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Abstract

The notion of conjugacy in a group can be generalised to twisted conjugacy. For
any endomorphism ¢ of a group G, we may define an equivalence relation ~,
on G by

Vg, €G:g~yg = JheG:g=hgoh) "
The number of equivalence classes is called the Reidemeister number and is
denoted by R(p). The set of all possible Reidemeister numbers of automorphisms
is called the Reidemeister spectrum.

This notion originates in topological fixed-point theory. A continuous self-map
f on a (sufficiently well-behaved) topological space X induces an endomorphism
f« on the fundamental group m1(X). The Reidemeister number R(f,) is an
upper bound for the Nielsen number N(f), which in turn is a lower bound for
the number of fixed points of f.

In this thesis, we investigate the Reidemeister spectra of almost-crystallographic
groups. These groups are generalisations of the crystallographic groups, in the
sense that their translation subgroup is nilpotent rather than abelian. The main
results can be grouped into two parts.

In the first part, we investigate the Reidemeister spectra of finitely generated,
torsion-free, nilpotent groups. We compute the spectrum for every such group
of dimension at most 4. Furthermore, we compute the Reidemeister spectra of
free nilpotent groups of low rank and/or nilpotency class.

In the second part, we first determine which low-dimensional almost-crystallo-
graphic groups admit automorphisms with finite Reidemeister number. Next,
we provide an algorithm that is capable of calculating the Reidemeister number
of any given automorphism of a crystallographic group, and use this to calculate
the Reidemeister spectra. Finally, we determine which almost-crystallographic
groups admit Reidemeister zeta functions, and prove that these functions are
rational for groups of dimension at most 3.






Beknopte samenvatting

De notie van conjugatie in een groep kan worden veralgemeend naar getwiste
conjugatie. Voor elk endomorfisme ¢ van een groep GG, kunnen we een equiva-
lentierelatie ~, op G definiéren als

Vg, €G:g~yg = JheG:g=hgoh) "
Het aantal equivalentieklassen wordt het Reidemeistergetal genoemd en wordt
genoteerd met R(yp). De verzameling van alle mogelijke Reidemeistergetallen
van automorfismen wordt het Reidemeisterspectrum genoemd.

Deze notie vindt zijn oorsprong in de topologische vastepuntstheorie. Een
continue zelf-afbeelding f op een (voldoende brave) topologische ruimte
X induceert een endomorfisme f, op de fundamentaalgroep 71(X). Het
Reidemeistergetal R(f.) is een bovengrens voor het Nielsengetal N(f), dat
op zijn beurt een ondergrens is voor het aantal vaste punten van f.

In deze thesis onderzoeken we de Reidemeisterspectra van bijna-kristallografische
groepen. Deze groepen zijn veralgemeningen van de kristallografische groepen,
in die zin dat hun translatiedeelgroep nilpotent is in plaats van abels. De
belangrijkste resultaten kunnen in twee delen worden gegroepeerd.

In het eerste deel onderzoeken we de Reidemeisterspectra van eindig voortge-
brachte, torsievrije, nilpotente groepen. We berekenen het spectrum voor deze
groepen met dimensie maximaal 4. Verder berekenen we de Reidemeisterspectra
van vrije nilpotente groepen van lage rang en/of nilpotentieklasse.

In het tweede deel bepalen we eerst welke laag-dimensionale bijna-kristallogra-
fische groepen automorfismen met eindig Reidemeistergetal toelaten. Vervolgens
geven we een algoritme dat in staat is om het Reidemeistergetal van een gegeven
automorfisme van een kristallografische groep te berekenen en gebruiken dit
om de Reidemeisterspectra te berekenen. Ten slotte bepalen we welke bijna-
kristallografische groepen Reidemeister-zeta-functies toelaten, en bewijzen we
dat deze functies rationaal zijn voor groepen met dimensie maximaal 3.
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Chapter 1

Introduction

The main goal of fixed point theory is, given a self-map f: X — X on a space
X, to find the fixed point set

Fix(f) :={z e X | f(z) = z}.

Fixed point theory is a branch of mathematics that intersects with many other
mathematical domains. For example, we have the Brouwer fixed point theorem
in topology and the Banach fixed point theorem in analysis.

