Calculating representatives of R(ϕ) for a finite group G
1: function CalculateRepresentativesFiniteGroup(G, ϕ)
2: R← ∅
3: for g ∈ G do
4: new ← true
5: for (g′, h) ∈ R×G do
6: if g = hg′ϕ(h)−1 then
7: new ← false . g ∼ϕ g′ for some g′ ∈ R
8: end if
9: end for

10: if new = true then
11: R← R ∪ {g} . g represents a new Reidemeister class
12: end if
13: end for
14: return R
15: end function

To calculate a set representatives of the Reidemeister classes in Zn, note that
we have shown in examples 2.5.8 and 2.5.9 that for any D ∈ Zn×n,

R(D) = Zn/ im(1n −D).

Thus, it suffices to find a representative of every coset of im(1n − D) in Zn.
This can be done with algorithm 5, as long as the determinant of 1n −D is
non-zero. We prove the correctness of this algorithm in theorem 10.1.2.

Theorem 10.1.2. LetM ∈ Zn×n be a square matrix with non-zero determinant.
Then CalculateRepresentativesCosets(M) returns a set of representatives
of the cosets of im(M) in Zn.

Proof. Let P,Q ∈ GLn(Z) such that PMQ = S, with S the Smith normal form
of M . Since det(M) 6= 0, we have that S is a diagonal matrix with non-zero
entries on its diagonal, and we may assume that these entries are positive. We
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Algorithm 5 Calculating representatives of the cosets of im(M) in Zn

1: function CalculateRepresentativesCosets(M)
2: if det(M) = 0 then
3: return fail
4: else
5: P,Q, S ← matrices s.t. PMQ = S, the Smith normal form of M
6: C ←

∏n
i=1{0, 1, . . . , Si,i − 1}

7: return {P−1x | x ∈ C}
8: end if
9: end function

use this to determine when two cosets of im(M) are equivalent:

x+ im(M) = y + im(M) ⇐⇒ ∃z ∈ Zn : x− y = Mz

⇐⇒ ∃z ∈ Zn : Px− Py = PMQ(Q−1z)

⇐⇒ ∃z′ ∈ Zn : Px− Py = Sz′

⇐⇒ Px+ im(S) = Py + im(S)

⇐⇒ ∀i ∈ {1, . . . , n} : (Px)i ≡ (Py)i mod Si,i.

Thus, the Cartesian product C defined by

C :=
n∏
i=1
{0, 1, . . . , Si,i − 1}

contains det(S) = det(M) elements of Zn that each represent a different coset of
im(S) in Zn. Thus, each element of the set P−1C := {P−1x | x ∈ C} represents
a different coset of im(M) in Zn.

Finally, algorithm 6 allows us to verify whether two elements of a crystallographic
group are Reidemeister equivalent with respect to a given automorphism. We
prove the correctness of this algorithm in theorem 10.1.3. Thus, combining
algorithms 4 to 6 we may construct algorithm 7, which takes as input a
crystallographic group Γ and an automorphism ϕ, and outputs the Reidemeister
number R(ϕ). Note that this algorithm actually calculates a complete set of
representatives of the Reidemeister classes R(ϕ).

Theorem 10.1.3. Let Γ be a crystallographic group, ϕ ∈ Aut(Γ) and γ1, γ2 ∈ Γ.
Then AreReidemeisterEquivalent(Γ, ϕ, γ1, γ2) returns true if and only if
γ1 ∼ϕ γ2.
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Algorithm 6 Verifying if two elements γ1, γ2 of a crystallographic group Γ are
Reidemeister equivalent

1: function AreReidemeisterEquivalent(Γ, ϕ, γ1, γ2)
2: d,D ← vector d, matrix D such that ξ(d,D) = ϕ
3: for i ∈ {1, 2} do
4: xi, Ai ← vector xi, matrix Ai such that (xi, Ai) = γi
5: end for
6: for (b, B) ∈ Fext(Γ) do
7: if A1 = BA2DB

−1D−1 then
8: if (1n −A1D)−1 (x1 −Bx2 − (BA2 −A1)d)− b ∈ Zn then
9: return true

10: end if
11: end if
12: end for
13: return false
14: end function

Proof. Define xi and Ai by γi = (xi, Ai) ∈ Rn o GLn(Z) for i ∈ {1, 2}. We
have that

γ1 ∼ϕ γ2 ⇐⇒ ∃δ ∈ Γ : γ1 = δγ2ϕ(δ)−1

⇐⇒ ∃(y,B) ∈ Γ : (x1, A1) = (y,B)(x2, A2)(d,D)(y,B)−1(d,D)−1.

Now let b ∈ Rn such that (b, B) ∈ Fext(Γ) and set z = y − b ∈ Zn. Splitting
up in its components, we may rephrase the above condition as that there exist
(b, B) ∈ Fext(Γ) and z ∈ Zn such that

(a) A1 = BA2DB
−1D−1,

(b) x1 = Bx2 + (BA2 −BA2DB
−1D−1)d+ (1n −BA2DB

−1)(z + b).

Suppose that condition (a) is true for some (b, B). Then we have left to verify
that

∃z ∈ Zn : x1 = Bx2 + (BA2 −BA2DB
−1D−1)d+ (1n −BA2DB

−1)(z + b)

⇐⇒ ∃z ∈ Zn : x1 = Bx2 + (BA2 −A1)d+ (1n −A1D)(z + b)

⇐⇒ ∃z ∈ Zn : x1 −Bx2 − (BA2 −A1)d = (1n −A1D)(z + b)

⇐⇒ ∃z ∈ Zn : (1n −A1D)−1(x1 −Bx2 − (BA2 −A1)d) = z + b

⇐⇒ (1n −A1D)−1(x1 −Bx2 − (BA2 −A1)d)− b ∈ Zn,
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and this last line is exactly what the algorithm verifies.

Algorithm 7 Calculating R(ϕ) for an automorphism of a crystallographic
group Γ

1: function ReidemeisterNumber(Γ, ϕ)
2: R(ϕ′)reps ← CalculateRepresentativesFiniteGroup(F,ϕ′)
3: R(ϕ)reps ← ∅
4: D ← matrix D such that ξ(d,D) = ϕ
5: for A ∈ R(ϕ′)reps do
6: R(AD)reps ← CalculateRepresentativesCosets(1n −AD)
7: a← vector such that (a,A) ∈ Fext(Γ)
8: for x ∈ R(AD)reps do
9: new ← true

10: γ1 ← (x+ a,A)
11: for γ2 ∈ R(ϕ)reps do
12: if AreReidemeisterEquivalent(Γ, ϕ, γ1, γ2) = true then
13: new ← false
14: end if
15: end for
16: if new = true then
17: R(ϕ)reps ← R(ϕ)reps ∪ {γ1}
18: end if
19: end for
20: end for
21: return #R(ϕ)reps
22: end function

Constructing a set of representatives of Out(Γ)

While we can now calculate the Reidemeister number for a given automorphism
ϕ = ξ(d,D) with algorithm 7, we still require a set of representatives of Out(Γ)
to apply it to. The following theorem helps understand the structure of the
outer automorphism group.

Theorem 10.1.4 (see [Cha86, Theorem V.1.1]). Let Γ be a crystallographic
group with holonomy group F ⊆ GLn(Z). Then the following diagram commutes
and all columns and rows are short exact sequences:
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1 1

1 Z(Γ) Z(Γ) 1 1

1 Z(Γ) Zn Inn(Γ) F 1

1 Aut0(Γ) Aut(Γ) NΓ 1

1 H1(F,Zn) Out(Γ) NΓ/F 1

1 1 1

i p

We define Aut0(Γ) in the diagram above as the (abelian) group of automorphisms
ϕ of Γ that satisfy ϕ|Zn = 1n.

We are, of course, particularly interested in the bottom row of this diagram.
Algorithm 1 lets us calculate NΓ (and by extension NΓ/F ). Moreover, since
this algorithm returns a d such that ξ(d,D) ∈ Aut(Γ) for a given D ∈ NΓ, we can
actually construct a (representative of a) preimage under the projection p for
any element of NΓ/F . Thus, we are left to calculate the first cohomology
group H1(F,Zn). This can be done using algorithm 8, which was also
described in [Lut13, Section 4.2]. We prove the correctness of this algorithm in
theorem 10.1.5.

Algorithm 8 Calculating representatives of H1(F,Zn)
1: function CalculateRepresentativesCohomology(F )

2: M ←


1n −A1
1n −A2

...
1n −Ak

 . F = {A1, . . . , Ak}

3: P,Q, S ← matrices such that PMQ = S, the Smith normal form of M
4: r ← rank(S)
5: C ←

∏r
i=1

{
0, 1

Si,i
, 2
Si,i

, . . . ,
Si,i−1
Si,i

}
×
∏n
i=r+1{0}

6: return {Qd′ | d′ ∈ C}
7: end function
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Theorem 10.1.5. Let F ⊆ GLn(Z) be the holonomy group of a crystallographic
group. Then CalculateRepresentativesCohomology(F ) returns a set of
representatives of H1(F,Zn).

Proof. Let d ∈ Rn. We start by finding necessary and sufficient conditions on
d such that ξ(d,1n) is an automorphism, i.e. ξ(d,1n) ∈ Aut0(Γ). It must satisfy
(d,1n)(ai, Ai)(d,1n)−1 ∈ Γ for every i ∈ {1, . . . , k}, or equivalently

(d,1n)(ai, Ai)(d,1n)−1 ∈ Γ

⇐⇒ (d,1n)(ai, Ai)(d,1n)−1(ai, Ai)−1 ∈ Zn

⇐⇒ (1n −Ai)d ∈ Zn. (10.1)

Therefore, construct the matrix

M :=


1n −A1
1n −A2

...
1n −Ak

 ∈ Znk×n,

and calculate the matrices P ∈ GLnk(Z), S ∈ Znk×n and Q ∈ GLn(Z) such
that S is the Smith normal form of M and PMQ = S. Define d′ := Q−1d and
observe that condition (10.1) holding for every i ∈ {1, . . . , k} is equivalent to

Sd′ ∈ Znk. (10.2)

If we set r = rank(S), then for the coordinates d′i of d′ this means that d′i ∈ 1
Si,i

Z
for i ∈ {1, . . . , r}. The other coordinates of d′ have no restrictions imposed on
them.

Now, suppose we have a d ∈ Rn such that d′ = Q−1d satisfies criterion (10.2).
We decompose d in three vectors:

d = Q



d′1
...
d′r
d′r+1
...
d′n


= Q



d′1 − bd′1c
...

d′r − bd′rc
0
...
0


+Q



bd′1c
...
bd′rc

0
...
0


+Q



0
...
0

d′r+1
...
d′n


.

For the first vector, which we will call dbase, we must have that

d′i − bd′ic ∈
{

0, 1
Si,i

,
2
Si,i

, . . . ,
Si,i − 1
Si,i

}
.
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The second vector, which we will call dint, is an element of Zn, and the final
vector, which we will call drem, satisfies

(drem,1n)(ai, Ai)(drem,1n)−1 = (ai, Ai)

for all i ∈ {1, . . . , k}. Thus, we may conclude that every ξ(d,1n) ∈ Aut0(Γ)
admits a unique decomposition

ξ(d,1n) = ξ(dbase,1n) ◦ ξ(dint,1n) ◦ ξ(drem,1n)

= ξ(dbase,1n) ◦ ι ◦ id,

where ι = ξ(dint,1n) lies in the image of the map Zn → Aut0(Γ) in the diagram
in theorem 10.1.4. Thus, we find that{

Qd′ | d
′
i ∈
{

0, 1
Si,i

, 2
Si,i

, . . . ,
Si,i−1
Si,i

}
for 1 ≤ i ≤ r

d′i = 0 for r + 1 ≤ i ≤ n

}

is a set of representatives of H1(F,Zn).

Calculating the Reidemeister spectrum

Combining the algorithms from the previous sections, we may now construct
algorithm 9, which calculates the Reidemeister spectrum of a crystallographic
group Γ with finite outer automorphism group. A GAP-implementation of
algorithm 9 produced the results found in tables B.1 to B.6. Note that we
have omitted the value ∞ from the Reidemeister spectra in these tables. The
Bieberbach groups are indicated by a star (*).

10.1.2 Infinite outer automorphism group

The Reidemeister spectra of crystallographic groups with infinite outer
automorphism groups have to be calculated by hand. For dimensions 1, 2
and 3, we do this for all groups; for dimension 4 we limit ourselves to a small
selection of groups, for example those where we can apply lemma 2.5.18 or
theorem 4.2.6.

Dimension 2

min.2-1.1-0. This group is isomorphic to Z2, hence by theorem 5.1.2 we find
that SpecR(Γ) = N ∪ {∞}.
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Algorithm 9 Calculate the Reidemeister spectrum of a crystallographic group
Γ with finite outer automorphism group

1: function CalculateReidemeisterSpectrum(Γ)
2: NF ← NGLn(Z)(F )
3: if #NF =∞ then
4: return fail . # Out(Γ) =∞
5: else
6: Hreps ← CalculateRepresentativesCohomology(F )
7: Outreps ← ∅ . Calculate Out(Γ)
8: for [D] ∈ NF /F do
9: dbase ← ExtendsToAutomorphism(D,Γ)

10: if dbase 6= fail then
11: Outreps ← Outreps ∪ {ξ(dbase+d,D) | d ∈ Hreps}
12: end if
13: end for
14: SpecR(Γ)← ∅ . Calculate SpecR(Γ)
15: for ϕ ∈ Outreps do
16: SpecR(Γ)← SpecR(Γ) ∪ ReidemeisterNumber(Γ, ϕ)
17: end for
18: return SpecR(Γ)
19: end if
20: end function

group.1-1.1-0. This group is isomorphic to 〈Z2, (0,−12)〉, hence by the-
orem 7.1.3 we find that SpecR(Γ) = 2N ∪ {3,∞}.

Dimension 3

min.6-1.1-0. This group is isomorphic to Z3, hence by theorem 5.1.2 we find
that SpecR(Γ) = N ∪ {∞}.

min.7-1.1-0. This group is isomorphic to the direct product of min.1-1.1-0
and group.1-1.1-0, where both factors are characteristic. Hence by lemma 2.5.18
we find that SpecR(Γ) = 4N ∪ {6,∞}. This group is also isomorphic to Λ3/2/0,
whose spectrum was calculated in table 7.1.

min.7-1.1-1. This group is isomorphic to Λ3/2/1, hence by theorem 7.1.9 we
find that SpecR(Γ) = 2N ∪ {∞}.
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min.7-1.2-0. This group is given by

Γ = 〈Z3, α〉 with α = (0,

1 −1 0
0 −1 0
0 0 −1

).

We first calculate an explicit formula for the Reidemeister number of a given
automorphism.

Proposition 10.1.6. Let Γ be the crystallographic group min.7-1.2-0 and
ϕ = ξ(d,D) ∈ Aut(Γ). Then

R(ϕ) =
(

1
#F

∑
A∈F
|det(13 −AD)|∞

)
+ 4δ(d),

with δ given by

δ(d) :=
{

1 if d3 ∈ Z,
0 otherwise ,

where d3 is the third coordinate of d.

Proof. Let ϕ = ξ(d,D) be an automorphism of Γ. We can calculate that Z(Γ) =
〈e1〉 and define Γ′ := Γ/Z(Γ), which is the crystallographic group group.1-1.1-0.
Then ϕ induces an automorphism ϕ′ = ξ(d′,D′) on Γ′. One can verify, using that
D commutes with any element of the holonomy group, that we may assume D
and d are of the form

D =
(
ε m1 m3
0 D′

)
, d =

(
0
d′

)
,

where
D′ =

(
ε+ 2m1 2m3
m2 1 + 2m4

)
, d′ =

(
d2
d3

)
.

Here, ε ∈ {−1, 1}, m1,m2,m3,m4, d2 ∈ Z, and importantly, d3 ∈ 1
2Z. For

A ∈ F , let A′ be the projection to the holonomy group F ′ of Γ′. We have that

|det(13 −AD)|∞ = |1− ε|∞|det(12 −A′D′)|∞. (10.3)

Following theorem 4.2.5 and the first part of the proof of theorem 7.1.3, we
may conclude that R(ϕ) =∞ if and only if (at least) one of the following three
conditions is satisfied:

• ε = 1,
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• det(D′) = −1 and tr(D′) = 0,

• det(D′) = 1 and | tr(D′)| = 2.

If this is the case, then the formula holds. We are left to verify the formula
when none of these conditions are satisfied.

Consider a Reidemeister class [x]ϕ of Γ and recall that Z(Γ) = 〈e1〉. Then

x = e−k1 (xe2k
1 )ϕ(e−k1 )−1

and hence x ∼ xe2k
1 for all k ∈ Z. So a Reidemeister class [xZ(Γ)]ϕ′ of Γ′ lifts

to at most 2 distinct Reidemeister classes of Γ: [x]ϕ and [xe1]ϕ.

The question that remains is: when is x ∼ϕ xe1? This is the case when there
exists some z ∈ Γ such that

x = zxe1ϕ(z)−1. (10.4)

Projecting this to Γ′ we find

xZ(Γ) = zxϕ(z)−1Z(Γ). (10.5)

Set x = ((x1, x2, x3)ᵀ, Ax) and z = ((z1, z2, z3)ᵀ, Az). If we assume that
Az = 13, then (10.5) is equivalent to

(12 −A′xD′)
(
z2
z3

)
= 0.

But det(12 −A′xD′) 6= 0, hence z2 = z3 = 0 and thus z = ez11 ∈ Z(Γ) for some
z1 ∈ Z. But then equation (10.4) reduces to e2z1+1

1 = 1, which is impossible.
Therefore, Az 6= 13, and then equation (10.5) is a special case of equation (7.2):
[xZ(Γ)]ϕ′ is one of the cosets of 12 −A′xD′ such that

2
(
x2
x3

)
+ 2A′x

(
d2
d3

)
= (12 −A′xD′)

(
z2
z3

)
, (10.6)

i.e. a coset that forms a Reidemeister class on its own, rather than pairing
up with another coset. The e2- and e3-coordinates of (10.4) are equivalent to
equation (10.6). The e1-coordinate can be shown to be equivalent to z2 = 2z1+1,
under the assumption that (10.6) is satisfied. But since z1 is an integer, we
need that z2 ∈ 2Z + 1.

Now, let’s look at the number of Reidemeister classes [xZ(Γ)]ϕ′ such that (10.6)
holds. From the calculations we did for Γ′, we know that we must look at the
number of solutions O(12−D′, 2d′) of the system of equations over Z2 given by(

0 0
m̄2 0

)(
z̄2
z̄3

)
=
(

0
2d3

)
,



CRYSTALLOGRAPHIC GROUPS 175

and we see that O(12 −D′, 2d′) = 2O(m2, 2d3), since z̄3 can be chosen freely.
We now have 4 cases:

1. m̄2 = 0̄, 2d3 = 0̄. Then O(m2, 2d3) = 2 with solutions z̄2 = 0̄, 1̄; and
δ(d) = 1.

2. m̄2 = 1̄, 2d3 = 0̄. Then O(m2, 2d3) = 1 with solution z̄2 = 0̄; and δ(d) = 1.

3. m̄2 = 0̄, 2d3 = 1̄. Then O(m2, 2d3) = 0; and δ(d) = 0.

4. m̄2 = 1̄, 2d3 = 1̄. Then O(m2, 2d3) = 1 with solution z̄2 = 1̄; and δ(d) = 0.

Every solution z̄2 of the equation m̄2z̄2 = 2d3 represents 4 Reidemeister classes
[xZ(Γ)]ϕ′ , since one takes all combinations of z̄3 ∈ {0, 1} and A′x ∈ {12,−12}.
Thus, we have respectively 8, 4, 0 and 4 Reidemeister classes [xZ(Γ)]ϕ′ satisfying
(10.5); of which respectively 4, 0, 0 and 4 satisfy z2 ∈ 2Z + 1. So the number of
lifts to Reidemeister classes of Γ is respectively 12, 8, 0 and 4. This number of
Reidemeister classes always equals

2O(12 −D′, 2d′) + 4δ(d).

On the other hand, Γ′ has

|det(12 −D′)|+ |det(12 +D′)|
2 −O(12 −D′, 2d′)

Reidemeister classes for which (10.5) does not hold, meaning each of these
classes lift to two distinct Reidemeister classes of Γ. Combining all the classes
we obtain the formula

R(ϕ) = |det(12 −D′)|+ |det(12 +D′)|+ 4δ(d), (10.7)

and using 1− ε = 2 in equation (10.3) we see this is exactly

R(ϕ) =
(

1
#F

∑
A∈F
|det(13 −AD)|

)
+ 4δ(d)

=
(

1
#F

∑
A∈F
|det(13 −AD)|∞

)
+ 4δ(d),

since none of the determinants are zero. Therefore, the proposed formula holds
in all cases.

Theorem 10.1.7. Let Γ be the crystallographic group min.7-1.2-0. Then
SpecR(Γ) = 4N ∪ {∞}.
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Proof. Let ϕ = ξ(d,D) be an automorphism of Γ with R(ϕ) < ∞. Consider
formula (10.7) and remark that tr(D′) ∈ 2Z. Since

det(12 ±D′) = 1± tr(D′) + det(D′),

we have that

|det(12 −D′)|+ |det(12 +D′)| =
{

4 if tr(D′) = 0,det(D′) = 1,
2| tr(D′)| otherwise ,

so in both cases R(ϕ) ∈ 4N. Now consider the family of automorphisms
ϕm = ξ(d,Dm) given by

Dm =

−1 m m
0 −1 + 2m 2m
0 1 1

 , d =

 0
0

1/2

 ,

where m ∈ N. Since det(12 ±D′) = ±2m and δ(d) = 0, we find that R(ϕm) =
4m and hence SpecR(Γ) = 4N ∪ {∞}.

group.5-1.1-0. This group is isomorphic to 〈Z3, (0,−13)〉, hence by the-
orem 7.1.3 we find that SpecR(Γ) = N \ {1} ∪ {∞}.

Dimension 4

min.15-1.1-0. This group is isomorphic to Z4, hence by theorem 5.1.2 we find
that SpecR(Γ) = N ∪ {∞}.

min.17-1.1-0. This group is isomorphic to the direct product of min.1-1.1-0
and group.5-1.1-0, where both factors are characteristic. Hence by lemma 2.5.18
we find that SpecR(Γ) = 2N \ {2} ∪ {∞}. This group is also isomorphic to
Λ4/3/0, whose spectrum was calculated in table 7.1.

min.17-1.1-1. This group is isomorphic to Λ4/3/1, hence by theorem 7.1.9 we
find that SpecR(Γ) = 2N ∪ {∞}.

min.18-1.1-0. This group is isomorphic to the direct product of min.2-1.1-0
and group.5-1.1-0, where both factors are characteristic. Hence by lemma 2.5.18
we find that SpecR(Γ) = 2N ∪ 3N ∪ {∞}. This group is also isomorphic to
Λ4/2/0, whose spectrum was calculated in table 7.1.
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min.18-1.1-1. This group is isomorphic to Λ4/2/1, hence by theorem 7.1.9 we
find that SpecR(Γ) = 2N ∪ {∞}.

min.18-1.2-1. This is a Bieberbach group given by

Γ = 〈Z4, α〉 with α = (


1
2
0
0
0

 ,


1 0 0 0
0 1 −1 0
0 0 −1 0
0 0 0 −1

).

Theorem 10.1.8. Let Γ be the crystallographic group min.18-1.2-1. Then
SpecR(Γ) = 4N ∪ {∞}.

Proof. Let ϕ = ξ(d,D) be an automorphism of Γ. Note that Z(Γ) = 〈e1, e2〉 and
Zn ∩ Γ

√
γ2(Γ) = 〈e2e

2
3, e4〉, and these are both characteristic subgroups of Γ.

Taking into account that det(D) ∈ {−1, 1}, one can then calculate that D must
be of the form

D =
(
D1 D2
0 D3

)
=


2m1 + 1 2m3 −m3 0
m2 2m4 + 1 −m4 +m5 m7
0 0 2m5 + 1 2m7
0 0 m6 2m8 + 1

 ,

with all mi ∈ Z. Using the averaging formula from theorem 4.2.6, we find that

R(ϕ) = 1
2 |det(12 −D1)|∞ (|det(12 −D3)|∞ + |det(12 +D3)|∞) .

Now, assuming that R(ϕ) <∞, we have

det(12 −D1) = det
(
−2m1 −2m3
−m2 −2(m4 +m5)

)
∈ 2N,

and, noting that tr(D3) ∈ 2N, we find

|det(12 −D3)|+ |det(12 +D3)| =
{

4 if tr(D3) = 0,det(D3) = 1,
2| tr(D3)| otherwise,

hence |det(12−D3)|+ |det(12 +D3)| ∈ 4N. Thus, putting everything together
we find that R(ϕ) ∈ 4N. Now consider the family of automorphisms ϕm given
by

ϕm(e1) = e−1
1 e2, ϕm(e4) = e2e

2
3e
−1
4 ,

ϕm(e2) = e2m
1 e−2m+1

2 , ϕm(α) = e3α
−1,

ϕm(e3) = e−m1 em−1
2 e−1

3 e4,
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which have associated matrix

Dm =


−1 2m −m 0
1 −2m+ 1 m− 1 1
0 0 −1 2
0 0 1 −1

 ,

for every m ∈ N. Then R(ϕm) = 4m and hence SpecR(Γ) = 4N ∪ {∞}.

group.26-1.1-0. This group is isomorphic to 〈Z4, (0,−14)〉, hence by the-
orem 7.1.3 we find that SpecR(Γ) = N \ {1} ∪ {∞}.

group.179-1.1-0. This group is isomorphic to the direct product of min.2-1.1-0
and min.5-1.1-0, where both factors are characteristic. Hence by lemma 2.5.18
we find that SpecR(Γ) = 4N ∪ {∞}.

group.179-1.1-1. This is a Bieberbach group given by

Γ = 〈Z4, α〉 with α = (


1
3
0
0
0

 ,


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 −1

).

Theorem 10.1.9. Let Γ be the crystallographic group group.179-1.1-1. Then
SpecR(Γ) = 6N ∪ {∞}.

Proof. Let ϕ = ξ(d,D) be an automorphism of Γ. Note that Z(Γ) = 〈e1, e2〉
and Zn ∩ Γ

√
γ2(Γ) = 〈e3, e4〉, and these are both characteristic subgroups of

Γ. Moreover, Γ′ := Γ/Z(Γ) is the crystallographic group min.5-1.1-0. Let
ϕ′ = ξ(d′,D′) be the induced automorphism on Γ′. Because NΓ′ is finite, we can
calculate (for example with a computer) that

•
∑
A′∈F ′

|det(12 −A′D′)|∞ ∈ {6,∞} for all D′ ∈ NΓ′ ,

• if the above sum is finite, then D′A′D′−1 = A′ for all A′ ∈ F ′.

If we assume that R(ϕ) <∞, we must therefore have that DAD−1 = A for all
A ∈ F . One can then calculate that D must be of the form

D =
(
D1 0
0 D′

)
=


3m1 + 1 m3 0 0

3m2 m4 0 0
0 0 m5 m7
0 0 m6 m8

 ,
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with all mi ∈ Z and D′ ∈ NΓ′ . Using the averaging formula from theorem 4.2.6,
we find that

R(ϕ) = 1
3 |det(12 −D1)|∞

∑
A′∈F ′

|det(12 −A′D′)|∞.

The first column of D1 tells us that det(12 − D1) ∈ 3N, and we already
established that the sum over F ′ must equal 6. Thus, we find that R(ϕ) ∈ 6N.
Now consider the family of automorphisms ϕm given by

ϕm(e1) = e1e
3m
2 , ϕm(e4) = e−1

4 ,

ϕm(e2) = e1e
3m−1
2 , ϕm(α) = em2 e3α,

ϕm(e3) = e−1
3 ,

which have associated matrix

Dm =


1 1 0 0

3m 3m− 1 0 0
0 0 −1 0
0 0 0 −1

 ,

for every m ∈ N. Then R(ϕm) = 6m and hence SpecR(Γ) = 6N ∪ {∞}.

group.179-1.2-1. This is a Bieberbach group given by

Γ = 〈Z4, α〉 with α = (


1
3
0
0
0

 ,


1 0 0 0
0 1 0 1
0 0 0 −1
0 0 1 −1

).

Theorem 10.1.10. Let Γ be the crystallographic group group.179-1.2-1. Then
SpecR(Γ) = 6N ∪ {∞}.

Proof. Let ϕ = ξ(d,D) be an automorphism of Γ. Assume that R(ϕ) <∞, then
by following the same reasoning as for group.179-1.1-1, one can calculate that
D must be of the form

D =
(
D1 D2
0 D′

)
=


3m1 + 1 3m3 m5 m9
m2 m4 m6 m10
0 0 m7 m11
0 0 m8 m12

 ,
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with all mi ∈ Z and D′ ∈ NΓ′ , where Γ′ := Γ/Z(Γ) is the crystallographic
group min.5-1.1-0. Again, we find that R(ϕ) ∈ 6N. Now consider the family of
automorphisms ϕm given by

ϕm(e1) = e1e2, ϕm(e4) = e−1
4 ,

ϕm(e2) = e3m
1 e3m−1

2 , ϕm(α) = e3α,

ϕm(e3) = e−1
3 ,

which have associated matrix

Dm =


1 3m 0 0
1 3m− 1 0 0
0 0 −1 0
0 0 0 −1

 ,

for every m ∈ N. Then R(ϕm) = 6m and hence SpecR(Γ) = 6N ∪ {∞}.

group.182-1.1-0. This group is isomorphic to the direct product of group.5-1.1-
0 and min.5-1.1-0, where both factors are characteristic. Hence by lemma 2.5.18
we find that SpecR(Γ) = 8N ∪ {12,∞}.

10.1.3 Summary

Below, we present a table containing all crystallographic groups of dimension
at most 4 that do not have the R∞-property. The table also contains the sizes
of the outer automorphism groups and the Reidemeister spectra. Note that we
have omitted the value {∞} from the spectra, and have indicated Bieberbach
groups with a star (*).

CARAT BBNWZ IT # Out(Γ) SpecR(Γ)
min.1-1.1-0* 1/1/1/1/1 1/1 2 {2}
min.2-1.1-0* 2/1/1/1/1 2/1 ∞ N
min.5-1.1-0 2/4/1/1/1 2/13 12 {4}
min.6-1.1-0* 3/1/1/1/1 3/1 ∞ N
min.7-1.1-0 3/2/1/1/1 3/3 ∞ 4N ∪ {6}
min.7-1.1-1* 3/2/1/1/2 3/4 ∞ 2N
min.7-1.2-0 3/2/1/2/1 3/5 ∞ 4N
min.10-1.1-0 3/3/1/1/1 3/16 96 {2}
min.10-1.1-3* 3/3/1/1/2 3/19 96 {2}

Table 10.1: Crystallographic groups of dimension at most 4 that do not have
the R∞-property (we omit ∞ from the spectra)
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CARAT BBNWZ IT # Out(Γ) SpecR(Γ)
min.10-1.3-0 3/3/1/3/1 3/22 48 {2}
min.10-1.4-0 3/3/1/4/1 3/23 48 {2}
min.10-1.4-1 3/3/1/4/2 3/24 48 {2}
min.13-1.1-0 3/5/1/2/1 3/143 24 {8}
min.13-1.2-0 3/5/1/1/1 3/146 4 {8}
min.15-1.1-0* 4/1/1/1/1 ∞ N
min.17-1.1-0 4/2/2/1/1 ∞ 2N \ {2}
min.17-1.1-1* 4/2/2/1/2 ∞ 2N
min.17-1.2-0 4/2/2/2/1 ∞
min.18-1.1-0 4/3/1/1/1 ∞ 2N ∪ 3N
min.18-1.1-1* 4/3/1/1/2 ∞ 2N
min.18-1.2-0 4/3/1/2/1 ∞
min.18-1.2-1* 4/3/1/2/2 ∞ 4N
min.18-1.3-0 4/3/1/3/1 ∞
min.28-1.1-0 4/22/7/2/1 8 {12}
min.32-1.1-0 4/22/1/2/1 288 {4, 16}
min.32-1.2-0 4/22/1/1/1 48 {16}
min.36-1.1-0 4/10/1/1/1 ∞
min.38-1.1-0 4/32/10/2/1 144 {6}
min.38-1.1-4 4/32/10/2/7 24 {6}
min.43-1.1-0 4/28/1/1/1 ∞
min.44-1.1-0 4/28/2/1/1 ∞
max.6-1.1-0 4/26/2/1/1 ∞
max.6-1.1-1 4/26/2/1/2 ∞
group.1-1.1-0 2/1/2/1/1 2/2 ∞ 2N ∪ {3}
group.5-1.1-0 3/1/2/1/1 3/2 ∞ N \ {1}
group.26-1.1-0 4/1/2/1/1 ∞ N \ {1}
group.28-1.1-0 4/3/2/1/1 ∞
group.28-1.1-1 4/3/2/1/2 ∞
group.28-1.1-2 4/3/2/1/3 ∞
group.28-1.2-0 4/3/2/2/1 ∞
group.28-1.2-1 4/3/2/2/2 ∞
group.28-1.2-2 4/3/2/2/3 ∞
group.28-1.3-0 4/3/2/3/1 ∞
group.37-1.1-0 4/21/2/2/1 12 {3}
group.40-1.1-0 4/22/2/2/1 16 {8}
group.44-1.1-0 4/22/5/4/1 16 {6}
group.44-3.1-0 4/22/5/3/1 144 {6}
group.52-1.1-0 4/5/1/2/1 192 {4}
group.52-1.1-6* 4/5/1/2/9 192 {4}

Table 10.1: Crystallographic groups of dimension at most 4 that do not have
the R∞-property (we omit ∞ from the spectra)
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CARAT BBNWZ IT # Out(Γ) SpecR(Γ)
group.52-1.3-0 4/5/1/9/1 96 {4}
group.52-1.6-0 4/5/1/13/1 48 {4}
group.52-1.7-0 4/5/1/5/1 96 {4}
group.52-1.7-1 4/5/1/5/2 96 {4}
group.52-1.12-0 4/5/1/7/1 96 {4}
group.52-1.12-3* 4/5/1/7/4 96 {4}
group.52-1.13-0 4/5/1/1/1 12 {4}
group.96-1.1-0 4/16/1/1/1 ∞
group.96-1.1-1 4/16/1/1/2 ∞
group.96-2.1-0 4/16/1/2/1 ∞
group.96-2.1-1 4/16/1/2/2 ∞
group.96-2.1-2 4/16/1/2/3 ∞
group.96-3.1-0 4/16/1/3/1 ∞
group.78-1.1-0 4/32/4/2/1 48 {2, 6}
group.78-1.1-2 4/32/4/2/3 48 {2, 6}
group.78-1.1-4 4/32/4/2/6 24 {2, 6}
group.80-1.1-0 4/5/2/2/1 768 {2, 4}
group.80-1.1-5 4/5/2/2/16 256 {2, 4}
group.80-1.1-18 4/5/2/2/18 128 {2, 4}
group.80-1.4-0 4/5/2/9/1 192 {4}
group.80-1.4-2 4/5/2/9/3 64 {4}
group.80-1.6-0 4/5/2/6/1 64 {4}
group.80-1.6-2 4/5/2/6/3 64 {4}
group.80-1.8-0 4/5/2/5/1 384 {4}
group.80-1.8-2 4/5/2/5/5 128 {4}
group.80-1.8-4 4/5/2/5/3 128 {2}
group.80-1.8-5 4/5/2/5/6 384 {2}
group.103-1.1-0 4/32/1/2/1 288 {2, 6}
group.103-1.1-1 4/32/1/2/2 96 {2, 6}
group.109-1.1-0 4/26/1/1/1 ∞
group.141-1.1-0 4/27/2/1/1 ∞
group.142-1.1-0 4/27/3/2/1 ∞
group.142-2.1-0 4/27/3/1/1 ∞
group.143-1.1-0 4/27/4/1/1 ∞
group.144-1.1-0 4/27/1/1/1 ∞
group.163-1.1-0 4/18/4/2/1 32 {4, 8}
group.163-1.1-4 4/18/4/2/6 16 {4, 8}
group.163-1.1-6 4/18/4/2/3 32 {4, 8}
group.163-1.2-0 4/18/4/5/1 32 {4, 8}
group.163-1.2-2 4/18/4/5/3 32 {4, 8}

Table 10.1: Crystallographic groups of dimension at most 4 that do not have
the R∞-property (we omit ∞ from the spectra)
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CARAT BBNWZ IT # Out(Γ) SpecR(Γ)
group.163-1.2-6 4/18/4/5/6 32 {4, 8}
group.163-1.2-7 4/18/4/5/5 32 {4, 8}
group.169-1.1-0 4/18/1/2/1 64 {4, 8}
group.169-1.1-2 4/18/1/2/3 64 {4, 8}
group.169-1.2-0 4/18/1/3/1 64 {4, 8}
group.169-1.2-1 4/18/1/3/2 64 {4, 8}
group.170-1.1-0 4/11/1/1/1 ∞
group.171-1.1-0 4/11/2/1/1 ∞
group.172-2.1-0 4/17/2/1/1 ∞
group.172-1.1-0 4/17/2/2/1 ∞
group.173-1.1-0 4/17/1/3/1 ∞
group.173-2.1-0 4/17/1/1/1 ∞
group.173-3.1-0 4/17/1/2/1 ∞
group.179-1.1-0 4/8/1/2/1 ∞ 4N
group.179-1.1-1* 4/8/1/2/2 ∞ 6N
group.179-1.2-0 4/8/1/1/1 ∞
group.179-1.2-1* 4/8/1/1/2 ∞ 6N
group.182-1.1-0 4/9/2/1/1 ∞ 8N ∪ {12}

Table 10.1: Crystallographic groups of dimension at most 4 that do not have
the R∞-property (we omit ∞ from the spectra)

10.2 Almost-crystallographic groups

In this section, we will calculate the Reidemeister spectra of the almost-
crystallographic groups of dimension at most 3 and of the almost-Bieberbach
groups of dimension at most 4. The results obtained in this section were
published in [DTV19] and [Ter19]. We will use the same presentations as in
section 9.2.1.

10.2.1 Dimension 3

Family min.2-1.1-0. This family consists of the finitely generated, torsion-
free, nilpotent groups of nilpotency class 2 and rank 3. We have already
determined in theorem 5.2.2 that these groups have Reidemeister spectrum
SpecR(Γ) = 2N ∪ {∞}.
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Family group.1-1.1-0. We first calculate an explicit formula for the Reide-
meister number of a given automorphism.

Proposition 10.2.1. Let Γ be a 3-dimensional almost-crystallographic group
in the family group.1-1.1-0, and let ϕ = ξ(d,D) ∈ Aut(Γ). Then

R(ϕ) =
(

1
#F

∑
A∈F
|det(13 −A∗D∗)|∞

)
+ 2S,

where S ∈ {0, 1, 2, 3, 4} depends on D, d, and the parameters k1, k2, k3 and k4
of Γ.

Proof. The formula holds trivially for automorphisms with infinite Reidemeister
number due to theorem 4.2.5. So let ϕ be an automorphism with finite
Reidemeister number R(ϕ). Under the representation λ, this automorphism
will correspond to a matrix δ ∈ Aff(R3) such that

λ(ϕ(γ)) = δλ(γ)δ−1.

for all γ ∈ Γ. Note that ϕ induces an automorphism ϕ′ = ξ(d/2,M) on Γ′ :=
Γ/〈e1〉. Since we assumed that R(ϕ) <∞, proposition 9.2.2 gives us that

ϕ(e1) = e
det(M)
1 = e−1

1 .

Thus, δ, M and d must be of the form

δ =


−1 n1 n2 0
0 m1 m3 d1/2
0 m2 m4 d2/2
0 0 0 1

 , M =
(
m1 m3
m2 m4

)
, d =

(
d1
d2

)
,

where all mi and dj are integers, m1m4 −m2m3 = −1 and n1, n2 ∈ R. Using a
computer, one can calculate the (unique) values of n1, n2 and l1, l2, l3 such that

δλ(e2)δ−1 = λ(e1)l1λ(e2)m1λ(e3)m2 ,

δλ(e3)δ−1 = λ(e1)l2λ(e2)m3λ(e3)m4 ,

δλ(α)δ−1 = λ(e1)l3λ(e2)d1λ(e3)d2λ(α).
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From the obtained values of l1, l2 and l3, we get

ϕ(e1) = e−1
1 ,

ϕ(e2) = e
k1
2 (m1m2+m1d2−m2d1)− k2

2 (m1+1)− k3
2 m2

1 em1
2 em2

3 ,

ϕ(e3) = e
k1
2 (m3m4+m3d2−m4d1)− k2

2 m3− k3
2 (m4+1)

1 em3
2 em4

3 ,

ϕ(α) = e
k1
2 d1d2− k2

2 d1− k3
2 d2−k4

1 ed1
2 e

d2
3 α,

where all exponents must be integers. This places four conditions on the mi

and dj :

(a) k1(m1m2 +m1d2 −m2d1)− k2(m1 + 1)− k3m2 ≡ 0 mod 2,

(b) k1(m3m4 +m3d2 −m4d1)− k2m3 − k3(m4 + 1) ≡ 0 mod 2,

(c) k1d1d2 − k2d1 − k3d2 ≡ 0 mod 2,

(d) m1m4 −m2m3 = −1.

We will determine R(ϕ) in a very similar way to the proof of proposition 10.1.6.
Let [x]ϕ be a Reidemeister class of Γ, then for any k ∈ Z,

x = (e−k1 )xe2k
1 ϕ(e−k1 )−1,

therefore x ∼ϕ xe2k
1 for all k ∈ Z. Consider the quotient group Γ′ = Γ/〈e1〉

and let ϕ′ = ξ(d/2,M) be the induced automorphism on this quotient. Since we
assumed that R(ϕ) < ∞, we have that R(ϕ′) < ∞ as well. A Reidemeister
class [x〈e1〉]ϕ′ of Γ′ will lift to at most 2 Reidemeister classes of Γ: [x]ϕ and
[xe1]ϕ; so the number of lifts is either 2 (when x 6∼ϕ xe1) or 1 (when x ∼ϕ xe1).
The latter happens if and only if

∃z ∈ Γ : xe1 = zxϕ(z)−1. (10.8)

Projecting this to the quotient Γ′, we have

∃z ∈ Γ : x〈e1〉 = zxϕ(z)−1〈e1〉. (10.9)

Since e1 is central in Γ and x appears exactly once on each side of the equality
sign in (10.8), the e1-component of x does not matter. Set x = ex2

2 ex3
3 αεx and

z = ez11 e
z2
2 e

z3
3 α

εz . Let us first assume that εz = 0, then (10.9) is equivalent to

∃z2, z3 ∈ Z : (12 −A′M)
(
z2
z3

)
= 0,
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with A′ the holonomy part of x〈e1〉. As R(ϕ′) <∞, we must have z2 = z3 = 0.
But then z = ez11 , and (10.8) then becomes xe1 = xe2z1

1 . As z1 is an integer, this
is impossible. So, let us assume that εz = 1. Writing out (10.8) component-wise,
we find that this condition is equivalent to the following:

There exist z1, z2, z3 ∈ Z such that:

(i) 2
(
x2
x3

)
= (12 − (−1)εxM)

(
z2
z3

)
− (−1)εxd,

(ii) k1z2z3 − k2z2 − k3z3 − k4 + 1 = 2z1.

Condition (i) is independent of the e1-components, and hence can be interpreted
in terms of the quotient group Γ′. In the proof of lemma 7.1.5 it was shown that,
for a fixed value of εx, the number of Reidemeister classes [x〈e1〉]ϕ′ for which
a pair (z2, z3) satisfying (i) exists is exactly O(12 −M,d), i.e. the number of
solutions (z̄2, z̄3) ∈ Z2

2 of the linear system of equations

(i’)
(
12 −M

)(z̄2
z̄3

)
= d̄.

Note that the above equation is exactly condition (i) taken modulo 2.

Since εx can take two values (1 and −1), there are in total 2O(12 − M,d)
Reidemeister classes [x〈e1〉]ϕ′ satisfying condition (i). On the other hand, there
are | tr(M)| −O(12 −M,d) Reidemeister classes of Γ′ for which condition (i)
does not hold.

Recall that the variable z1 appears only in condition (ii). If we have a
Reidemeister class [x〈e1〉]ϕ′ and a pair (z2, z3) for which (i) holds, then we
can find a z1 ∈ Z to make condition (ii) hold if and only if

(ii’) k̄1z̄2z̄3 − k̄2z̄2 − k̄3z̄3 − k̄4 + 1̄ = 0̄,

which is exactly condition (ii) taken modulo 2.

We partition the solutions of (i’) into those that do not satisfy condition (ii’)
and those that do. Let S be the number of the former and T the number of the
latter, then S + T = O(12 −M,d). Of the 2O(12 −M,d) Reidemeister classes
[x〈e1〉]ϕ′ satisfying condition (i), 2S lift to two distinct Reidemeister classes
[x]ϕ and [xe1]ϕ, and 2T lift to a single Reidemeister class [x]ϕ. All together, we
have

R(ϕ) = 2(| tr(M)| − S − T ) + 2(2S) + 2T

= 2| tr(M)|+ 2S.
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If D is the matrix associated to the automorphism ϕ, then D∗ is of the form

D∗ =

−1 ∗ ∗
0 m1 m3
0 m2 m4

 .

For any A ∈ F , let A′ = ±1′2 be the corresponding matrix in F ′. We then have
that

|det(13 −A∗D∗)| = 2|det(12 −A′M)| = 2| tr(M)|,
therefore we indeed obtain the formula

R(ϕ) =
(

1
#F

∑
A∈F
|det(13 −A∗D∗)|∞

)
+ 2S,

where 0 ≤ S ≤ O(12 −M,d) ≤ 4.

Theorem 10.2.2. Let Γ be a 3-dimensional almost-crystallographic group in
the family group.1-1.1-0, with parameters k1, k2, k3, k4. Then the Reidemeister
spectrum of Γ is

• 4N ∪ {∞}, if k̄1 = 0 and (k̄2, k̄3, k̄4) 6= (0, 0, 1),

• 2N ∪ {∞}, if k̄1 = 0 and (k̄2, k̄3, k̄4) = (0, 0, 1),

• 4N− 2 ∪ {∞}, if k̄1 = 1 and k̄2k̄3 + k̄4 = 0,

• 2N + 2 ∪ {∞}, if k̄1 = 1 and k̄2k̄3 + k̄4 = 1,

where the bar-notation stands for the projection to Z2.

Proof. From the proof of proposition 10.2.1, we get that R(ϕ) ∈ 2N. Taking the
parity of tr(M) into account, we can further determine the possible Reidemeister
numbers:

R(ϕ) ∈
{

4N + 2S if tr(M) ≡ 0 mod 2,
4N + 2S − 2 if tr(M) ≡ 1 mod 2,

where

S ≤ O(12 −M,d) ≤
{

4 if tr(M) ≡ 0 mod 2,
1 if tr(M) ≡ 1 mod 2.

There is one special case, however. IfM ≡ 12 mod 2 all entries of 12−M will be
multiples of 2; so |det(12 −M)| = | tr(M)| ∈ 4N and therefore R(ϕ) ∈ 8N+ 2S.

For a fixed group Γ in this family (i.e. a fixed tuple of parameters (k1, k2, k3, k4)),
an automorphism ϕ ∈ Aut(Γ) is uniquely determined by the matrixM ∈ GL2(Z)
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and the vector d ∈ Z2. Our goal is to find out, for each group in the family (or
equivalently, for each tuple (k1, k2, k3, k4)), which M and d satisfy conditions
(a) - (d) and thus produce an automorphism.

Conditions (a) - (c) are actually conditions over Z2, and none of the parameters
ki appear in condition (d). Therefore, only the parity of the ki will play a
role, so we need to check 16 cases, each corresponding to an element of Z4

2.
Furthermore, a group with parameters (k1, k2, k3, k4) is isomorphic to the group
with parameters (−k1, k3, k2, k4), which allows us to omit the cases (0, 1, 0, 0),
(0, 1, 0, 1), (1, 1, 0, 0) and (1, 1, 0, 1), leaving only 12 cases. Rather than trying to
find all couples (M,d) (of which there are likely to be infinitely many), we can
start by finding all couples (M̄, d̄) ∈ GL2(Z2)× Z2

2 satisfying conditions (a)-(c).

The function MakeList defined in algorithm 10 does exactly this. Moreover,
it assigns to every couple a set R, which is the set of possible Reidemeister
numbers the corresponding automorphisms can have. The results can be found
in tables B.13 to B.24. The Reidemeister spectrum of a group is a subset of (or
the entirety of) the union of all these sets R.

Next, for each quadruplet of parameters, we found a family of automorphisms
whose Reidemeister numbers produce the union of these sets R. These
automorphisms and their Reidemeister numbers, for all (k1, k2, k3, k4), can be
found in table 10.2. For the sake of brevity, we omitted ∞ from the spectra in
this table. Note that all almost-Bieberbach groups belonging to this family have
parameters with parities (0, 0, 0, 1) and therefore have spectrum 2N ∪ {∞}.

10.2.2 Dimension 4, almost-Bieberbach groups

We already determined in section 9.2.2 which families of four-dimensional
almost-crystallographic groups do not have the R∞-property. In [Dek96] it is
determined which groups among these families are almost-Bieberbach groups.
We use the presentations from section 9.2.2.

Family min.6-1.1-0. Every group in this family is a finitely generated, torsion-
free, nilpotent group of rank 4 and nilpotency class 2. In theorem 5.2.3 it was
shown that the Reidemeister spectrum of such group is always 4N ∪ {∞}.

Family min.7-1.1-0. The almost-Bieberbach groups in this family are those
with parameters (k1, k2, k3, k4) = (2k, 0, 0, 1) for some k ∈ N, i.e. every almost-
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Algorithm 10 Determining automorphisms and Reidemeister spectra of 3-
dimensional almost-crystallographic groups in family group.1-1.1-0

1: function MakeList(k1, k2, k3, k4)
2: AutList ← ∅
3: for M̄ ∈ GL2(Z2), d̄ ∈ Z2

2 do
4: if conditions (a), (b), (c) are met then
5: S ← 0
6: for z̄ ∈ Z2

2 do
7: if z̄ satisfies (i’) but not (ii’) then
8: S ← S + 1
9: end if

10: end for
11: if tr(M) ≡ 0 mod 2 then
12: if M ≡ 12 mod 2 then
13: R← 8N + 2S
14: else
15: R← 4N + 2S
16: end if
17: else
18: R← 4N + 2S − 2
19: end if
20: AutList ← AutList ∪

{
(M̄, d̄, R)

}
21: end if
22: end for
23: return AutList
24: end function

Bieberbach group in this family has a presentation of the form

〈
e1, e2, e3, e4, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α
[e3, e1] = 1 αe2 = e2α
[e4, e1] = 1 αe3 = e−1

3 α
[e3, e2] = 1 αe4 = e−1

4 α
[e4, e2] = 1 α2 = e1
[e4, e3] = e2k

1

〉
,

and the faithful representation λ is given by

λ(α) =


1 0 0 0 1

2
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 .
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(k̄1, k̄2, k̄3, k̄4) M d R(ϕ) SpecR(Γ)
(0, 0, 0, 0) ( 0 1

1 2m ) ( 0
1 ) 4m 4N

(0, 0, 0, 1) ( 0 1
1 m ) ( 0

0 ) 2m 2N
(0, 0, 1, 0)

( 1 1
2m 2m−1

)
( 1

0 ) 4m 4N
(0, 0, 1, 1)

( 1 1
2m 2m−1

)
( 0

0 ) 4m 4N
(0, 1, 1, 0) ( 0 1

1 2m ) ( 1
1 ) 4m 4N

(0, 1, 1, 1) ( 0 1
1 2m ) ( 0

0 ) 4m 4N
(1, 0, 0, 0)

( 0 1
1 2m−1

)
( 0

1 ) 4m− 2 4N− 2
(1, 0, 0, 1)

( 1 1
m m−1

)
( 1

0 ) 2m+ 2 2N + 2
(1, 0, 1, 0)

( 0 1
1 2m−1

)
( 1

0 ) 4m− 2 4N− 2
(1, 0, 1, 1) (m 1

1 0 ) ( 1
1 ) 2m+ 2 2N + 2

(1, 1, 1, 0) ( 0 1
1 m ) ( 0

0 ) 2m+ 2 2N + 2
(1, 1, 1, 1)

( 0 1
1 2m−1

)
( 0

0 ) 4m− 2 4N− 2

Table 10.2: Automorphisms and Reidemeister spectra for all (k1, k2, k3, k4) (we
omit ∞ from the spectra)

Theorem 10.2.3. Let Γ be a 4-dimensional almost-Bieberbach group in the
family min.7-1.1-0, with parameters 2k, 0, 0, 1. Then the Reidemeister spectrum
of Γ is 4N ∪ {∞}.

Proof. Let ϕ be an automorphism with finite Reidemeister number R(ϕ). Under
the representation λ, this automorphism will correspond to a matrix δ ∈ Aff(R4)
such that

λ(ϕ(γ)) = δλ(γ)δ−1.

for all γ ∈ Γ. Note that ϕ induces an automorphism ϕ′ on Γ′ := Γ/〈e1〉 and also
an automorphism ϕ′′ = ξ(d/2,M) on Γ′′ := Γ/Z(Γ), which is the crystallographic
group group.1-1.1-0. Since we assumed that R(ϕ) <∞, proposition 9.2.2 gives
us that

ϕ(e1) = e
det(M)
1 = e−1

1 .

Thus, δ, M and d must be of the form

δ =


−1 n1 n2 n3 0
0 −1 0 0 0
0 0 m1 m3 d1/2
0 0 m2 m4 d2/2
0 0 0 0 1

 , M =
(
m1 m3
m2 m4

)
, d =

(
d1
d2

)
,

where all mi and dj are integers, m1m4 −m2m3 = −1 and n1, n2 ∈ R. Using
a computer, one can calculate the (unique) values of n1, n2, n3 and l1, l2, l3, l4
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such that

δλ(e2)δ−1 = λ(e1)l1λ(e2)−1,

δλ(e3)δ−1 = λ(e1)l2λ(e3)m1λ(e4)m2 ,

δλ(e4)δ−1 = λ(e1)l3λ(e3)m3λ(e4)m4 ,

δλ(α)δ−1 = λ(e1)l4λ(e3)d1λ(e4)d2λ(α).

From the obtained values of l1, l2, l3 and l4, we get

ϕ(e1) = e−1
1 ,

ϕ(e2) = el1e
−1
2 ,

ϕ(e3) = e
k(m1m2+m1d2−m2d1)
1 em1

3 em2
4 ,

ϕ(e4) = e
k(m3m4+m3d2−m4d1)
1 em3

3 em4
4 ,

ϕ(α) = ekd1d2−1
1 ed1

3 e
d2
4 α,

with mi, dj , l ∈ Z and m1m4 −m2m3 = −1. Then D∗ is of the form

D∗ =


−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 m1 m3
0 0 m2 m4

 .

Using theorem 4.2.6, we find that R(ϕ) = 4|m1 +m4| ∈ 4N. Now, consider the
family of automorphisms ϕm given by

ϕm(e1) = e−1
1 , ϕm(e4) = ekm1 e3e

m
4 ,

ϕm(e2) = e−1
2 , ϕm(α) = e−1

1 α,

ϕm(e3) = e4,

with m ∈ N. Then R(ϕm) = 4m and hence SpecR(Γ) = 4N ∪ {∞}.

Family min.7-1.1-1. The almost-Bieberbach groups in this family are (up
to isomorphism) those where either (k1, k2, k3, k4) = (k, 0, 0, 0) with k ∈ N
or (k1, k2, k3, k4) = (2k, 1, 0, 0) with k ∈ N. In the former case, such almost-
Bieberbach group can be seen as an internal semidirect product Hk o Z, where
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Hk = 〈e1, e3, e4〉 and Z = 〈α〉. Similarly, in the latter case, such group is an
internal semidirect product H2k o Z.

The almost-Bieberbach groups with parameters k, 0, 0, 0 have a presentation of
the form

〈
e1, e2, e3, e4, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α
[e3, e1] = 1 αe2 = e2α
[e4, e1] = 1 αe3 = e−1

3 α
[e3, e2] = 1 αe4 = e−1

4 α
[e4, e2] = 1 α2 = e2
[e4, e3] = ek1

〉
,

and the faithful representation λ is given by

λ(α) =


1 0 0 0 0
0 1 0 0 1

2
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Theorem 10.2.4. Let Γ be a 4-dimensional almost-Bieberbach group in the
family min.7-1.1-1, with parameters k, 0, 0, 0. Then the Reidemeister spectrum
of Γ is 4N ∪ {∞}.

Proof. Let ϕ be an automorphism with finite Reidemeister number R(ϕ). Under
the representation λ, this automorphism will correspond to a matrix δ ∈ Aff(R4)
such that

λ(ϕ(γ)) = δλ(γ)δ−1.

for all γ ∈ Γ. Note that ϕ induces an automorphism ϕ′ on Γ′ := Γ/〈e1〉 and also
an automorphism ϕ′′ = ξ(d/2,M) on Γ′′ := Γ/Z(Γ), which is the crystallographic
group group.1-1.1-0. Since we assumed that R(ϕ) <∞, proposition 9.2.2 gives
us that

ϕ(e1) = e
det(M)
1 = e−1

1 .

Thus, δ, M and d must be of the form

δ =


−1 n1 n2 n3 0
0 −1 0 0 0
0 0 m1 m3 d1/2
0 0 m2 m4 d2/2
0 0 0 0 1

 , M =
(
m1 m3
m2 m4

)
, d =

(
d1
d2

)
,

where all mi and dj are integers, m1m4 −m2m3 = −1 and n1, n2 ∈ R. Using
a computer, one can calculate the (unique) values of n1, n2, n3 and l1, l2, l3, l4
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such that

δλ(e2)δ−1 = λ(e1)l1λ(e2)−1,

δλ(e3)δ−1 = λ(e1)l2λ(e3)m1λ(e4)m2 ,

δλ(e4)δ−1 = λ(e1)l3λ(e3)m3λ(e4)m4 ,

δλ(α)δ−1 = λ(e1)l4λ(e2)−1λ(e3)d1λ(e4)d2λ(α).

From the obtained values of l1, l2, l3 and l4, we get

ϕ(e1) = e−1
1 ,

ϕ(e2) = el1e
−1
2 ,

ϕ(e3) = e
k
2 (m1m2+m1d2−m2d1)
1 em1

3 em2
4 ,

ϕ(e4) = e
k
2 (m3m4+m3d2−m4d1)
1 em3

3 em4
4 ,

ϕ(α) = e
1
2 (kd1d2+l)
1 e−1

2 ed1
3 e

d2
4 α,

with mi, dj , l ∈ Z and m1m4 −m2m3 = −1, and of course all coefficients must
be integers as well. Then D∗ is of the form

D∗ =


−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 m1 m3
0 0 m2 m4

 .

Using theorem 4.2.6, we find that R(ϕ) = 4|m1 +m4| ∈ 4N. Now, consider the
family of automorphisms ϕm given by

ϕm(e1) = e−1
1 , ϕm(e4) = ekm1 e3e

m
4 ,

ϕm(e2) = e−1
2 , ϕm(α) = e−1

2 em4 α,

ϕm(e3) = e4,

with m ∈ N. Then R(ϕm) = 4m and hence SpecR(Γ) = 4N ∪ {∞}.
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The almost-Bieberbach groups with parameters 2k, 1, 0, 0 have a presentation
of the form

〈
e1, e2, e3, e4, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α
[e3, e1] = 1 αe2 = e2α
[e4, e1] = 1 αe3 = e1e

−1
3 α

[e3, e2] = 1 αe4 = e−1
4 α

[e4, e2] = 1 α2 = e2
[e4, e3] = e2k

1

〉
,

and the faithful representation λ is given by

λ(α) =


1 0 1 0 0
0 1 0 0 1

2
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Theorem 10.2.5. Let Γ be a 4-dimensional almost-Bieberbach group in the
family min.7-1.1-1, with parameters 2k, 1, 0, 0. Then the Reidemeister spectrum
of Γ is 8N ∪ {∞}.

Proof. Let ϕ be an automorphism with finite Reidemeister number R(ϕ). Under
the representation λ, this automorphism will correspond to a matrix δ ∈ Aff(R4)
such that

λ(ϕ(γ)) = δλ(γ)δ−1.

for all γ ∈ Γ. Note that ϕ induces an automorphism ϕ′ on Γ′ := Γ/〈e1〉 and also
an automorphism ϕ′′ = ξ(d/2,M) on Γ′′ := Γ/Z(Γ), which is the crystallographic
group group.1-1.1-0. Since we assumed that R(ϕ) <∞, proposition 9.2.2 gives
us that

ϕ(e1) = e
det(M)
1 = e−1

1 .

Thus, δ, M and d must be of the form

δ =


−1 n1 n2 n3 0
0 −1 0 0 0
0 0 m1 m3 d1/2
0 0 m2 m4 d2/2
0 0 0 0 1

 , M =
(
m1 m3
m2 m4

)
, d =

(
d1
d2

)
,

where all mi and dj are integers, m1m4 −m2m3 = −1 and n1, n2 ∈ R. Using
a computer, one can calculate the (unique) values of n1, n2, n3 and l1, l2, l3, l4
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such that

δλ(e2)δ−1 = λ(e1)l1λ(e2)−1,

δλ(e3)δ−1 = λ(e1)l2λ(e3)m1λ(e4)m2 ,

δλ(e4)δ−1 = λ(e1)l3λ(e3)m3λ(e4)m4 ,

δλ(α)δ−1 = λ(e1)l4λ(e2)−1λ(e3)d1λ(e4)d2λ(α).

From the obtained values of l1, l2, l3 and l4, we get

ϕ(e1) = e−1
1 ,

ϕ(e2) = el1e
−1
2 ,

ϕ(e3) = e
k(m1m2+m1d2−m2d1)−m1+1

2
1 em1

3 em2
4 ,

ϕ(e4) = e
k(m3m4+m3d2−m4d1)−m3

2
1 em3

3 em4
4 ,

ϕ(α) = e
kd1d2− d1−l

2
1 e−1

2 ed1
3 e

d2
4 α,

with mi, dj , l ∈ Z and m1m4 −m2m3 = −1, and of course all coefficients must
be integers as well. This forces m1 to be odd and m3, and because det(M) = −1
we then also require m4 to be odd. Thus, D∗ is of the form

D∗ =


−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 2m′1 − 1 2m′3
0 0 m′2 2m′4 + 1

 .

Using theorem 4.2.6, we find that R(ϕ) = 8|m′1 +m′4| ∈ 8N. Now, consider the
family of automorphisms ϕm given by

ϕm(e1) = e−1
1 , ϕm(e4) = e2km−m

1 e2m
3 e4,

ϕm(e2) = e−1
2 , ϕm(α) = e−1

2 α,

ϕm(e3) = e2km−k−m
1 e2m−1

3 e4,

with m ∈ N. Then R(ϕm) = 8m and hence SpecR(Γ) = 8N ∪ {∞}.

Family min.7-1.2-0. The almost-Bieberbach groups in this family are those
with parameters (k1, k2, k3, k4) = (k, 0, 0, 1) for some k ∈ N, i.e. every almost-
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Bieberbach group in one of these families has a presentation of the form

〈
e1, e2, e3, e4, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α
[e3, e1] = 1 αe2 = e2α
[e4, e1] = 1 αe3 = e−1

2 e−1
3 α

[e3, e2] = 1 αe4 = e−1
4 α

[e4, e2] = 1 α2 = e1
[e4, e3] = ek1

〉
,

and the faithful representation λ is given by

λ(α) =


1 0 0 0 1

2
0 1 −1 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Theorem 10.2.6. Let Γ be a 4-dimensional almost-Bieberbach group in the
family min.7-1.2-0, with parameters k, 0, 0, 1. Then the Reidemeister spectrum
of Γ is 8N ∪ {∞}.

Proof. Let ϕ be an automorphism with finite Reidemeister number R(ϕ). Under
the representation λ, this automorphism will correspond to a matrix δ ∈ Aff(R4)
such that

λ(ϕ(γ)) = δλ(γ)δ−1.

for all γ ∈ Γ. Note that ϕ induces an automorphism ϕ′ on Γ′ := Γ/〈e1〉 and also
an automorphism ϕ′′ = ξ(d/2,M) on Γ′′ := Γ/Z(Γ), which is the crystallographic
group group.1-1.1-0. Since we assumed that R(ϕ) <∞, proposition 9.2.2 gives
us that

ϕ(e1) = e−1
1 .

Thus, δ, M and d must be of the form

δ =


−1 n1 n2 n3 0
0 −1 m1 m3 0
0 0 2m1 − 1 2m3 d1
0 0 m2 2m4 + 1 d2/2
0 0 0 0 1

 ,

M =
(

2m1 − 1 2m3
m2 2m4 + 1

)
, d =

(
d1
d2

)
,

where all mi and dj are integers, det(M) = −1 and n1, n2, n3 ∈ R. Using a
computer, one can calculate the (unique) values of n1, n2, n3 and l1, l2, l3, l4
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such that

δλ(e2)δ−1 = λ(e1)l1λ(e2)−1,

δλ(e3)δ−1 = λ(e1)l2λ(e2)m1λ(e3)2m1−1λ(e4)m2 ,

δλ(e4)δ−1 = λ(e1)l3λ(e2)m3λ(e3)2m3λ(e4)2m4+1,

δλ(α)δ−1 = λ(e1)l4λ(e2)d1λ(e3)2d1λ(e4)d2λ(α).

From the obtained values of l1, l2, l3 and l4, we get

ϕ(e1) = e−1
1 ,

ϕ(e2) = e−1
2 e

k(2m1m2+2m1d2−2m2d1−m2−d2)−2l
1 ,

ϕ(e3) = em1
2 e−1+2m1

3 em2
4 el1,

ϕ(e4) = em3
2 e2m3

3 e1+2m4
4 e

k(2m3m4+m3d2+m3−2m4d1−d1)
1 ,

ϕ(α) = ed1
2 e

2d1
3 ed2

4 e
kd1d2−1
1 α,

with m1, m2, m3, m4, d1, d2, l ∈ Z and m1 −m4 + 2m1m4 −m2m3 = 0. Then
D∗ is of the form

D∗ =


−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 −1 + 2m1 2m3
0 0 m2 1 + 2m4

 .

Using theorem 4.2.6, we find that R(ϕ) = 8|m1 +m4| ∈ 8N. Now, consider the
family of automorphisms ϕm given by

ϕm(e1) = e−1
1 , ϕm(e4) = ekm1 em2 e

2m
3 e4,

ϕm(e2) = e
k(2m−1)
1 e−1

2 , ϕm(α) = e−1
1 α,

ϕm(e3) = em2 e
2m−1
3 e4,

with m ∈ N. Then R(ϕm) = 8m and hence SpecR(Γ) = 8N ∪ {∞}.





Chapter 11

Reidemeister zeta functions

11.1 Existence

The goal of this section is to determine which almost-crystallographic groups
admit Reidemeister zeta functions of automorphisms. In order to do so, it is
helpful to have criteria for the (non-)existence of these functions. A first and
obvious criterion would be that a group with the R∞-property does not admit
any Reidemeister zeta functions. Another criterion is the existence of a specific
characteristic subgroup:

Proposition 11.1.1. Let Γ be an almost-crystallographic group with a
characteristic subgroup H ∼= Z. Then Γ does not admit any Reidemeister
zeta functions of automorphisms.

Proof. Let x ∈ Γ such that H = 〈x〉. As H is normal and abelian, we must
have that H is a subgroup of the translation subgroup N of Γ. Since N is
nilpotent and H is normal in N , we must have that the intersection H ∩ Z(N)
is non-trivial.

So, there exists some k > 0 such that xk ∈ Z(N). In fact, as N is torsion-
free, N/Z(N) is torsion-free as well and hence we have that x ∈ Z(N), thus
H ≤ Z(N). Let ϕ = ξ(d,D) be an automorphism of Γ. As x ∈ Z(N), it then
follows that ϕ(x) = D(x). Either ϕ(x) = D(x) = x or ϕ(x) = D(x) = x−1; in
any case we have that D2(x) = x.

Let G be the Lie group that Γ is modelled on. Then there exists a non-zero
element X (corresponding to x ∈ G) in the associated Lie algebra g with

199
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D2
∗(X) = X and therefore det(1−D2

∗) = 0. So certainly R(ϕ2) =∞ and we
can conclude that the Reidemeister zeta function Rϕ(z) does not exist.

The next criterion deals with the size of the outer automorphism group.

Proposition 11.1.2. If a crystallographic group Γ has finite outer automor-
phism group, then it has no Reidemeister zeta functions of automorphisms.

Proof. We know from theorem 3.3.8 that if Out(Γ) is finite, then NΓ is finite
as well. Let ϕ = ξ(d,D) be an automorphism, then d ∈ Rn and D ∈ NΓ.
Since NΓ is finite, there exists some k ∈ N such that Dk = 1n. But then
det(1n −Dk) = 0, hence R(ϕk) =∞ and thus the Reidemeister zeta function
of ϕ does not exist.

Similar to when we tried to determine the R∞-property, it can be helpful to
look at quotients by characteristic subgroups.

Proposition 11.1.3. Let Γ be an almost-crystallographic group. If Γ has a
characteristic subgroup H such that Γ/H does not admit Reidemeister zeta
functions of automorphisms, then Γ does not admit them either.

Proof. Let ϕ ∈ Aut(Γ). Since H is characteristic, ϕ induces an automorphism
ϕ′ on Γ/H. But this quotient group does not admit Reidemeister zeta functions,
hence either R(ϕ′k) =∞ for some k ∈ N, or the radius of convergence of Rϕ′(z)
is zero.

First, consider the case where R(ϕ′k) = ∞ for some k ∈ N. Since ϕ′k is the
automorphism of induced by ϕk, by lemma 2.5.10(1) we have that

R(ϕk) ≥ R(ϕ′k) =∞,

and thus R(ϕk) =∞, therefore Rϕ(z) does not exist.

Second, consider the case where the radius of convergence r′ of Rϕ′(z) is zero.
Let r be the radius of convergence of Rϕ(z). Using lemma 2.5.10(1) once again,
we find that

r−1 = lim sup
k→∞

k

√
R(ϕk)
k

≥ lim sup
k→∞

k

√
R(ϕ′k)
k

= r′−1 =∞,

and hence r = 0, therefore Rϕ(z) does not exist.

In both cases the Reidemeister zeta function Rϕ(z) does not exist, and since
this holds for an arbitrary automorphism ϕ, Γ does not admit Reidemeister
zeta functions of automorphisms.
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In low dimensions, almost-crystallographic group admitting Reidemeister zeta
functions must be crystallographic.

Theorem 11.1.4. Let Γ be a non-crystallographic, almost-crystallographic
group of dimension 3 or 4. Then Γ does not admit any Reidemeister zeta
functions of automorphisms.

Proof. Let Γ be a non-crystallographic, almost-crystallographic group of
dimension 3 or 4 and let N be its translation subgroup, which has nilpotency
class c ≥ 2. As shown in section 5.2, the isolator N

√
γc(N) is isomorphic to Z

and is characteristic in Γ. By proposition 11.1.1, this means Γ does not admit
any Reidemeister zeta functions of automorphisms.

We can even go a step further. In [Mal00] it is shown that if a finitely generated,
torsion-free, nilpotent group which is not abelian admits an automorphism ϕ
with affine homotopy lift D for which D∗ has no roots of unity as eigenvalues,
then the dimension of this group must be at least 6. Moreover, explicit examples
of such automorphisms on groups of dimension 6 are provided. Thus, we
may conclude that Reidemeister zeta functions of automorphisms on non-
crystallographic almost-crystallographic groups exist only in dimension 6 and
higher.

Since we are only interested in dimension 4 and lower, we may limit ourselves to
crystallographic groups with infinite outer automorphism group. The following
theorem proves the existence of Reidemeister zeta functions of automorphisms
for many of these groups in dimension 4.

Theorem 11.1.5. Let Γ be a crystallographic group of dimension 4 such that
every matrix A ∈ F is of the form

A =
(
A1 ∗
0 A2

)
,

with A1, A2 ∈ {−12,12}. Suppose that ϕ = ξ(d,D) is an automorphism of Γ
with D of the form

D =
(
M ∗
0 M

)
,

where M ∈ GL2(Z) has eigenvalues λ, µ with |λ| > 1, |µ| < 1. Then the
Reidemeister zeta function Rϕ(z) exists.

Proof. We have to prove two things: that R(ϕk) <∞ for all k ∈ N, and that
the radius of convergence of Rϕ(z) is non-zero.
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For the former, by theorem 4.2.5 we must prove that det(14 −ADk) 6= 0 for all
A ∈ F . We have that

det(14 −ADk) = det
(
12 −A1M

k ∗
0 12 −A2M

k

)
= det(12 −A1M

k) det(12 −A2M
k).

Since A1, A2 ∈ {−12,12}, it suffices to prove that det(12 − Mk) 6= 0 and
det(12 +Mk) 6= 0, or equivalently that Mk does not have an eigenvalue equal
to 1 or −1. But the eigenvalues of Mk are λk and µk, for which we know that
|λk| = |λ|k > 1 and |µk| = |µ|k < 1. Therefore these determinants are indeed
non-zero.

Next, recall that the radius of convergence r of Rϕ(z) is given by

r−1 = lim sup
k→∞

k

√
R(ϕk)
k

,

hence it suffices to prove that this limit is finite. From proposition 2.5.14, we
know that

R(ϕk) ≤
∑
A∈F
|det(14 −ADk)|.

Note that

|det(12 ±Mk)| = |(1± λk)(1± µk)|

= |1± λk ± µk + det(M)k|

≤ 4|λ|k,

and thus we have for any A ∈ F that

|det(14 −ADk)| = |det(12 −A1M
k)||det(12 −A2M

k)|

≤ (4|λ|k)2

= 16|λ|2k.

For k ≥ 16 ·#F , we will have that

R(ϕk) ≤
∑
A∈F
|det(14 −ADk)|

≤ #F · 16|λ|2k

≤ k|λ|2k,
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and hence

lim sup
k→∞

k

√
R(ϕk)
k

≤ lim sup
k→∞

k

√
k|λ|2k
k

= |λ|2,

thus r ≥ |λ|−2 > 0 and hence Rϕ(z) exists.

Below, we determine for certain (families of) crystallographic groups whether
or not they admit Reidemeister zeta functions of automorphisms.

min.2-1.1-0, min.6-1.1-0, min.15-1.1-0. These groups are all isomorphic to
Zn for n ∈ {2, 3, 4}. We have already shown that these admit Reidemeister zeta
functions in example 2.6.11.

min.18-1.1-0, min.18-1.1-1. These groups are given by

Γ = 〈Z4, α〉 with α = (


ε
0
0
0

 ,


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

),

where ε = 0 corresponds to min.18-1.1-0 and ε = 1/2 to min.18-1.1-1. The
automorphism ϕ = ξ(0,D) with D given by

D =


1 4 0 0
2 7 0 0
0 0 1 4
0 0 2 7

 .

satisfies the requirements of theorem 11.1.5, hence Rϕ(z) exists.

min.18-1.2-0, min.18-1.2-1. These groups are given by

Γ = 〈Z4, α〉 with α = (


ε
0
0
0

 ,


1 0 0 0
0 1 −1 0
0 0 −1 0
0 0 0 −1

),

where ε = 0 corresponds to min.18-1.2-0 and ε = 1/2 to min.18-1.2-1. The
automorphism ϕ = ξ(0,D) with D given by

D =


1 4 −2 0
2 7 −3 2
0 0 1 4
0 0 2 7
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satisfies the requirements of theorem 11.1.5, hence Rϕ(z) exists.

min.18-1.3-0. This group is given by

Γ = 〈Z4, α〉 with α = (0,


1 0 −1 0
0 1 0 −1
0 0 −1 0
0 0 0 −1

).

The automorphism ϕ = ξ(0,D) with D given by

D =


1 4 0 0
2 7 0 0
0 0 1 4
0 0 2 7


satisfies the requirements of theorem 11.1.5, hence Rϕ(z) exists.

group.1-1.1-0, group.5-1.1-0, group.26-1.1-0. These groups all have diag-
onal holonomy Z2. We have already shown that these admit Reidemeister zeta
functions in theorem 7.2.20.

group.28-1.1-0, group.28-1.1-1, group.28-1.1-2. These groups are given by

Γ = 〈Z4, α, β〉 with α = (


δ
0
ε
0

 ,


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

),

β = (


δ
0
ε
0

 ,


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

),

where δ, ε = 0 corresponds to group.28-1.1-0, δ = 1/2, ε = 0 to group.28-1.1-1
and δ, ε = 1/2 to group.28-1.1-2. The automorphism ϕ = ξ(0,D) with D given
by

D =


1 4 0 0
2 7 0 0
0 0 1 4
0 0 2 7


satisfies the requirements of theorem 11.1.5, hence Rϕ(z) exists.
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group.28-1.2-0, group.28-1.2-1, group.28-1.2-2. These groups are given by

Γ = 〈Z4, α, β〉 with α = (


ε
0
0
δ

 ,


1 0 0 0
0 1 −1 0
0 0 −1 0
0 0 0 −1

),

β = (


ε
0
0
δ

 ,


−1 0 0 0
0 −1 1 0
0 0 1 0
0 0 0 1

),

where δ, ε = 0 corresponds to group.28-1.1-0, δ = 1/2, ε = 0 to group.28-1.1-1
and δ, ε = 1/2 to group.28-1.1-2. The automorphism ϕ = ξ(0,D) with D given
by

D =


1 4 −2 0
2 7 −3 2
0 0 1 4
0 0 2 7


satisfies the requirements of theorem 11.1.5, hence Rϕ(z) exists.

group.28-1.3-0. This group is given by

Γ = 〈Z4, α, β〉 with α = (0,


1 0 −1 0
0 1 0 −1
0 0 −1 0
0 0 0 −1

),

β = (0,


−1 0 1 0
0 −1 0 1
0 0 1 0
0 0 0 1

).

The automorphism ϕ = ξ(0,D) with D given by

D =


1 4 0 0
2 7 0 0
0 0 1 4
0 0 2 7


satisfies the requirements of theorem 11.1.5, hence Rϕ(z) exists.
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group.179-1.1-0, group.179-1.1-1, group.179-1.2-0, group.179-1.2-1. If Γ
is any of these groups, then Γ/Z(Γ) is the crystallographic group min.5-1.1-0.
This group has finite outer automorphism group and therefore does not admit
any Reidemeister zeta functions of automorphisms. By proposition 11.1.3, Γ
then does not admit any Reidemeister zeta functions of automorphisms either.

group.182-1.1-0. This group is the direct product Γ1 × Γ2, where Γ1 is the
group group.1-1.1-0 and Γ2 is min.5-1.1-0. Since both factors are characteristic,
we have that Γ/(Γ1 × 1) is min.5-1.1-0. By the same reasoning as for the
previous four groups, Γ does not admit any Reidemeister zeta functions of
automorphisms.

We summarise these results in table 11.1 below. This table contains the results
mentioned above, as well as the groups that have rank 1 centre, which do not
admit Reidemeister zeta functions of automorphisms by proposition 11.1.3.

CARAT BBNWZ IT rank(Z(Γ)) admits Rϕ(z)?
min.2-1.1-0* 2/1/1/1/1 2/1 2 yes
min.6-1.1-0* 3/1/1/1/1 3/1 3 yes
min.7-1.1-0 3/2/1/1/1 3/3 1 no
min.7-1.1-1* 3/2/1/1/2 3/4 1 no
min.7-1.2-0 3/2/1/2/1 3/5 1 no
min.15-1.1-0* 4/1/1/1/1 4 yes
min.17-1.1-0 4/2/2/1/1 1 no
min.17-1.1-1* 4/2/2/1/2 1 no
min.17-1.2-0 4/2/2/2/1 1 no
min.18-1.1-0 4/3/1/1/1 2 yes
min.18-1.1-1* 4/3/1/1/2 2 yes
min.18-1.2-0 4/3/1/2/1 2 yes
min.18-1.2-1* 4/3/1/2/2 2 yes
min.18-1.3-0 4/3/1/3/1 2 yes
min.36-1.1-0 4/10/1/1/1 0
min.43-1.1-0 4/28/1/1/1 0
min.44-1.1-0 4/28/2/1/1 0
max.6-1.1-0 4/26/2/1/1 0
max.6-1.1-1 4/26/2/1/2 0
group.1-1.1-0 2/1/2/1/1 2/2 0 yes
group.5-1.1-0 3/1/2/1/1 3/2 0 yes
group.26-1.1-0 4/1/2/1/1 0 yes
group.28-1.1-0 4/3/2/1/1 0 yes
group.28-1.1-1 4/3/2/1/2 0 yes
group.28-1.1-2 4/3/2/1/3 0 yes

Table 11.1: Existence of Reidemeister zeta functions of automorphisms for
crystallographic groups of dimension at most 4 with infinite outer automorphism
group that do not have the R∞-property
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CARAT BBNWZ IT rank(Z(Γ)) admits Rϕ(z)?
group.28-1.2-0 4/3/2/2/1 0 yes
group.28-1.2-1 4/3/2/2/2 0 yes
group.28-1.2-2 4/3/2/2/3 0 yes
group.28-1.3-0 4/3/2/3/1 0 yes
group.96-1.1-0 4/16/1/1/1 0
group.96-1.1-1 4/16/1/1/2 0
group.96-2.1-0 4/16/1/2/1 0
group.96-2.1-1 4/16/1/2/2 0
group.96-2.1-2 4/16/1/2/3 0
group.96-3.1-0 4/16/1/3/1 0
group.109-1.1-0 4/26/1/1/1 0
group.141-1.1-0 4/27/2/1/1 0
group.142-1.1-0 4/27/3/2/1 0
group.142-2.1-0 4/27/3/1/1 0
group.143-1.1-0 4/27/4/1/1 0
group.144-1.1-0 4/27/1/1/1 0
group.170-1.1-0 4/11/1/1/1 0
group.171-1.1-0 4/11/2/1/1 0
group.172-2.1-0 4/17/2/1/1 0
group.172-1.1-0 4/17/2/2/1 0
group.173-1.1-0 4/17/1/3/1 0
group.173-2.1-0 4/17/1/1/1 0
group.173-3.1-0 4/17/1/2/1 0
group.179-1.1-0 4/8/1/2/1 2 no
group.179-1.1-1* 4/8/1/2/2 2 no
group.179-1.2-0 4/8/1/1/1 2 no
group.179-1.2-1* 4/8/1/1/2 2 no
group.182-1.1-0 4/9/2/1/1 0 no

Table 11.1: Existence of Reidemeister zeta functions of automorphisms for
crystallographic groups of dimension at most 4 with infinite outer automorphism
group that do not have the R∞-property

11.2 Rationality

In the previous section, we only found very few almost-crystallographic
groups in dimensions 2 and 3 that admit Reidemeister zeta functions of
automorphisms. In fact, these groups were always Zn, a crystallographic group
with diagonal holonomy Z2, or a Bieberbach group. We know from example 2.6.7,
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corollary 7.2.19 and theorem 4.2.8 that Reidemeister zeta functions on these
groups are rational. Thus, we may state the following result:

Theorem 11.2.1. A Reidemeister zeta function of an almost-crystallographic
group of dimension at most 3 is rational.
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Appendix A

Isogredience

In this chapter we will study isogredience numbers, which are closely related to
Reidemeister numbers, for almost-crystallographic groups. We refer to [FT15;
LL00] for more information on isogredience numbers.

A.1 Preliminaries

Isogredience numbers have a similar topological motivation as Reidemeister
numbers. Let X be a compact topological space that admits a universal cover
X̃. A lift f̃ : X̃ → X̃ of a self-map f : X → X induces an endomorphism f∗ on
the group of covering transformations D(X) ∼= π1(X), namely

f̃ ◦ γ = f∗(γ) ◦ f̃ ,

for all γ ∈ D(X). A different lift f̃ ′ will induce an endomorphism f ′∗ that
differs from f∗ by an inner automorphism. Now consider the case where f is
a homeomorphism, then f∗ is actually an automorphism. The set of all these
induced automorphisms f∗ then coincides with an element Φ ∈ Out(D(X)).

Recall that two lifts f̃1 and f̃2 are Reidemeister equivalent if they are conjugate
up to an element γ of D(X), i.e.

f̃1 = γ ◦ f̃2 ◦ γ−1.

In terms of their induced automorphisms f1∗, f2∗, these lifts f̃1 and f̃2 being
conjugate up to an element of D(X) is equivalent to f1∗ and f2∗ being conjugate

211
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up to an inner automorphism:

f1∗ = ιγ ◦ f2∗ ◦ ι−1
γ .

Thus, the equivalence relation on the lifts induces an equivalence relation on Φ ∈
Out(D(X)). It is this equivalence relation, applied to almost-crystallographic
groups, we will study in this chapter.

A.1.1 Group-theoretic isogredience number

The basic definitions below are very reminiscent of those in section 2.5.1, where
we defined the (group-theoretic) Reidemeister number and related concepts.

Definition A.1.1. Let G be a group and Φ ∈ Out(G). Define an equivalence
relation ∼ on Φ by

∀ϕ1, ϕ2 ∈ Φ : ϕ1 ∼ ϕ2 ⇐⇒ ∃ι ∈ Inn(G) : ϕ1 = ι ◦ ϕ2 ◦ ι−1.

The equivalence classes are called isogredience classes, and we will denote the
isogredience class of ϕ by [ϕ]Φ. The set of isogredience classes of Φ is denoted by
S(Φ). The isogredience number S(Φ) is the cardinality of S(Φ) and is therefore
always a positive integer or infinity.

Definition A.1.2. The isogredience spectrum of a group G is the set

SpecS(G) = {S(Φ) | Φ ∈ Out(G)}.

If SpecS(G) = {∞} we say that G has the S∞-property, and if SpecS(G) =
N ∪ {∞} we say G has full isogredience spectrum.

While at first glance isogredience classes seem quite different to Reidemeister
classes, since they are classes of an element Φ ∈ Out(G) rather than classes
of G itself, they are very closely related. The following lemma shows that an
isogredience number can always be seen as a Reidemeister number.

Lemma A.1.3 (see [FT15, Lemma 3.3]). Let G be a group and let ϕ ∈ Aut(G),
Φ ∈ Out(G) such that ϕ ∈ Φ. Then S(Φ) = R(ϕ′), where ϕ′ is the induced
automorphism by ϕ on G/Z(G).

Proof. For any ψ ∈ Φ, there exists some g ∈ G such that ψ = ιg ◦ ϕ, where
ιg is the inner automorphism h 7→ ghg−1. This g is not unique, but defined
up to multiplication by a central element – this follows from the one-to-one
correspondence between Inn(G) and G/Z(G).
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Let ϕ1, ϕ2 ∈ Φ, then there exist g1, g2 ∈ G such that ϕ1 = ιg1◦ϕ and ϕ2 = ιg2◦ϕ.
Then

ϕ1 ∼ ϕ2 ⇐⇒ ∃h ∈ G : ϕ1 = ιh ◦ ϕ2 ◦ ι−1
h

⇐⇒ ∃h ∈ G : ιg1 ◦ ϕ = ιh ◦ ιg2 ◦ ϕ ◦ ι−1
h

⇐⇒ ∃h ∈ G : ιg1 ◦ ϕ = ιhg2ϕ(h)−1 ◦ ϕ

⇐⇒ ∃h ∈ G : ιg1 = ιhg2ϕ(h)−1

⇐⇒ ∃hZ(G) ∈ G/Z(G) : g1Z(G) = hg2ϕ(h)−1Z(G)

⇐⇒ g1Z(G) ∼ϕ′ g2Z(G).

This means the map

S(Φ)→ R(ϕ′) : [ιg ◦ ϕ]Φ 7→ [gZ(G)]ϕ′

is a bijection, from which follows that S(Φ) = R(ϕ′).

We may exploit this relation to deduce properties of the isogredience number.
For example, the following lemma is an isogredience analogue to property (1)
in lemma 2.5.10.

Lemma A.1.4. Let G be a group with characteristic subgroup N , let Φ ∈
Out(G) and Φ′ the corresponding element of Out(G/N). Then the map

p̂ : S(Φ)→ S(Φ′) : [ιg ◦ ϕ]Φ 7→ [ιgN ◦ ϕ′]Φ′

is surjective, and hence S(Φ) ≥ S(Φ′).

Proof. Consider the normal subgroup H given by

H = {h ∈ G | ∀g ∈ G : [h, g] ∈ N}.

This group has the following properties:

(1) N /H / G,

(2) Z(G) / H / G,

(3) ϕ(H) ⊆ H,

(4) H/N = Z(G/N).
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By the third isomorphism theorem, we have that

G/Z(G)
H/Z(G)

∼=
G

H
∼=
G/N

H/N
= G/N

Z(G/N) .

Let ϕZ be the automorphism on G/Z(G) induced by ϕ, and let ϕ′Z be the
automorphism induced on (G/N)/Z(G/N). We can then apply lemma 2.5.10 to
the group G/Z(G) and the normal subgroup H/Z(G) to obtain the surjective
map p̂ : R(ϕZ)→ R(ϕ′Z). Combining this with the bijection from lemma A.1.3
gives us the desired surjective map.

Of course, this means we can now formulate an isogredience analogue to
corollary 2.5.12.

Corollary A.1.5. Let N be a characteristic subgroup of G. If the quotient
G/N has the S∞-property, then so does G.

Proof. This follows directly from lemma A.1.4.

Finally, using the above lemmas and corollary, we obtain the following relations
between the Reidemeister and isogredience numbers of a group and its quotient
by the centre.

Proposition A.1.6. Let G be a group and let ϕ ∈ Aut(G), Φ ∈ Out(G) such
that ϕ ∈ Φ. We then have that:

(1) R(ϕ) ≥ S(Φ),

(2) SpecS(G) ⊆ SpecR(G/Z(G)),

(3) if G has the S∞-property, then it also has the R∞-property,

(4) if G/Z(G) has the R∞-property, then G has S∞-property,

(5) if Z(G) = 1, then R(ϕ) = S(Φ) and SpecR(G) = SpecS(G).

A.2 The S∞-property

Since we are often dealing with a quotient G/Z(G), let us remark that in the
case of almost-crystallographic groups, such quotient is almost-crystallographic
as well.
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Theorem A.2.1 (see [IM96, Proposition 3.1]). Let Γ be an almost-crystal-
lographic group with translation subgroup N and holonomy group F . Then
Γ/Z(Γ) is an almost-crystallographic group with translation subgroup N/Z(Γ)
and holonomy group F , unless Γ = Z(Γ), in which case the quotient is of course
trivial.

To determine which almost-crystallographic groups (do not) have the S∞-
property, we will heavily exploit the relationship with Reidemeister numbers
as given by lemma A.1.3 and proposition A.1.6. Since we already know
which almost-crystallographic groups Γ have the R∞-property, we can use this
information in the following way to determine whether Γ has the S∞-property:

• Γ does not have the R∞-property. Then Γ does not have the S∞-property.

• Γ has the R∞-property.

– Z(Γ) = 1. Then Γ has the S∞-property.
– Z(Γ) 6= 1.

∗ Γ/Z(Γ) has the R∞-property. Then Γ has the S∞-property.
∗ Γ/Z(Γ) does not have the R∞-property. No information gained.

If no information is gained, we proceed similarly to how we determined which
groups have the R∞-property.

Let us also give the isogredience analogue to proposition 7.1.1.

Proposition A.2.2. Let idΓ be the identity morphism on an almost-crystal-
lographic group Γ, and let Φ ∈ Out(Γ) such that idΓ ∈ Φ. If Γ is not abelian,
then S(Φ) =∞, otherwise S(Φ) = 1.

Proof. Let Γ′ := Γ/Z(Γ), then idΓ induces idΓ′ on Γ′, and hence S(Φ) = R(idΓ′).
If Γ is not abelian, then R(idΓ′) =∞ by proposition 7.1.1, otherwise Γ/Z(Γ) is
trivial and then R(id′Γ) = 1.

A.2.1 Crystallographic groups

Just like for the R∞-property, we can use an algorithm for the crystallographic
groups with finite outer automorphism group, and have to work by hand
otherwise. In the former case, we use algorithm 11, which is a slightly modified
version of algorithm 2.
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Algorithm 11 Determining if a crystallographic group Γ has the S∞-property
1: function HasSinfinityProperty(Γ)
2: Γ′ ← Γ/Z(Γ)
3: NF ← NGLn(Z)(F )
4: if #NF =∞ then
5: return fail
6: else
7: NΓ′ ← ∅
8: for D ∈ NF do
9: if ExtendsToAutomorphism(D,Γ) 6= fail then

10: D′ ← induced automorphism by D on Zn/Z(Γ)
11: NΓ′ ← NΓ′ ∪ {D′}
12: end if
13: end for
14: for D′ ∈ NΓ′ do
15: S∞ ← false
16: for A′ ∈ F ′ do
17: if det(1−A′D′) = 0 then
18: S∞ ← true
19: end if
20: end for
21: if S∞ = false then
22: return false
23: end if
24: end for
25: return true
26: end if
27: end function

In the latter case, we will make use of the following theorem, which is the
isogredience analogue to theorem 9.1.2, and can easily be proven in a similar
way.

Theorem A.2.3. Let F be the holonomy group of an n-dimensional Z-class
of crystallographic groups. If Zn o F has the S∞-property, then so does every
other crystallographic group in the same Z-class.

Thus, if the outer automorphism group is infinite (and hence NF is infinite),
we can try two things:

1. Show that all crystallographic groups in a Z-class with holonomy group F
have the S∞-property, by finding a characteristic subgroup N of Zn o F
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such that (ZnoF )/N has the S∞-property. This relies on corollary A.1.5
and theorem A.2.3.

2. Show that a crystallographic group Γ does not have the S∞-property,
by checking for random matrices D ∈ NF whether they belong to NΓ
(using algorithm 1) and whether any automorphism ξ(d,D) induces an
automorphism on Γ/Z(Γ) with finite Reidemeister number.

We have applied the above to all crystallographic groups up to dimension 4,
thereby determining the groups that do not have the S∞-property. For the
groups with finite outer automorphism group, those without the S∞-property
also did not have the R∞-property (see tables B.1 to B.4), with a sole exception:
the 3-dimensional Bieberbach group min.13-1.1-1, which has the R∞-property
but not the S∞-property. For the groups with infinite outer automorphism
group, all groups without the S∞-property also did not have the R∞-property.
The same quotient groups and automorphisms as in tables B.7 to B.11 can be
used to obtain this result. We summarise these results in table A.1.

dim # groups no S∞
1 2 1
2 17 2
3 219 13
4 4783 91

Table A.1: Crystallographic groups up to dimension 4 without the S∞-property

A.2.2 Almost-crystallographic groups

In this section we determine which non-crystallographic almost-crystallographic
groups of dimension 3 do not have the S∞-property. We will use the same
presentations as in section 9.2.1.

If Γ is a 3-dimensional non-crystallographic almost-crystallographic group, then
the centre Z(Γ) either equals the isolator N

√
γ2(N) = 〈e1〉, or it is trivial. In the

former case, we only need to consider those families of almost-crystallographic
groups for which the quotient Γ/〈e1〉 is a crystallographic group that does not
have the R∞-property, due to proposition A.1.6(4). In the latter case, we only
need to consider those families whose groups do not have the R∞-property
themselves, due to proposition A.1.6(5).

Thus, the only families we need to consider here are the same three families we
studied in section 9.2.1.
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Family min.2-1.1-0. We have already shown in section 5.2.1 that the groups
in this family do not have the R∞-property, hence they do not have the S∞-
property either.

Family min.5-1.1-0. In this family, whether or not a group has the S∞-
property depends on the parameters k1, k2 and k3.

Theorem A.2.4. Let Γ be an almost-crystallographic group in family min.5-1.1-
0. Then Γ has the S∞-property if and only if k1 ≡ 0 mod 6 and k2 6≡ k3 mod 3.

Proof. We have determined in section 9.2.1 that an automorphism ϕ : Γ→ Γ
must be of the form

ϕ(e1) = e
det(M)
1 ,

ϕ(e2) = en1
1 em1

2 em2
3 ,

ϕ(e3) = en2
1 em3

2 em4
3 ,

ϕ(α) = en3
1 ed1

2 e
d2
3 α

ε,

where
M =

(
m1 m3
m2 m4

)
∈ GL2(Z), ni, dj ∈ Z, ε ∈ {−1, 1},

and note that the ni will depend on M , d1, d2 and the parameters k1, k2, k3.
Let Γ′ := Γ/〈e1〉, i.e. the crystallographic group min.5-1.1-0, and let F ′ be
its holonomy group. Then ϕ induces an automorphism ϕ′ = ξ(d,M) on Γ′. If
Φ ∈ Out(Γ) contains ϕ, then by lemma A.1.3 and theorem 4.2.5 we have that

S(Φ) <∞ ⇐⇒ R(ϕ′) <∞ ⇐⇒ det(12 −A′M) 6= 0 ∀A′ ∈ F ′.

Since NΓ′ is finite, we can easily calculate those M ∈ NΓ′ that satisfy this
condition: they are given by

{−A′ | A′ ∈ F ′} =
{
−12,

(
0 1
−1 1

)
,

(
1 −1
1 0

)}
.
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Using the same techniques we used to prove proposition 10.2.1, we determine
that an automorphism ϕ such that M = −12 must be of the form

ϕ(e1) = e1,

ϕ(e2) = e
1
3 (−k1(d1+d2+1)+4k2+2k3)
1 e−1

2 ,

ϕ(e3) = e
1
3 (k1(2d1−d2−1)−2k2+2k3)
1 e−1

3 ,

ϕ(α) = e
1
6 (k1(d1+d2)(d1+d2+1)−2k2(2d1−d2)−2k3(d1+d2))
1 ed1

2 e
d2
3 α,

where all powers must be integers. Similarly, an automorphism withM =
( 0 1
−1 1

)
must be of the form

ϕ(e1) = e1,

ϕ(e2) = e
1
3 (k1(2d1−d2−1)+k2+2k3)
1 e−1

3 ,

ϕ(e3) = e
1
3 (−k1(d1−2d2−2)−2k2−k3)
1 e2e3,

ϕ(α) = e
1
6 (k1(d1+d2)(d1+d2+1)−2k2(2d1−d2)−2k3(d1+d2))
1 ed1

2 e
d2
3 α,

and an automorphism with M =
( 1 −1

1 0
)
must be of the form

ϕ(e1) = e1,

ϕ(e2) = e
1
3 (−k1(d1−2d2−2)+k2−k3)
1 e2e3,

ϕ(e3) = e
1
3 (−k1(d1+d2+1)+k2+2k3)
1 e−1

2 ,

ϕ(α) = e
1
6 (k1(d1+d2)(d1+d2+1)−2k2(2d1−d2)−2k3(d1+d2))
1 ed1

2 e
d2
3 α.

Let us now take M = −12 and fix an almost-crystallographic group with
parameters k1, k2, k3, k4. If an automorphism ϕ induces ϕ′ = ξ(d,−12) on Γ′,
then d1 and d2 must satisfy the following conditions:

(a) −k1(d1 + d2 + 1) + 4k2 + 2k3 ≡ 0 mod 3,

(b) k1(2d1 − d2 − 1)− 2k2 + 2k3 ≡ 0 mod 3,

(c) k1(d1 + d2)(d1 + d2 + 1)− 2k2(2d1 − d2)− 2k3(d1 + d2) ≡ 0 mod 6.



220 ISOGREDIENCE

If such pair d1, d2 exists, then Γ does not have the S∞-property. We use
algorithm 12 to verify the existence of such d1 and d2. The result of this
algorithm is that Γ admits an automorphism with M = −12 if and only if either
k1 ≡ 0 mod 6 and k2 − k3 ≡ 0 mod 3, or k1 6≡ 0 mod 6. Repeating the above
steps for the other two choices of M , we obtain the exact same result.

Algorithm 12 Determining whether an almost-crystallographic group in family
min.5-1.1-0 admits an automorphism with M = −12

1: function AdmitsAutomorphism(k1, k2, k3, k4)
2: for (d1, d2) ∈ Z2

6 do
3: if conditions (a), (b), (c) are met then
4: return true
5: end if
6: end for
7: return false
8: end function

Family group.1-1.1-0. We have already shown in section 9.2.1 that the groups
in this family do not have the R∞-property, hence they do not have the S∞-
property either.

A.3 The isogredience spectrum

In this section, we will determine the isogredience spectrum of the almost-
crystallographic groups up to dimension 3.

A.3.1 Crystallographic groups

The crystallographic groups up to dimension 3 that do not have the S∞-
property were determined in the previous section. We calculate their isogredience
spectrum below.

min.1-1.1-0, min.2-1.1-0, min.6-1.1-0. These are the groups Γ = Zn with
n ∈ {1, 2, 3}. For each of these groups we find that Γ/Z(Γ) is trivial, so clearly
S(Φ) = 1 for any Φ ∈ Out(Γ), and thus these groups have isogredience spectrum
{1}.
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min.5-1.1-0. This group has trivial centre, hence its isogredience spectrum
equals its Reidemeister spectrum, which we already determined in section 10.1.1
to be {4,∞}.

min.7-1.1-0, min.7-1.1-1. These are the groups Λ = Λ3/2/ε with ε ∈ {0, 1} as
described in chapter 7. For any M ∈ GL2(Z) and d′ ∈ Z2, we can construct the
matrix D ∈ GL3(Z) and vector d ∈ ( 1

2Z)3 as

D =
(
M 0
0 −1

)
, d =

(
d′/2

0

)
such that ϕ = ξ(d,D) ∈ Aut(Λ). Then the automorphism induced by ϕ on
Λ/Z(Λ), i.e. the crystallographic group group.1-1.1-0, is ϕ′ = ξ(d′/2,M). Because
the projection Aut(Λ)→ Aut(Λ/Z(Λ)) is surjective, we have that

SpecS(Λ) = SpecR(Λ/Z(Λ)) = 2N ∪ {3,∞}.

min.7-1.2-0. We use the presentation from section 10.1.2.
Theorem A.3.1. The group min.7-1.2-0 has isogredience spectrum 2N ∪ {∞}.

Proof. This group Γ has non-trivial centre, and the quotient Γ′ := Γ/Z(Γ) is
the crystallographic group group.1-1.1-0. Let ϕ ∈ Aut(Γ) and Φ ∈ Out(Γ) such
that ϕ ∈ Φ. As determined in proposition 10.1.6, ϕ induces an automorphism
ϕ′ = ξ(d′,D′) on Γ′, where

D′ =
(
ε+ 2m1 2m3
m2 1 + 2m4

)
,

with ε ∈ {−1, 1} and mi ∈ Z. In particular, the trace of D′ is always even,
hence by a reasoning similar to that in the proof of theorem 7.1.3 we find that
S(Φ) = R(ϕ′) ∈ 2N ∪∞. Now, take the family of automorphisms ϕm on Γ we
gave in the proof of theorem 10.1.7, take Φm ∈ Out(Γ) such that ϕm ∈ Φm and
let ϕ′m be the induced automorphisms on Γ′. One can then determine, like in
the proof of theorem 7.1.3, that

S(Φm) = R(ϕ′m) = 2m,

hence SpecS(Γ) = 2N ∪ {∞}.

min.10-1.1-0, min.10-1.1-3, min.10-1.3-0, min.10-1.4-0, min.10-1.4-1. As
before, these groups have trivial centre, hence their isogredience spectrum equals
their Reidemeister spectrum, which we already determined in section 10.1.1 to
be {2,∞}.
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min.13-1.1-0, min.13-1.1-1, min.13-1.2-0. For each of these groups, Γ/Z(Γ)
is the group min.5-1.1-0, which has Reidemeister spectrum {4,∞}. Since
these groups do not have the S∞-property and SpecS(Γ) ⊆ SpecR(Γ/Z(Γ)) by
proposition A.1.6(2), their isogredience spectrum must be {4,∞}.

group.1-1.1-0, group.5-1.1-0. These are the groups Γ = 〈Zn,−1n〉 with
n ∈ {2, 3}. For each of these groups we find that Z(Γ) is trivial, hence
their isogredience spectra equal their Reidemeister spectra. We determined in
theorem 7.1.3 that these spectra are 2N∪{3,∞} and N\{1}∪{∞} respectively.

We summarise these results in table A.2 below. Unlike in the crystallographic
case, we do not omit the value {∞} from the spectra, since it is no longer the
case that ∞ always belongs to the isogredience spectrum. We have indicated
Bieberbach groups with a star (*).

CARAT BBNWZ IT SpecS(Γ)
min.1-1.1-0* 1/1/1/1/1 1/1 {1}
min.2-1.1-0* 2/1/1/1/1 2/1 {1}
min.5-1.1-0 2/4/1/1/1 2/13 {4,∞}
min.6-1.1-0* 3/1/1/1/1 3/1 {1}
min.7-1.1-0 3/2/1/1/1 3/3 2N ∪ {3,∞}
min.7-1.1-1* 3/2/1/1/2 3/4 2N ∪ {3,∞}
min.7-1.2-0 3/2/1/2/1 3/5 2N ∪ {∞}
min.10-1.1-0 3/3/1/1/1 3/16 {2,∞}
min.10-1.1-3* 3/3/1/1/2 3/19 {2,∞}
min.10-1.3-0 3/3/1/3/1 3/22 {2,∞}
min.10-1.4-0 3/3/1/4/1 3/23 {2,∞}
min.10-1.4-1 3/3/1/4/2 3/24 {2,∞}
min.13-1.1-0 3/5/1/2/1 3/143 {4,∞}
min.13-1.1-1* 3/5/1/2/2 3/144 {4,∞}
min.13-1.2-0 3/5/1/1/1 3/146 {4,∞}
group.1-1.1-0 2/1/2/1/1 2/2 2N ∪ {3,∞}
group.5-1.1-0 3/1/2/1/1 3/2 N \ {1} ∪ {∞}

Table A.2: Crystallographic groups of dimension at most 3 that do not have
the S∞-property

A.3.2 Almost-crystallographic groups

We will use the same presentations as in section 9.2.1.



THE ISOGREDIENCE SPECTRUM 223

Family min.2-1.1-0.

Theorem A.3.2. Let Γ be a 3-dimensional almost-crystallographic group in
the family min.2-1.1-0. Then Γ has full isogredience spectrum.

Proof. For any m ∈ N, consider the automorphism ϕm given by

ϕm(e1) = e−1
1 , ϕm(e2) = e3, ϕm(e3) = e2e

−m
3 ,

and let Φm ∈ Out(Γ) be such that ϕm ∈ Φm. Then the matrix Dm, given by

Dm =
(

0 1
1 −m

)
,

is the induced automorphism on Γ/Z(Γ) ∼= Z2. Then S(Φm) = R(Dm) =
|det(12 −Dm)| = m, and thus SpecS(Γ) = N ∪ {∞}.

Family min.5-1.1-0. In the previous subsection, we determined which groups
Γ in this family do not have the S∞-property. Since the Reidemeister spectrum
of Γ/Z(Γ), i.e. the crystallographic group min.5-1.1-0, is {4,∞}, then by
lemma A.1.3 we have that SpecS(Γ) = {4,∞} if Γ does not have the S∞-
property.

Family group.1-1.1-0.

Theorem A.3.3. Let Γ be a 3-dimensional almost-crystallographic group in
the family group.1-1.1-0, with parameters k1, k2, k3, k4. Then the isogredience
spectrum of Γ is

• 2N + 2 ∪ {∞}, if k̄1 = 0 and (k̄2, k̄3) 6= (0, 0),

• 2N ∪ {3,∞}, if k̄1 = 1 or (k̄2, k̄3) = (0, 0),

where the bar-notation stands for the projection to Z2.

Proof. Let ϕ : Γ→ Γ be an automorphism. Similar to what we did in the proof
of proposition 10.2.1, we can calculate what ϕ must be like. If it maps e1 to its
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inverse, then

ϕ(e1) = e−1
1 ,

ϕ(e2) = e
k1
2 (m1m2+m1d2−m2d1)− k2

2 (m1+1)− k3
2 m2

1 em1
2 em2

3 ,

ϕ(e3) = e
k1
2 (m3m4+m3d2−m4d1)− k2

2 m3− k3
2 (m4+1)

1 em3
2 em4

3 ,

ϕ(α) = e
k1
2 d1d2− k2

2 d1− k3
2 d2−k4

1 ed1
2 e

d2
3 α,

where all exponents must be integers. This places four conditions on the mi

and dj :

(a) k1(m1m2 +m1d2 −m2d1)− k2(m1 + 1)− k3m2 ≡ 0 mod 2,

(b) k1(m3m4 +m3d2 −m4d1)− k2m3 − k3(m4 + 1) ≡ 0 mod 2,

(c) k1d1d2 − k2d1 − k3d2 ≡ 0 mod 2,

(d) m1m4 −m2m3 = −1.

If it maps e1 to itself, it must be of the form

ϕ(e1) = e1,

ϕ(e2) = e
k1
2 (m1m2+m1d2−m2d1)− k2

2 (m1−1)− k3
2 m2

1 em1
2 em2

3 ,

ϕ(e3) = e
k1
2 (m3m4+m3d2−m4d1)− k2

2 m3− k3
2 (m4−1)

1 em3
2 em4

3 ,

ϕ(α) = e
k1
2 d1d2− k2

2 d1− k3
2 d2

1 ed1
2 e

d2
3 α,

where all exponents must be integers. This too places four conditions on the
mi and dj :

(a) k1(m1m2 +m1d2 −m2d1)− k2(m1 − 1)− k3m2 ≡ 0 mod 2,

(b) k1(m3m4 +m3d2 −m4d1)− k2m3 − k3(m4 − 1) ≡ 0 mod 2,

(c) k1d1d2 − k2d1 − k3d2 ≡ 0 mod 2,

(d) m1m4 −m2m3 = 1.
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We set
M =

(
m1 m3
m2 m4

)
, d =

(
d1
d2

)
,

then the automorphism on the quotient Γ/Z(Γ) induced by ϕ is ϕ′ = ξ(d/2,M).
Using lemma A.1.3, theorem 7.1.3 and taking the parity of tr(M) and the value
of det(M) into account, we can further determine the possible isogredience
numbers:

1. det(M) = −1. Then the formula becomes

S(Φ) = | tr(M)|∞ +O(12 −M,d).

Depending on the value of | tr(M)|, we have:

(a) | tr(M)| ≡ 0 mod 2, then S(Φ) ∈ 2N +O(12 −M,d),
(b) | tr(M)| ≡ 1 mod 2, then S(Φ) ∈ 2N.

2. det(M) = 1. Then the formula becomes

S(Φ) = |2− tr(M)|∞ + |2 + tr(M)|∞
2 +O(12 −M, 2d).

Depending on the value of | tr(M)|, we have:

(a) | tr(M)| ≡ 0 mod 2, then S(Φ) ∈ 2N +O(12 −M,d),
(b) | tr(M)| ≡ 1 mod 2, then S(Φ) ∈ 2N + 2 ∪ {3}.

There is one special case, however. If M ≡ 12 mod 2 all entries of 12 −M
will be multiples of 2; so |det(12 −M)| = | tr(M)| ∈ 4N and therefore S(Φ) ∈
4N +O(12 −M,d).

We will determine the isogredience spectrum in function of the parameters,
similar to how we determined the Reidemeister spectrum in theorem 10.2.2. To
this end, we will be using the function MakeList2 defined in algorithm 13, which
is an isogredience analogue of the function MakeList defined in algorithm 10.
The results can be found in tables B.13 to B.24. The isogredience spectrum of
a group is a subset of (or the entirety of) the union of all these sets S.

Next, for each quadruplet of parameters, we found a family of automorphisms
whose isogredience numbers produce the union of these sets S. These
automorphisms and their isogredience numbers, for all (k1, k2, k3, k4), can be
found in table A.3. For the sake of brevity, we omit ∞ from the spectra in this
table. Note that all almost-Bieberbach groups belonging to this family have
parameters with parities (0, 0, 0, 1) and therefore have isogredience spectrum
2N ∪ {3,∞}.
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Algorithm 13 Determining automorphisms and isogredience spectra of 3-
dimensional almost-crystallographic groups in family group.1-1.1-0

1: function MakeList2(k1, k2, k3, k4)
2: AutList ← ∅
3: for M̄ ∈ GL2(Z2), d̄ ∈ Z2

2 do
4: if conditions (a), (b), (c) are met then
5: O ← 0
6: for z̄ ∈ Z2

2 do
7: if M̄ z̄ = d̄ then
8: O ← O + 1
9: end if

10: end for
11: for det ∈ {−1, 1} do
12: if tr(M) ≡ 0 mod 2 then
13: if M ≡ 12 mod 2 then
14: S ← 4N +O
15: else
16: S ← 2N +O
17: end if
18: else
19: if det = −1 then
20: S ← 2N
21: else
22: S ← 2N + 2 ∪ {3}
23: end if
24: end if
25: AutList ← AutList ∪

{
(M̄, d̄,det, S)

}
26: end for
27: end if
28: end for
29: return AutList
30: end function
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(k̄1, k̄2, k̄3, k̄4) M d S(Φ) SpecS(Γ)
(0, 0, 0, 0)

( 0 1
1 2m−1

)
( 0

0 ) 2m 2N ∪ {3}( 0 1
−1 1

)
( 0

0 ) 3
(0, 0, 0, 1)

( 0 1
1 2m−1

)
( 0

0 ) 2m 2N ∪ {3}( 0 1
−1 1

)
( 0

0 ) 3
(0, 0, 1, 0)

( 1 1
2m 2m−1

)
( 1

0 ) 2m+ 2 2N + 2
(0, 0, 1, 1)

( 1 1
2m 2m−1

)
( 0

0 ) 2m+ 2 2N + 2
(0, 1, 1, 0) ( 0 1

1 2m ) ( 1
1 ) 2m+ 2 2N + 2

(0, 1, 1, 1) ( 0 1
1 2m ) ( 0

0 ) 2m+ 2 2N + 2
(1, 0, 0, 0)

( 0 1
1 2m−1

)
( 0

1 ) 2m 2N ∪ {3}( 0 1
−1 1

)
( 0

1 ) 3
(1, 0, 0, 1)

( 0 1
1 2m−1

)
( 0

1 ) 2m 2N ∪ {3}( 0 1
−1 1

)
( 0

1 ) 3
(1, 0, 1, 0)

( 0 1
1 2m−1

)
( 1

0 ) 2m 2N ∪ {3}( 0 1
−1 1

)
( 1

0 ) 3
(1, 0, 1, 1)

( 0 1
1 2m−1

)
( 1

0 ) 2m 2N ∪ {3}( 0 1
−1 1

)
( 1

0 ) 3
(1, 1, 1, 0)

( 0 1
1 2m−1

)
( 0

0 ) 2m 2N ∪ {3}( 0 1
−1 1

)
( 0

0 ) 3
(1, 1, 1, 0)

( 0 1
1 2m−1

)
( 0

0 ) 2m 2N ∪ {3}( 0 1
−1 1

)
( 0

0 ) 3

Table A.3: Automorphisms and isogredience spectra for all (k1, k2, k3, k4) (we
omit ∞ from the spectra)





Appendix B

Tables

This chapter only contains tables, usually presenting the output of some
algorithm. Since many of these tables are long enough to span multiple pages,
they were put here as an appendix to improve the readability of this thesis.

B.1 Crystallographic groups with finite outer auto-
morphism group

The tables below contain the Reidemeister spectra of the crystallographic groups
of dimensions 1 to 6 with finite outer automorphism group. These results were
obtained using algorithms 3 and 9.

CARAT BBNWZ IT # Out(Γ) SpecR(Γ)
min.1-1.1-0* 1/1/1/1/1 1/1 2 {2}

Table B.1: Reidemeister spectra of the 1-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)
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CARAT BBNWZ IT # Out(Γ) SpecR(Γ)
min.5-1.1-0 2/4/1/1/1 2/13 12 {4}

Table B.2: Reidemeister spectra of the 2-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)

CARAT BBNWZ IT # Out(Γ) SpecR(Γ)
min.10-1.1-0 3/3/1/1/1 3/16 96 {2}
min.10-1.1-3* 3/3/1/1/2 3/19 96 {2}
min.10-1.3-0 3/3/1/3/1 3/22 48 {2}
min.10-1.4-0 3/3/1/4/1 3/23 48 {2}
min.10-1.4-1 3/3/1/4/2 3/24 48 {2}
min.13-1.1-0 3/5/1/2/1 3/143 24 {8}
min.13-1.2-0 3/5/1/1/1 3/146 4 {8}

Table B.3: Reidemeister spectra of the 3-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)

CARAT BBNWZ # Out(Γ) SpecR(Γ)
min.28-1.1-0 4/22/7/2/1 8 {12}
min.32-1.1-0 4/22/1/2/1 288 {4, 16}
min.32-1.2-0 4/22/1/1/1 48 {16}
min.38-1.1-0 4/32/10/2/1 144 {6}
min.38-1.1-4 4/32/10/2/7 24 {6}
group.37-1.1-0 4/21/2/2/1 12 {3}
group.40-1.1-0 4/22/2/2/1 16 {8}
group.44-1.1-0 4/22/5/4/1 16 {6}
group.44-3.1-0 4/22/5/3/1 144 {6}
group.52-1.1-0 4/5/1/2/1 192 {4}
group.52-1.1-6* 4/5/1/2/9 192 {4}
group.52-1.3-0 4/5/1/9/1 96 {4}
group.52-1.6-0 4/5/1/13/1 48 {4}
group.52-1.7-0 4/5/1/5/1 96 {4}
group.52-1.7-1 4/5/1/5/2 96 {4}
group.52-1.12-0 4/5/1/7/1 96 {4}
group.52-1.12-3* 4/5/1/7/4 96 {4}
group.52-1.13-0 4/5/1/1/1 12 {4}
group.78-1.1-0 4/32/4/2/1 48 {2, 6}

Table B.4: Reidemeister spectra of the 4-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)



CRYSTALLOGRAPHIC GROUPS WITH FINITE OUTER AUTOMORPHISM GROUP 231

CARAT BBNWZ # Out(Γ) SpecR(Γ)
group.78-1.1-2 4/32/4/2/3 48 {2, 6}
group.78-1.1-4 4/32/4/2/6 24 {2, 6}
group.80-1.1-0 4/5/2/2/1 768 {2, 4}
group.80-1.1-5 4/5/2/2/16 256 {2, 4}
group.80-1.1-18 4/5/2/2/18 128 {2, 4}
group.80-1.4-0 4/5/2/9/1 192 {4}
group.80-1.4-2 4/5/2/9/3 64 {4}
group.80-1.6-0 4/5/2/6/1 64 {4}
group.80-1.6-2 4/5/2/6/3 64 {4}
group.80-1.8-0 4/5/2/5/1 384 {4}
group.80-1.8-2 4/5/2/5/5 128 {4}
group.80-1.8-4 4/5/2/5/3 128 {2}
group.80-1.8-5 4/5/2/5/6 384 {2}
group.103-1.1-0 4/32/1/2/1 288 {2, 6}
group.103-1.1-1 4/32/1/2/2 96 {2, 6}
group.163-1.1-0 4/18/4/2/1 32 {4, 8}
group.163-1.1-4 4/18/4/2/6 16 {4, 8}
group.163-1.1-6 4/18/4/2/3 32 {4, 8}
group.163-1.2-0 4/18/4/5/1 32 {4, 8}
group.163-1.2-2 4/18/4/5/3 32 {4, 8}
group.163-1.2-6 4/18/4/5/6 32 {4, 8}
group.163-1.2-7 4/18/4/5/5 32 {4, 8}
group.169-1.1-0 4/18/1/2/1 64 {4, 8}
group.169-1.1-2 4/18/1/2/3 64 {4, 8}
group.169-1.2-0 4/18/1/3/1 64 {4, 8}
group.169-1.2-1 4/18/1/3/2 64 {4, 8}

Table B.4: Reidemeister spectra of the 4-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)

CARAT # Out(Γ) SpecR(Γ)
min.75-1.1-0 64 {8, 16}
min.75-1.1-7 64 {8}
min.75-1.1-11 32 {8, 16}
min.75-1.1-17 32 {8}
min.75-1.1-21 64 {8}
min.75-1.1-24 64 {8, 16}
min.75-1.1-28* 32 {8}
min.75-1.1-31* 32 {8, 16}

Table B.5: Reidemeister spectra of the 5-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)
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CARAT # Out(Γ) SpecR(Γ)
min.75-1.1-33 64 {8, 16}
min.75-1.1-35 64 {8}
min.75-1.1-36 64 {8}
min.75-1.1-37 64 {8, 16}
min.75-1.3-0 64 {8, 16}
min.75-1.3-2 64 {8}
min.75-1.3-14 64 {8}
min.75-1.3-15 64 {8, 16}
min.75-1.3-25 64 {8, 16}
min.75-1.3-27 64 {8}
min.75-1.3-31 64 {8}
min.75-1.3-32 64 {8, 16}
min.75-1.3-36 64 {8, 16}
min.75-1.3-38 64 {8}
min.75-1.3-43 64 {8}
min.75-1.3-44 64 {8, 16}
min.75-1.3-47 64 {8, 16}
min.75-1.3-49 64 {8}
min.75-1.3-50 64 {8}
min.75-1.3-51 64 {8, 16}
min.75-1.4-0 32 {8, 16}
min.75-1.4-1 32 {8, 16}
min.75-1.4-6 32 {8, 16}
min.75-1.4-7 32 {8, 16}
min.75-1.4-12 16 {4}
min.75-1.4-14* 16 {4}
min.75-1.5-0 32 {8, 16}
min.75-1.5-5 16 {8, 16}
min.75-1.5-7 32 {4}
min.75-1.5-10* 16 {4}
min.75-1.5-12 32 {8, 16}
min.75-1.5-13 32 {4}
min.119-1.1-0 1536 {4, 8}
min.119-1.1-3 512 {4, 8}
min.119-1.1-10 512 {4, 8}
min.119-1.1-11 512 {4, 8}
min.119-1.1-90 256 {4, 8}
min.119-1.1-113 256 {4, 8}
min.119-1.7-0 384 {8}
min.119-1.7-2 128 {8}

Table B.5: Reidemeister spectra of the 5-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)
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CARAT # Out(Γ) SpecR(Γ)
min.119-1.7-7 128 {8}
min.119-1.7-10 128 {8}
min.119-1.8-0 192 {8}
min.119-1.8-1 64 {8}
min.119-1.8-5 32 {4}
min.119-1.13-0 128 {8}
min.119-1.13-1 128 {8}
min.119-1.13-9 128 {8}
min.119-1.13-10 128 {8}
min.119-1.21-0 64 {8}
min.119-1.21-2 64 {4}
min.119-1.21-4 64 {8}
min.119-1.21-5 64 {4}
min.119-1.25-0 768 {8}
min.119-1.25-2 256 {8}
min.119-1.25-6 256 {4}
min.119-1.25-13 256 {8}
min.119-1.25-16* 256 {4}
min.119-1.25-22 768 {4}
min.119-1.25-24 256 {8}
min.119-1.25-25* 256 {4}
min.119-1.29-0 128 {8}
min.119-1.29-5 128 {8}
min.119-1.29-8 128 {4}
min.119-1.29-9* 128 {4}
min.119-1.30-0 768 {4, 8}
min.119-1.30-2 256 {4, 8}
min.119-1.30-17* 128 {4, 8}
group.255-1.1-0 128 {8, 16}
group.255-1.1-2 128 {8, 16}
group.255-1.1-3 64 {8, 16}
group.255-1.1-5 64 {8, 16}
group.255-1.1-10 128 {8}
group.255-1.1-12* 128 {8}
group.255-1.3-0 128 {8, 16}
group.255-1.3-1 128 {8, 16}
group.255-1.3-2 64 {8, 16}
group.255-1.3-3 64 {8, 16}
group.255-1.3-9 128 {8}
group.255-1.3-10 128 {8}

Table B.5: Reidemeister spectra of the 5-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)
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CARAT # Out(Γ) SpecR(Γ)
group.255-1.4-0 64 {8, 16}
group.255-1.4-3* 32 {4}
group.255-1.4-4 64 {8, 16}
group.255-1.5-0 64 {8, 16}
group.255-1.5-2 64 {4}
group.255-1.5-4 64 {8, 16}
group.255-1.5-5* 64 {4}
group.316-1.1-0 1152 {8}
group.316-1.1-3 1152 {8}
group.316-1.3-0 576 {8}
group.316-1.4-0 576 {8}
group.316-1.4-1 576 {8}
group.355-1.1-0 7680 {2}
group.355-1.1-331 640 {2}
group.355-1.1-356* 320 {2}
group.355-1.1-359 1280 {2}
group.355-1.5-0 960 {2}
group.355-1.5-3 160 {2}
group.355-1.16-0 3840 {2}
group.355-1.16-25 320 {2}
group.355-1.16-33 640 {2}
group.355-1.16-34 160 {2}
group.461-1.1-0 24 {6}
group.461-1.1-3* 12 {6}
group.461-1.1-4 12 {6}
group.461-1.1-5* 24 {6}
group.485-1.1-0 32 {12}
group.485-1.1-5 32 {8}
group.485-3.1-0 288 {12}
group.485-3.1-1 288 {8}
group.488-1.1-0 32 {16}
group.488-1.1-3* 8 {8}
group.488-1.1-4* 8 {16}
group.488-1.1-5 32 {8}
group.528-1.1-0 16 {24}
group.528-1.1-1 16 {16}
group.528-1.1-2 16 {12}
group.528-1.1-3 16 {12}
group.587-1.1-0 576 {8, 32}
group.587-1.1-2* 144 {8}

Table B.5: Reidemeister spectra of the 5-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
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CRYSTALLOGRAPHIC GROUPS WITH FINITE OUTER AUTOMORPHISM GROUP 235

CARAT # Out(Γ) SpecR(Γ)
group.587-1.2-0 48 {32}
group.587-1.3-0 96 {32}
group.587-1.4-0 16 {32}
group.587-1.5-0 48 {32}
group.756-1.1-0 96 {4, 12}
group.756-1.1-10 96 {4, 12}
group.756-1.1-18 48 {4, 12}
group.756-1.1-26* 96 {4, 8}
group.756-1.1-29* 96 {4, 8}
group.756-1.1-31* 48 {4, 8}
group.794-1.1-0 288 {12}
group.794-1.1-15 48 {8}
group.794-1.1-39 48 {12}
group.794-1.1-41 48 {8}
group.794-1.1-46 24 {8}
group.861-2.1-0 576 {4, 12}
group.861-2.1-1 192 {4, 12}
group.861-2.1-2 192 {8}

Table B.5: Reidemeister spectra of the 5-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)

CARAT # Out(Γ) SpecR(Γ)
min.331-1.1-0 288 {8, 9, 24}
min.331-1.1-1 24 {8}
min.331-1.1-3 48 {8}
min.331-2.1-0 72 {9, 24}
min.331-3.1-0 864 {8, 9, 24}
min.331-3.1-1 72 {8}
min.331-3.1-3 144 {8}
min.332-1.1-0 36 {10, 16}
min.332-2.1-0 36 {10, 16}
min.332-3.1-0 36 {10, 16}
group.1701-1.1-0 24 {16}
group.1701-1.1-1 12 {16}
group.1701-2.1-0 8 {16}
group.1701-2.1-1 4 {16}
group.1768-2.1-0 48 {16}
group.1768-2.1-1 4 {16}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)
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CARAT # Out(Γ) SpecR(Γ)
group.1768-2.1-3 8 {16}
group.1768-3.1-0 144 {16}
group.1768-3.1-1 12 {16}
group.1768-3.1-3 24 {16}
group.1800-1.1-0 24 {32}
group.1800-2.1-0 24 {32}
group.1800-3.1-0 24 {32}
group.1807-1.1-0 4 {16}
group.1807-2.1-0 4 {16}
group.1807-3.1-0 28 {16}
group.2637-1.1-0 96 {4}
group.2648-1.1-0 96 {48}
group.2649-2.1-0 48 {4}
group.2655-2.1-0 96 {4}
group.2655-2.3-0 72 {4}
group.2655-2.4-0 216 {4}
group.2655-4.1-0 2592 {4}
group.2669-1.1-0 216 {3, 6, 9}
group.2669-1.3-0 24 {6}
group.2669-1.4-0 24 {6}
group.2684-1.1-0 144 {10, 16}
group.2684-1.1-1 72 {10, 16}
group.2689-1.1-0 144 {9}
group.2689-1.3-0 36 {9}
group.2689-1.4-0 36 {9}
group.2775-1.1-0 108 {9}
group.2778-1.1-0 10368 {4, 16, 64}
group.2778-1.1-6 864 {16}
group.2778-1.2-0 576 {64}
group.2778-1.3-0 288 {4, 64}
group.2778-1.4-0 864 {4, 64}
group.2781-1.1-0 144 {12}
group.2781-1.1-1 72 {12}
group.2793-1.1-0 72 {3, 6, 9}
group.2832-1.1-0 24 {4}
group.2854-1.1-0 192 {32}
group.2854-1.1-2 48 {32}
group.2859-1.1-0 1728 {24}
group.2859-3.1-0 192 {24}
group.2872-1.1-0 36 {9}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)
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CARAT # Out(Γ) SpecR(Γ)
group.2907-1.1-0 7776 {3, 5, 6, 8, 9, 21, 24}
group.2907-1.1-1 1296 {5, 8}
group.2907-1.1-3 972 {3, 9}
group.2907-1.2-0 432 {21, 24}
group.2907-1.3-0 648 {3, 6, 9, 21, 24}
group.2907-1.3-2 324 {3}
group.2907-1.4-0 648 {3, 6, 9, 21, 24}
group.2907-1.4-1 324 {3}
group.2907-1.5-0 72 {6, 24}
group.3112-1.1-0 2304 {16}
group.3112-1.1-8 2304 {16}
group.3112-1.5-0 1152 {16}
group.3112-1.6-0 576 {16}
group.3112-1.7-0 384 {16}
group.3112-1.7-6 384 {16}
group.3112-1.12-0 1152 {16}
group.3112-1.12-1 1152 {16}
group.3112-1.16-0 192 {16}
group.3112-1.17-0 96 {16}
group.3112-1.18-0 1152 {16}
group.3112-1.18-7 1152 {16}
group.3112-1.22-0 192 {16}
group.3112-1.22-1 192 {16}
group.3112-1.24-0 144 {16}
group.3112-1.25-0 192 {16}
group.3112-1.25-3 192 {16}
group.3112-1.26-0 24 {16}
group.3128-1.1-0 9216 {8, 16}
group.3128-1.1-15 3072 {8, 16}
group.3128-1.1-18 1536 {8, 16}
group.3128-1.4-0 2304 {16}
group.3128-1.4-2 768 {16}
group.3128-1.6-0 768 {16}
group.3128-1.6-2 768 {16}
group.3128-1.8-0 4608 {16}
group.3128-1.8-2 1536 {8}
group.3128-1.8-4 1536 {16}
group.3128-1.8-5 4608 {8}
group.3618-1.1-0 192 {4}
group.3618-1.1-20 192 {4}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)
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CARAT # Out(Γ) SpecR(Γ)
group.3618-1.1-96 96 {4}
group.3618-1.1-99 96 {4}
group.3618-1.1-102 192 {4}
group.3618-1.1-103 192 {4}
group.3618-1.3-0 96 {2, 4}
group.3618-1.3-21 96 {2, 4}
group.3618-1.4-0 96 {4}
group.3618-1.4-5 48 {4}
group.3618-1.4-6 96 {4}
group.3618-1.4-8 48 {4}
group.3618-1.4-10 96 {4}
group.3618-1.4-11 96 {4}
group.3624-1.1-0 384 {2, 4}
group.3624-1.1-3 384 {2, 4}
group.3624-1.3-0 192 {2, 4}
group.3624-1.4-0 192 {2, 4}
group.3624-1.4-1 192 {2, 4}
group.3624-1.4-2 96 {4}
group.3624-1.5-0 48 {4}
group.3624-1.5-1 48 {4}
group.3640-1.1-0 768 {4}
group.3640-1.1-7 768 {4}
group.3640-1.1-9 192 {2}
group.3640-1.1-10 192 {2}
group.3640-1.3-0 384 {2, 4}
group.3640-1.3-3 384 {2, 4}
group.3640-1.4-0 384 {4}
group.3640-1.4-4 384 {4}
group.3657-2.1-0 384 {4}
group.3657-2.1-9 384 {4}
group.3657-2.1-10 48 {4}
group.3657-2.3-0 192 {2, 4}
group.3657-2.3-3 24 {2, 4}
group.3657-2.3-4 192 {2, 4}
group.3657-2.4-0 192 {4}
group.3657-2.4-3 192 {4}
group.3657-2.4-4 96 {4}
group.3893-1.1-0 192 {2}
group.3893-1.1-5 192 {2}
group.3893-1.3-0 384 {2}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
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CARAT # Out(Γ) SpecR(Γ)
group.3893-4.1-0 48 {2}
group.3893-4.1-5 48 {2}
group.3893-4.2-0 96 {2}
group.3893-4.2-9 96 {2}
group.3893-6.1-0 768 {2}
group.3921-1.1-0 96 {2, 4}
group.3921-1.1-31 48 {2, 4}
group.3921-1.1-33 96 {2, 4}
group.3921-1.3-0 96 {2, 4}
group.3921-1.3-5 96 {2, 4}
group.3921-4.1-0 24 {4}
group.3921-4.1-12 24 {4}
group.3921-4.2-0 48 {4}
group.3921-4.2-10 48 {2}
group.3921-4.2-16 48 {4}
group.3921-4.2-18 48 {2}
group.3921-6.1-0 96 {2, 4}
group.3921-6.1-2 96 {2, 4}
group.5162-1.1-0 3456 {8, 24}
group.5162-1.1-1 1152 {8, 24}
group.5186-1.1-0 768 {16, 32}
group.5186-1.1-2 768 {16, 32}
group.5186-1.2-0 768 {16, 32}
group.5186-1.2-1 768 {16, 32}
group.5320-1.1-0 576 {8, 24}
group.5320-1.1-3 288 {8, 24}
group.5320-1.1-5 576 {8, 24}
group.5471-1.1-0 1728 {24}
group.5471-1.1-5 288 {24}
group.5557-1.1-0 384 {16, 32}
group.5557-1.1-4 384 {16, 32}
group.5557-1.1-5 192 {16, 32}
group.5557-1.2-0 384 {16, 32}
group.5557-1.2-2 384 {16, 32}
group.5557-1.2-4 384 {16, 32}
group.5557-1.2-5 384 {16, 32}
group.6559-1.1-0 18432 {2, 4}
group.6559-1.1-614 9216 {4}
group.6559-1.1-1158 1536 {4}
group.6559-1.1-1399 1536 {4}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)
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CARAT # Out(Γ) SpecR(Γ)
group.6559-1.1-3436 1536 {4}
group.6559-1.1-3862 1536 {4}
group.6559-1.1-3882 1536 {2, 4}
group.6559-1.1-3931 3072 {2, 4}
group.6559-1.1-3975 768 {4}
group.6559-1.1-4089 1536 {4}
group.6559-1.1-4112 18432 {2, 4}
group.6559-1.1-4170 1536 {2, 4}
group.6559-1.1-4171 3072 {2, 4}
group.6559-1.5-0 4608 {4}
group.6559-1.5-10 768 {4}
group.6559-1.5-34 768 {4}
group.6559-1.5-35 4608 {4}
group.6559-1.9-0 2304 {2, 4}
group.6559-1.9-9 384 {2, 4}
group.6559-1.11-0 4608 {4}
group.6559-1.11-43 4608 {4}
group.6559-1.11-133 768 {4}
group.6559-1.11-151 768 {4}
group.6559-1.11-357 768 {4}
group.6559-1.11-370 768 {4}
group.6559-1.11-397 4608 {4}
group.6559-1.11-406 4608 {4}
group.6559-1.11-408 768 {4}
group.6559-1.11-409 768 {4}
group.6559-1.11-473 768 {4}
group.6559-1.11-477 768 {4}
group.6559-1.11-571 768 {4}
group.6559-1.11-574 768 {4}
group.6559-1.11-590 768 {4}
group.6559-1.11-591 768 {4}
group.6559-1.11-598 384 {4}
group.6559-1.11-599 384 {4}
group.6559-1.11-614 384 {4}
group.6559-1.11-615 384 {4}
group.6559-1.35-0 4608 {2, 4}
group.6559-1.38-0 192 {2, 4}
group.6559-1.38-1 96 {4}
group.6559-1.38-3 192 {2, 4}
group.6559-1.49-0 2304 {4}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
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CARAT # Out(Γ) SpecR(Γ)
group.6559-1.49-8 2304 {4}
group.6559-1.49-10 384 {4}
group.6559-1.49-12 384 {4}
group.6559-1.50-0 2304 {4}
group.6559-1.50-6 2304 {4}
group.6559-1.50-10 384 {4}
group.6559-1.50-13 384 {4}
group.6559-1.66-0 384 {2, 4}
group.6559-1.66-7 192 {4}
group.6559-1.66-12 384 {2, 4}
group.6559-1.71-0 192 {4}
group.6559-1.71-10 192 {4}
group.6559-1.71-16 192 {4}
group.6559-1.71-19 192 {4}
group.6559-1.81-0 4608 {2, 4}
group.6559-1.81-1 2304 {4}
group.6559-1.81-6 384 {4}
group.6559-1.81-7 384 {4}
group.6559-1.81-8 384 {4}
group.6559-1.81-9 384 {4}
group.6559-1.81-10 4608 {2, 4}
group.6559-1.81-29 192 {4}
group.6559-1.81-30 384 {2, 4}
group.6559-1.81-33 768 {2, 4}
group.6559-1.81-34 384 {4}
group.6559-1.81-36 384 {2, 4}
group.6559-1.81-37 768 {2, 4}
group.6559-1.84-0 768 {2, 4}
group.6559-1.84-45 384 {4}
group.6559-1.84-95 768 {2, 4}
group.6559-1.85-0 9216 {2, 4}
group.6559-1.85-91 4608 {4}
group.6559-1.85-116 768 {4}
group.6559-1.85-152 768 {4}
group.6559-1.85-213 768 {2, 4}
group.6559-1.85-221 384 {4}
group.6559-1.85-248 768 {4}
group.6559-1.85-257 1536 {2, 4}
group.6559-1.85-285 768 {4}
group.6559-1.85-320 768 {2, 4}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
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CARAT # Out(Γ) SpecR(Γ)
group.6559-1.85-321 1536 {2, 4}
group.6559-1.85-322 768 {4}
group.6559-1.85-323 9216 {2, 4}
group.6559-1.86-0 576 {4}
group.6559-1.86-2 96 {4}
group.6560-1.1-0 15360 {4}
group.6560-1.1-636 1280 {4}
group.6560-1.1-1281 2560 {4}
group.6560-1.1-3917 640 {4}
group.6560-1.5-0 1920 {4}
group.6560-1.5-15 320 {4}
group.6560-1.10-0 960 {4}
group.6560-1.10-11 160 {4}
group.6560-1.64-0 7680 {4}
group.6560-1.64-191 320 {4}
group.6560-1.64-301 640 {4}
group.6560-1.64-351 1280 {4}
group.6560-1.75-0 7680 {4}
group.6560-1.75-339 640 {4}
group.6560-1.75-340 1280 {4}
group.6560-1.75-359 320 {4}
group.6560-1.76-0 240 {4}
group.6560-1.76-3 40 {4}
group.6566-1.1-0 92160 {2, 4}
group.6566-1.1-346 9216 {2, 4}
group.6566-1.1-2784 3072 {2, 4}
group.6566-1.1-4088 6144 {2, 4}
group.6566-1.1-20822 2304 {2, 4}
group.6566-1.1-21314 768 {2, 4}
group.6566-1.1-24319 768 {2, 4}
group.6566-1.1-25098 1536 {2, 4}
group.6566-1.1-25110 768 {2, 4}
group.6566-1.1-25111 768 {2, 4}
group.6566-1.6-0 5760 {2, 4}
group.6566-1.6-3 576 {2, 4}
group.6566-1.6-12 384 {2, 4}
group.6566-1.6-13 96 {2, 4}
group.6566-1.15-0 576 {2, 4}
group.6566-1.15-9 576 {2, 4}
group.6566-1.17-0 384 {4}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)
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CARAT # Out(Γ) SpecR(Γ)
group.6566-1.17-4 384 {4}
group.6566-1.24-0 768 {4}
group.6566-1.24-24 768 {4}
group.6566-1.24-34 192 {2}
group.6566-1.24-35 192 {2}
group.6566-1.33-0 2304 {4}
group.6566-1.33-146 384 {4}
group.6566-1.33-152 192 {4}
group.6566-1.33-154 384 {4}
group.6566-1.33-315 192 {4}
group.6566-1.33-323 2304 {4}
group.6566-1.35-0 1536 {2, 4}
group.6566-1.35-92 384 {2, 4}
group.6566-1.35-201 192 {2, 4}
group.6566-1.36-0 46080 {4}
group.6566-1.36-24 4608 {2}
group.6566-1.36-284 1536 {4}
group.6566-1.36-780 768 {2}
group.6566-1.36-815 3072 {4}
group.6566-1.36-860 384 {2}
group.6566-1.36-910 384 {4}
group.6566-1.36-922 384 {2}
group.6566-1.36-924 768 {4}
group.6566-1.36-925 2304 {2, 4}
group.6566-1.36-927 7680 {2}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit ∞ from the spectra, as well as
the groups that have the R∞-property)

B.2 Crystallographic groups with infinite outer au-
tomorphism group

The tables below contain (Z-classes of) crystallographic groups with infinite
outer automorphism group. The R∞-property for these groups was studied in
section 9.1.
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B.2.1 Groups that do not have the R∞-property

The tables below contain the crystallographic groups with infinite outer
automorphism group of dimensions 2 to 4 that do not have the R∞-property.
For each group, we also list an automorphism with finite Reidemeister number.

CARAT BBNWZ IT d D

min.2-1.1-0* 2/1/1/1/1 1/1 ( 0
0 )

(−5 1
1 0
)

group.1-1.1-0 2/1/2/1/1 2/2 ( 0
0 )

(−8 −5
5 3

)
Table B.7: 2-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R∞-property

CARAT BBNWZ IT d D

min.6-1.1-0* 3/1/1/1/1 3/1
(

0
0
0

) (−3 0 1
1 0 0
0 1 0

)
min.7-1.1-0 3/2/1/1/1 3/3

(
0
0
0

) (−5 −3 0
2 1 0
0 0 −1

)
min.7-1.1-1* 3/2/1/1/2 3/4

(
0
0
0

) (−5 −3 0
3 2 0
0 0 −1

)
min.7-1.2-0 3/2/1/2/1 3/5

(
0
0
0

) (−11 −7 −7
4 2 3
4 3 2

)
group.5-1.1-0 3/1/2/1/1 3/2

(
0
0
0

) (−2 −1 0
2 0 −1
−1 0 1

)
Table B.8: 3-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R∞-property

CARAT BBNWZ d D

min.15-1.1-0* 4/1/1/1/1
(

0
0
0
0

) (−3 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
min.17-1.1-0 4/2/2/1/1

(
0
0
0
0

) (−2 −1 −1 0
1 0 0 0
1 0 1 0
0 0 0 −1

)
min.17-1.1-1* 4/2/2/1/2

(
0
0
0
0

) (−2 −1 −1 0
1 1 0 0
1 0 0 0
0 0 0 −1

)
min.17-1.2-0 4/2/2/2/1

(
0
0
0
0

) (−1 0 −1 −1
−1 1 0 0
0 −1 −1 0
0 −1 0 −1

)
min.18-1.1-0 4/3/1/1/1

(
0
0
0
0

) (−2 −1 0 0
1 0 0 0
0 0 −2 −1
0 0 1 1

)

Table B.9: 4-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R∞-property
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CARAT BBNWZ d D

min.18-1.1-1* 4/3/1/1/2
(

1/2
0

1/2
0

) (−1 −1 0 0
0 −1 0 0
0 0 −2 −1
0 0 1 1

)
min.18-1.2-0 4/3/1/2/1

(
0
0
0
0

) (−1 0 −1 −1
0 −1 −1 1
0 1 0 −1
0 −1 −1 0

)
min.18-1.2-1* 4/3/1/2/2

(
1/2
1/2
0
0

) (−1 0 0 0
0 −1 −1 1
0 1 0 −1
0 −1 −1 0

)
min.18-1.3-0 4/3/1/3/1

(
0
0
0
0

) (−2 −2 −1 0
1 1 0 0
−1 0 −2 −2
0 0 1 1

)
min.36-1.1-0 4/10/1/1/1

(
0
0
0
0

) (−3 −2 −3 0
3 3 2 1
1 −2 3 −3
0 −3 2 −3

)
min.43-1.1-0 4/28/1/1/1

(
0
0
0
0

) (−4 −3 −3 1
1 4 −1 −4
4 1 4 1
−1 3 −3 −4

)
min.44-1.1-0 4/28/2/1/1

(
0
0
0
0

) (−8 −4 −3 4
4 8 −1 −3
−3 1 −2 1
−4 −3 −1 2

)
max.6-1.1-0 4/26/2/1/1

(
0
0
0
0

) (−29 −41 0 −29
−41 −29 29 0

0 29 29 41
−29 0 41 29

)
max.6-1.1-1 4/26/2/1/2

(
0
0

1/2
1/2

) (−29 41 0 −29
41 −29 29 0
0 29 29 −41
−29 0 −41 29

)
group.26-1.1-0 4/1/2/1/1

(
0
0
0
0

) (−2 −1 −2 −1
1 −1 1 0
3 1 2 0
−1 0 −1 0

)
group.28-1.1-0 4/3/2/1/1

(
0
0
0
0

) (−2 −1 0 0
1 1 0 0
0 0 −1 −1
0 0 1 2

)
group.28-1.1-1 4/3/2/1/2

( 0
1/2
0
0

) ( 1 1 0 0
−2 −1 0 0
0 0 1 1
0 0 −1 −2

)
group.28-1.1-2 4/3/2/1/3

( 0
1/2
0
0

) ( 0 0 1 1
0 0 −2 −1
1 3 0 0
0 −1 0 0

)
group.28-1.2-0 4/3/2/2/1

(
0
0
0
0

) (−1 0 −1 −1
0 −3 −5 5
1 1 2 −1
1 −1 −1 2

)
group.28-1.2-1 4/3/2/2/2

(
0
0

3/4
3/4

) (−1 0 −1 −1
0 −1 −1 1
1 1 1 0
1 −1 0 1

)
group.28-1.2-2 4/3/2/2/3

(
1/2
0
0

1/2

) (−1 0 −1 −1
0 −3 −5 5
1 1 2 −1
1 −1 −1 2

)

Table B.9: 4-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R∞-property
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CARAT BBNWZ d D

group.28-1.3-0 4/3/2/3/1
(

0
0
0
0

) (−1 −2 −1 −1
1 1 0 1
1 1 1 2
0 −1 −1 −1

)
group.96-1.1-0 4/16/1/1/1

(
0
0
0
0

) (−5 −2 0 0
2 1 0 0
0 0 −1 −2
0 0 2 5

)
group.96-1.1-1 4/16/1/1/2

(
1/2
0
0

1/2

) (−3 −2 0 0
1 1 0 0
0 0 1 1
0 0 −2 −3

)
group.96-2.1-0 4/16/1/2/1

(
0
0
0
0

) (−41 0 −12 −12
0 −41 −12 12
12 12 7 0
12 −12 0 7

)
group.96-2.1-1 4/16/1/2/2

(
0
0
0
0

) (−7 0 −2 −2
0 −7 −2 2
2 2 1 0
2 −2 0 1

)
group.96-2.1-2 4/16/1/2/3

( 1/2
1/2
1/2
1/2

) (−41 0 −12 −12
0 −41 −12 12
12 12 7 0
12 −12 0 7

)
group.96-3.1-0 4/16/1/3/1

(
0
0
0
0

) (−4 −1 0 4
−1 6 12 −2
0 −2 −4 1
−2 0 1 2

)
group.109-1.1-0 4/26/1/1/1

(
0
0
0
0

) (−41 29 −29 0
29 −41 0 −29
−29 0 −41 −29

0 −29 −29 −41

)
group.141-1.1-0 4/27/2/1/1

(
0
0
0
0

) (−3 0 2 2
1 1 −2 0
3 −2 0 −3
−1 2 −1 2

)
group.142-1.1-0 4/27/3/2/1

(
0
0
0
0

) (−3 0 2 2
1 1 −2 0
3 −2 0 −3
−1 2 −1 2

)
group.142-2.1-0 4/27/3/1/1

(
0
0
0
0

) (−5 −5 −2 −3
0 5 −3 0
0 −3 2 0
−3 −5 0 −2

)
group.143-1.1-0 4/27/4/1/1

(
0
0
0
0

) (−3 0 2 2
1 1 −2 0
3 −2 0 −3
−1 2 −1 2

)
group.144-1.1-0 4/27/1/1/1

(
0
0
0
0

) (−3 0 2 2
1 1 −2 0
3 −2 0 −3
−1 2 −1 2

)
group.170-1.1-0 4/11/1/1/1

(
0
0
0
0

) (−2 0 −1 0
−2 2 −1 1
1 0 1 0
1 −1 1 −1

)
group.171-1.1-0 4/11/2/1/1

(
0
0
0
0

) (−2 −1 −1 −1
1 −1 0 1
0 1 0 −1
1 0 1 1

)
group.172-1.1-0 4/17/2/2/1

(
0
0
0
0

) (−3 −4 −4 −2
4 1 2 −2
4 2 3 −1
−2 2 1 4

)

Table B.9: 4-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R∞-property
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CARAT BBNWZ d D

group.172-2.1-0 4/17/2/1/1
(

0
0
0
0

) (−3 −2 −1 0
0 2 0 1
2 2 1 0
0 1 0 0

)
group.173-1.1-0 4/17/1/3/1

(
0
0
0
0

) (−13 −2 −14 −8
2 −11 8 −6
14 6 13 11
−6 8 −11 2

)
group.173-2.1-0 4/17/1/1/1

(
0
0
0
0

) (−3 −2 −1 0
3 0 1 −1
3 1 1 −1
2 0 1 −1

)
group.173-3.1-0 4/17/1/2/1

(
0
0
0
0

) (−4 1 −4 5
0 0 1 0
0 −1 3 0
−1 0 −1 1

)
group.179-1.1-0 4/8/1/2/1

(
0
0
0
0

) (−1 0 0 0
0 −1 0 0
0 0 −2 −1
0 0 1 1

)
group.179-1.1-1* 4/8/1/2/2

(
0
0
0
0

) (−1 0 0 0
0 −1 0 0
0 0 1 1
0 0 −3 −2

)
group.179-1.2-0 4/8/1/1/1

(
0
0
0
0

) (−5 −3 −3 3
1 0 1 −1
1 1 0 −1
−1 −1 −1 0

)
group.179-1.2-1* 4/8/1/1/2

(
1/3
1/3
2/3
0

) (−2 −3 −3 3
1 1 2 −2
1 2 1 −2
−1 −2 −2 1

)
group.182-1.1-0 4/9/2/1/1

(
0
0
0
0

) (−1 0 0 0
0 −1 0 0
0 0 −2 −1
0 0 1 1

)

Table B.9: 4-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R∞-property

B.2.2 Groups that have the R∞-property

The tables below contain the Z-classes of crystallographic groups with infinite
outer automorphism group of dimensions 3 and 4 that have the R∞-property.
For each group Zn o F , we also list a characteristic subgroup N such that the
quotient has the R∞-property.
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CARAT BBNWZ IT N (Z3 o F )/N
min.8-1.1 3/2/2/1 3/6, 3/7 Z2 max.1-1.1-0
min.8-1.2 3/2/2/2 3/8, 3/9 Z2 max.1-1.1-0
group.6-1.1 3/2/3/1 3/10, 3/11, 3/13, 3/14 Z2 o Z2 max.1-1.1-0
group.6-1.2 3/2/3/2 3/12, 3/15 Z2 o Z2 max.1-1.1-0

Table B.10: 3-dimensional Z-classes of crystallographic groups with infinite
outer automorphism group that have the R∞-property

CARAT BBNWZ N (Z4 o F )/N
min.16-1.1 4/2/1/1 Z3 max.1-1.1-0
min.16-1.2 4/2/1/2 Z3 max.1-1.1-0
min.19-1.1 4/4/3/1 Z2 group.2-1.1-0
min.19-1.2 4/4/3/3 Z2 group.2-1.1-0
min.19-1.3 4/4/3/2 Z2 group.2-1.2-0
min.19-1.4 4/4/3/6 Z2 group.2-1.1-0
min.19-1.5 4/4/3/4 Z2 group.2-1.2-0
min.19-1.6 4/4/3/5 Z2 group.2-1.1-0
min.20-1.1 4/4/1/1 Z2 group.2-1.1-0
min.20-1.2 4/4/1/3 Z2 group.2-1.1-0
min.20-1.3 4/4/1/2 Z2 group.2-1.2-0
min.20-1.4 4/4/1/6 Z2 group.2-1.2-0
min.20-1.5 4/4/1/4 Z2 group.2-1.1-0
min.20-1.6 4/4/1/5 Z2 group.2-1.1-0
min.21-1.1 4/4/2/1 Z group.6-1.1-0
min.21-1.2 4/4/2/4 Z group.6-1.1-0
min.21-1.3 4/4/2/3 Z group.6-1.2-0
min.21-1.4 4/4/2/2 Z group.6-1.1-0
min.21-1.5 4/4/2/7 Z group.6-1.1-0
min.21-1.6 4/4/2/5 Z group.6-1.2-0
min.21-1.7 4/4/2/6 Z group.6-1.2-0
min.26-1.1 4/4/4/1 Z2 o Z2 group.2-1.1-0
min.26-1.2 4/4/4/3 Z2 o Z2 group.2-1.1-0
min.26-1.3 4/4/4/2 Z2 o Z2 group.2-1.2-0
min.26-1.4 4/4/4/6 Z2 o Z2 group.2-1.1-0
min.26-1.5 4/4/4/4 Z2 o Z2 group.2-1.2-0
min.26-1.6 4/4/4/5 Z2 o Z2 group.2-1.1-0
min.42-1.1 4/7/1/1 Z2 min.4-1.1-0
min.42-1.2 4/7/1/2 Z2 min.4-1.1-0
min.48-1.1 4/9/4/1 Z2 max.3-1.1-0
min.49-1.1 4/8/3/2 Z2 group.4-2.1-0

Table B.11: 4-dimensional Z-classes of crystallographic groups with infinite
outer automorphism group that have the R∞-property
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CARAT BBNWZ N (Z4 o F )/N
min.49-2.1 4/8/3/3 Z2 group.4-1.1-0
min.49-2.2 4/8/3/1 Z2 group.4-1.1-0
min.50-1.1 4/8/4/2 Z2 group.4-2.1-0
min.50-1.2 4/8/4/1 Z2 group.4-1.1-0
min.50-2.1 4/8/4/3 Z2 group.4-1.1-0
group.27-1.1 4/2/3/1 Z3 o Z2 max.1-1.1-0
group.27-1.2 4/2/3/2 Z3 o Z2 max.1-1.1-0
group.107-1.1 4/7/7/1 Z2 o Z2 max.2-1.1-0
group.107-1.2 4/7/7/2 Z2 o Z2 max.2-1.1-0
group.117-1.1 4/7/2/1 Z2 min.4-1.1-0
group.117-1.2 4/7/2/2 Z2 min.4-1.1-0
group.136-1.1 4/7/3/1 Z2 o Z2 min.4-1.1-0
group.136-1.2 4/7/3/2 Z2 o Z2 min.4-1.1-0
group.145-1.1 4/7/5/1 Z2 max.2-1.1-0
group.145-1.2 4/7/5/2 Z2 max.2-1.1-0
group.146-1.1 4/7/6/1 Z2 max.2-1.1-0
group.146-1.2 4/7/6/2 Z2 max.2-1.1-0
group.147-1.1 4/7/4/1 Z2 max.2-1.1-0
group.147-1.2 4/7/4/3 Z2 max.2-1.1-0
group.147-2.1 4/7/4/2 Z2 max.2-1.1-0
group.147-2.2 4/7/4/4 Z2 max.2-1.1-0
group.174-1.1 4/8/5/3 Z2 max.3-1.1-0
group.174-1.2 4/8/5/1 Z2 max.3-1.1-0
group.174-2.1 4/8/5/2 Z2 max.3-1.1-0
group.175-1.1 4/9/3/1 Z2 group.3-1.1-0
group.176-1.1 4/9/5/1 Z2 max.3-1.1-0
group.177-1.1 4/9/6/1 Z2 o Z2 group.4-2.1-0
group.177-2.1 4/9/6/2 Z2 o Z2 group.4-1.1-0
group.178-1.1 4/9/7/1 Z2 o Z2 max.3-1.1-0
group.180-1.1 4/8/2/2 Z2 group.3-1.1-0
group.180-1.2 4/8/2/1 Z2 group.3-1.1-0
group.181-1.1 4/9/1/1 Z2 group.3-1.1-0

Table B.11: 4-dimensional Z-classes of crystallographic groups with infinite
outer automorphism group that have the R∞-property
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B.3 Almost-crystallographic groups

The tables below contain information on the almost-crystallographic groups of
which we determined the R∞-property and/or the Reidemeister spectrum.

B.3.1 Conjugacy matrices

The table below contains conjugacy matrices to go from the presentations
mentioned in this thesis to those given in [Dek96] and [DE02].

Family δ

min.6-1.1-0
(

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)

min.7-1.1-0
(

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

)

min.7-1.1-1
(

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

)

min.7-1.2-0
(

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

)

min.13-1.1-0

 1 − k1
2 +k2+2k3 −k2+k3 0 0

0 1 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 0 0 0 1


min.13-1.2-0

(
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

)

group.5-1.1-0
(

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)

Table B.12: Conjugacy matrices between representations of 4-dimensional
almost-crystallographic groups

B.3.2 Automorphisms of family group.1-1.1-0

The tables below contain the output of algorithms 10 and 13.
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M̄ d̄ det(M) R S

( 0 1
1 0 ) ( 0

0 ) −1 4N + 4 2N + 2
( 0 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2

( 0 1
1 0 ) ( 0

1 ) −1 4N 2N
( 0 1

1 0 ) ( 0
1 ) 1 ∞ 2N

( 0 1
1 0 ) ( 1

0 ) −1 4N 2N
( 0 1

1 0 ) ( 1
0 ) 1 ∞ 2N

( 0 1
1 0 ) ( 1

1 ) −1 4N + 4 2N + 2
( 0 1

1 0 ) ( 1
1 ) 1 ∞ 2N + 2

( 0 1
1 1 ) ( 0

0 ) −1 4N 2N
( 0 1

1 1 ) ( 0
0 ) 1 ∞ 2N + 2 ∪ {3}

( 0 1
1 1 ) ( 0

1 ) −1 4N 2N
( 0 1

1 1 ) ( 0
1 ) 1 ∞ 2N + 2 ∪ {3}

( 0 1
1 1 ) ( 1

0 ) −1 4N 2N
( 0 1

1 1 ) ( 1
0 ) 1 ∞ 2N + 2 ∪ {3}

( 0 1
1 1 ) ( 1

1 ) −1 4N 2N
( 0 1

1 1 ) ( 1
1 ) 1 ∞ 2N + 2 ∪ {3}

( 1 0
0 1 ) ( 0

0 ) −1 8N + 8 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
0 1 ) ( 0

1 ) −1 8N 4N
( 1 0

0 1 ) ( 0
1 ) 1 ∞ 4N

( 1 0
0 1 ) ( 1

0 ) −1 8N 4N
( 1 0

0 1 ) ( 1
0 ) 1 ∞ 4N

( 1 0
0 1 ) ( 1

1 ) −1 8N 4N
( 1 0

0 1 ) ( 1
1 ) 1 ∞ 4N

( 1 0
1 1 ) ( 0

0 ) −1 4N + 4 2N + 2
( 1 0

1 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 0
1 1 ) ( 0

1 ) −1 4N + 4 2N + 2
( 1 0

1 1 ) ( 0
1 ) 1 ∞ 2N + 2

( 1 0
1 1 ) ( 1

0 ) −1 4N 2N
( 1 0

1 1 ) ( 1
0 ) 1 ∞ 2N

( 1 0
1 1 ) ( 1

1 ) −1 4N 2N
( 1 0

1 1 ) ( 1
1 ) 1 ∞ 2N

( 1 1
0 1 ) ( 0

0 ) −1 4N + 4 2N + 2
( 1 1

0 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 0

1 ) −1 4N 2N
( 1 1

0 1 ) ( 0
1 ) 1 ∞ 2N

( 1 1
0 1 ) ( 1

0 ) −1 4N + 4 2N + 2
( 1 1

0 1 ) ( 1
0 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 1

1 ) −1 4N 2N
( 1 1

0 1 ) ( 1
1 ) 1 ∞ 2N

Table B.13: Output of MakeList(0, 0, 0, 0) and MakeList2(0, 0, 0, 0)
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M̄ d̄ det(M) R S

( 1 1
1 0 ) ( 0

0 ) −1 4N 2N
( 1 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2 ∪ {3}

( 1 1
1 0 ) ( 0

1 ) −1 4N 2N
( 1 1

1 0 ) ( 0
1 ) 1 ∞ 2N + 2 ∪ {3}

( 1 1
1 0 ) ( 1

0 ) −1 4N 2N
( 1 1

1 0 ) ( 1
0 ) 1 ∞ 2N + 2 ∪ {3}

( 1 1
1 0 ) ( 1

1 ) −1 4N 2N
( 1 1

1 0 ) ( 1
1 ) 1 ∞ 2N + 2 ∪ {3}

Table B.13: Output of MakeList(0, 0, 0, 0) and MakeList2(0, 0, 0, 0)

M̄ d̄ det(M) R S

( 0 1
1 0 ) ( 0

0 ) −1 4N 2N + 2
( 0 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2

( 0 1
1 0 ) ( 0

1 ) −1 4N 2N
( 0 1

1 0 ) ( 0
1 ) 1 ∞ 2N

( 0 1
1 0 ) ( 1

0 ) −1 4N 2N
( 0 1

1 0 ) ( 1
0 ) 1 ∞ 2N

( 0 1
1 0 ) ( 1

1 ) −1 4N 2N + 2
( 0 1

1 0 ) ( 1
1 ) 1 ∞ 2N + 2

( 0 1
1 1 ) ( 0

0 ) −1 4N− 2 2N
( 0 1

1 1 ) ( 0
0 ) 1 ∞ 2N + 2 ∪ {3}

( 0 1
1 1 ) ( 0

1 ) −1 4N− 2 2N
( 0 1

1 1 ) ( 0
1 ) 1 ∞ 2N + 2 ∪ {3}

( 0 1
1 1 ) ( 1

0 ) −1 4N− 2 2N
( 0 1

1 1 ) ( 1
0 ) 1 ∞ 2N + 2 ∪ {3}

( 0 1
1 1 ) ( 1

1 ) −1 4N− 2 2N
( 0 1

1 1 ) ( 1
1 ) 1 ∞ 2N + 2 ∪ {3}

( 1 0
0 1 ) ( 0

0 ) −1 8N 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
0 1 ) ( 0

1 ) −1 8N 4N
( 1 0

0 1 ) ( 0
1 ) 1 ∞ 4N

( 1 0
0 1 ) ( 1

0 ) −1 8N 4N
( 1 0

0 1 ) ( 1
0 ) 1 ∞ 4N

( 1 0
0 1 ) ( 1

1 ) −1 8N 4N
( 1 0

0 1 ) ( 1
1 ) 1 ∞ 4N

( 1 0
1 1 ) ( 0

0 ) −1 4N 2N + 2
( 1 0

1 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 0
1 1 ) ( 0

1 ) −1 4N 2N + 2
( 1 0

1 1 ) ( 0
1 ) 1 ∞ 2N + 2

Table B.14: Output of MakeList(0, 0, 0, 1) and MakeList2(0, 0, 0, 1)
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M̄ d̄ det(M) R S

( 1 0
1 1 ) ( 1

0 ) −1 4N 2N
( 1 0

1 1 ) ( 1
0 ) 1 ∞ 2N

( 1 0
1 1 ) ( 1

1 ) −1 4N 2N
( 1 0

1 1 ) ( 1
1 ) 1 ∞ 2N

( 1 1
0 1 ) ( 0

0 ) −1 4N 2N + 2
( 1 1

0 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 0

1 ) −1 4N 2N
( 1 1

0 1 ) ( 0
1 ) 1 ∞ 2N

( 1 1
0 1 ) ( 1

0 ) −1 4N 2N + 2
( 1 1

0 1 ) ( 1
0 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 1

1 ) −1 4N 2N
( 1 1

0 1 ) ( 1
1 ) 1 ∞ 2N

( 1 1
1 0 ) ( 0

0 ) −1 4N− 2 2N
( 1 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2 ∪ {3}

( 1 1
1 0 ) ( 0

1 ) −1 4N− 2 2N
( 1 1

1 0 ) ( 0
1 ) 1 ∞ 2N + 2 ∪ {3}

( 1 1
1 0 ) ( 1

0 ) −1 4N− 2 2N
( 1 1

1 0 ) ( 1
0 ) 1 ∞ 2N + 2 ∪ {3}

( 1 1
1 0 ) ( 1

1 ) −1 4N− 2 2N
( 1 1

1 0 ) ( 1
1 ) 1 ∞ 2N + 2 ∪ {3}

Table B.14: Output of MakeList(0, 0, 0, 1) and MakeList2(0, 0, 0, 1)

M̄ d̄ det(M) R S

( 1 0
0 1 ) ( 0

0 ) −1 8N + 4 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
0 1 ) ( 1

0 ) −1 8N 4N
( 1 0

0 1 ) ( 1
0 ) 1 ∞ 4N

( 1 1
0 1 ) ( 0

0 ) −1 4N + 4 2N + 2
( 1 1

0 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 1

0 ) −1 4N 2N + 2
( 1 1

0 1 ) ( 1
0 ) 1 ∞ 2N + 2

Table B.15: Output of MakeList(0, 0, 1, 0) and MakeList2(0, 0, 1, 0)
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M̄ d̄ det(M) R S

( 1 0
0 1 ) ( 0

0 ) −1 8N + 4 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
0 1 ) ( 1

0 ) −1 8N 4N
( 1 0

0 1 ) ( 1
0 ) 1 ∞ 4N

( 1 1
0 1 ) ( 0

0 ) −1 4N 2N + 2
( 1 1

0 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 1

0 ) −1 4N + 4 2N + 2
( 1 1

0 1 ) ( 1
0 ) 1 ∞ 2N + 2

Table B.16: Output of MakeList(0, 0, 1, 1) and MakeList2(0, 0, 1, 1)

M̄ d̄ det(M) R S

( 0 1
1 0 ) ( 0

0 ) −1 4N + 4 2N + 2
( 0 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2

( 0 1
1 0 ) ( 1

1 ) −1 4N 2N + 2
( 0 1

1 0 ) ( 1
1 ) 1 ∞ 2N + 2

( 1 0
0 1 ) ( 0

0 ) −1 8N + 4 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
0 1 ) ( 1

1 ) −1 8N 4N
( 1 0

0 1 ) ( 1
1 ) 1 ∞ 4N

Table B.17: Output of MakeList(0, 1, 1, 0) and MakeList2(0, 1, 1, 0)

M̄ d̄ det(M) R S

( 0 1
1 0 ) ( 0

0 ) −1 4N 2N + 2
( 0 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2

( 0 1
1 0 ) ( 1

1 ) −1 4N + 4 2N + 2
( 0 1

1 0 ) ( 1
1 ) 1 ∞ 2N + 2

( 1 0
0 1 ) ( 0

0 ) −1 8N + 4 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
0 1 ) ( 1

1 ) −1 8N 4N
( 1 0

0 1 ) ( 1
1 ) 1 ∞ 4N

Table B.18: Output of MakeList(0, 1, 1, 1) and MakeList2(0, 1, 1, 1)



ALMOST-CRYSTALLOGRAPHIC GROUPS 255

M̄ d̄ det(M) R S

( 0 1
1 0 ) ( 0

0 ) −1 4N + 2 2N + 2
( 0 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2

( 0 1
1 1 ) ( 0

1 ) −1 4N− 2 2N
( 0 1

1 1 ) ( 0
1 ) 1 ∞ 2N + 2 ∪ {3}

( 1 0
0 1 ) ( 0

0 ) −1 8N + 6 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
1 1 ) ( 0

1 ) −1 4N + 2 2N + 2
( 1 0

1 1 ) ( 0
1 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 1

0 ) −1 4N + 2 2N + 2
( 1 1

0 1 ) ( 1
0 ) 1 ∞ 2N + 2

( 1 1
1 0 ) ( 1

0 ) −1 4N− 2 2N
( 1 1

1 0 ) ( 1
0 ) 1 ∞ 2N + 2 ∪ {3}

Table B.19: Output of MakeList(1, 0, 0, 0) and MakeList2(1, 0, 0, 0)

M̄ d̄ det(M) R S

( 0 1
1 0 ) ( 0

0 ) −1 4N + 2 2N + 2
( 0 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2

( 0 1
1 1 ) ( 0

1 ) −1 4N 2N
( 0 1

1 1 ) ( 0
1 ) 1 ∞ 2N + 2 ∪ {3}

( 1 0
0 1 ) ( 0

0 ) −1 8N + 2 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
1 1 ) ( 0

1 ) −1 4N + 2 2N + 2
( 1 0

1 1 ) ( 0
1 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 1

0 ) −1 4N + 2 2N + 2
( 1 1

0 1 ) ( 1
0 ) 1 ∞ 2N + 2

( 1 1
1 0 ) ( 1

0 ) −1 4N 2N
( 1 1

1 0 ) ( 1
0 ) 1 ∞ 2N + 2 ∪ {3}

Table B.20: Output of MakeList(1, 0, 0, 1) and MakeList2(1, 0, 0, 1)
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M̄ d̄ det(M) R S

( 0 1
1 0 ) ( 1

1 ) −1 4N + 2 2N + 2
( 0 1

1 0 ) ( 1
1 ) 1 ∞ 2N + 2

( 0 1
1 1 ) ( 1

0 ) −1 4N− 2 2N
( 0 1

1 1 ) ( 1
0 ) 1 ∞ 2N + 2 ∪ {3}

( 1 0
0 1 ) ( 0

0 ) −1 8N + 6 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
1 1 ) ( 0

0 ) −1 4N + 2 2N + 2
( 1 0

1 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 1

0 ) −1 4N + 2 2N + 2
( 1 1

0 1 ) ( 1
0 ) 1 ∞ 2N + 2

( 1 1
1 0 ) ( 1

1 ) −1 4N− 2 2N
( 1 1

1 0 ) ( 1
1 ) 1 ∞ 2N + 2 ∪ {3}

Table B.21: Output of MakeList(1, 0, 1, 0) and MakeList2(1, 0, 1, 0)

M̄ d̄ det(M) R S

( 0 1
1 0 ) ( 1

1 ) −1 4N + 2 2N + 2
( 0 1

1 0 ) ( 1
1 ) 1 ∞ 2N + 2

( 0 1
1 1 ) ( 1

0 ) −1 4N 2N
( 0 1

1 1 ) ( 1
0 ) 1 ∞ 2N + 2 ∪ {3}

( 1 0
0 1 ) ( 0

0 ) −1 8N + 2 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
1 1 ) ( 0

0 ) −1 4N + 2 2N + 2
( 1 0

1 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 1

0 ) −1 4N + 2 2N + 2
( 1 1

0 1 ) ( 1
0 ) 1 ∞ 2N + 2

( 1 1
1 0 ) ( 1

1 ) −1 4N 2N
( 1 1

1 0 ) ( 1
1 ) 1 ∞ 2N + 2 ∪ {3}

Table B.22: Output of MakeList(1, 0, 1, 1) and MakeList2(1, 0, 1, 1)



ALMOST-CRYSTALLOGRAPHIC GROUPS 257

M̄ d̄ det(M) R S

( 0 1
1 0 ) ( 0

0 ) −1 4N + 2 2N + 2
( 0 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2

( 0 1
1 1 ) ( 0

0 ) −1 4N 2N
( 0 1

1 1 ) ( 0
0 ) 1 ∞ 2N + 2 ∪ {3}

( 1 0
0 1 ) ( 0

0 ) −1 8N + 2 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
1 1 ) ( 0

0 ) −1 4N + 2 2N + 2
( 1 0

1 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 0

0 ) −1 4N + 2 2N + 2
( 1 1

0 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 1
1 0 ) ( 0

0 ) −1 4N 2N
( 1 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2 ∪ {3}

Table B.23: Output of MakeList(1, 1, 1, 0) and MakeList2(1, 1, 1, 0)

M̄ d̄ det(M) R S

( 0 1
1 0 ) ( 0

0 ) −1 4N + 2 2N + 2
( 0 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2

( 0 1
1 1 ) ( 0

0 ) −1 4N− 2 2N
( 0 1

1 1 ) ( 0
0 ) 1 ∞ 2N + 2 ∪ {3}

( 1 0
0 1 ) ( 0

0 ) −1 8N + 6 4N + 4
( 1 0

0 1 ) ( 0
0 ) 1 ∞ 4N + 4

( 1 0
1 1 ) ( 0

0 ) −1 4N + 2 2N + 2
( 1 0

1 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 1
0 1 ) ( 0

0 ) −1 4N + 2 2N + 2
( 1 1

0 1 ) ( 0
0 ) 1 ∞ 2N + 2

( 1 1
1 0 ) ( 0

0 ) −1 4N− 2 2N
( 1 1

1 0 ) ( 0
0 ) 1 ∞ 2N + 2 ∪ {3}

Table B.24: Output of MakeList(1, 1, 1, 1) and MakeList2(1, 1, 1, 1)
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