Fixed point theory also yields a multitude of applications in a wide variety
of other scientific domains. If one describes an iterative process using a
function, then the equilibria of this process will coincide with the fixed points
of the function. Thus, finding the fixed points will provide information on the
asymptotic behaviour of the iterative process.

One example is the predator-prey model in biology. This model describes a
system in which two species interact, one as predator and one as prey. If the
evolution of their populations are described by an iterative process, then the
fixed points will indicate that either the populations remain stable or that they
go extinct. Another example is that of the Nash equilibrium in non-cooperative
games, whose existence was proven by John Nash using the Brouwer fixed point
theorem. His work on this equilibrium won Nash the Nobel Memorial Prize in
Economic Sciences.



2 INTRODUCTION

1.1 Reidemeister-Nielsen fixed point theory

Fixed points are often quite hard to find, if they exist at all. Moreover, a slight
modification to the function f may completely change the set of fixed points.
Topological fixed point theory attempts to resolve these problems by asking the
following questions:

e Does every map homotopic to f have at least one fixed point?

e How many fixed points must every map homotopic to f at least have?

In the 1880’s, Henri Poincaré was the first to introduce topological methods
in the study of non-linear analysis, and in particular the topological study
of fixed points. This sparked the discovery of several fixed point theorems.
While studying fixed points in the 1900’s and early 1910’s, Luitzen Egbertus
Jan Brouwer proved the Brouwer fized point theorem, which answers the first
question for closed disks.

Theorem. A continuous self-map on a closed disk has at least one fixed point.

In the early 1920’s, Solomon Lefschetz generalised this result by assigning
a homotopy-invariant integer L(f) (now called the Lefschetz number) to a
continuous self-map f on a compact, connected polyhedron X. He defined this
number as

dim X

L(f) = Z (71)ktr (fk,* : Hk(Xa Q) — Hk(XvQ)) .

k=0

While the Lefschetz number does not coincide with the number of fixed points
of f, it does give information on the existence of a fixed point by means of the
Lefschetz fized point theorem.

Theorem. Let f be a continuous self-map on a compact, connected polyhedron.

If L(f) # 0, then (any map homotopic to) f has at least one fized point.

Still in the 1920’s, Jakob Nielsen worked on answering the second question. In
contrast to the algebraic approach of Lefschetz, he devised a geometric way to
count the fixed points. His approach can be summarised in three steps:

1. Partition Fix(f) into fixed point classes.

2. Determine which fixed point classes are essential, i.e. they cannot vanish
under homotopies.



REIDEMEISTER-NIELSEN FIXED POINT THEORY 3

3. Count the number of essential fixed point classes.

The number of essential fixed point classes of f is now called the Nielsen number
N(f). By definition, an essential fixed point class contains at least one fixed
point, hence the Nielsen number is a homotopy-invariant lower bound for the
number of fixed points of f.

Of course, we have not yet mentioned how we partition Fix(f) and how we
determine whether or not a fixed point class is essential. Nielsen noted that,
when considering lifts of f to the universal cover X of X, that these lifts
behave very different in general, yet very similar when they are conjugate by an
element of the covering transformation group D(X). He therefore introduced
the equivalence relation on the set of lifts of f given by

firfo &= FyeDX): fi=vo0froq7h.

The fixed points of the lifts f completely determine the fixed point set Fix(f),
in a way that behaves nicely under the above equivalence:

Fix(f) = |_|p(Fix(f)),
(7]

where [f] is the equivalence class containing the lift fand p: X — X is
the covering map from X to X. The fixed point classes are exactly the sets

p(Fix(f)).

Nielsen then assigned an integer to each fixed point class, called the fixed point
index, such that the fixed point class is essential if and only if the fixed point
index is non-zero. This index is closely related to the Lefschetz number, as

illustrated by the Lefschetz-Hopf fixed point theorem, proven by Heinz Hopf in
the late 1920’s.

Theorem. Let f be a continuous self-map on a compact, connected polyhedron.
Then the Lefschetz number L(f) is the sum of the fized point indices of the fized
point classes of f.

In the 1930’s and 1940’s, Kurt Reidemeister and his student Franz Wecken
again took a more algebraic approach to studying fixed points. They noted
that, since any lift f induces an endomorphism f, : D(X) — D(X) by

fov=fi(y)of VvyeDX),

the above equivalence relation induces an equivalence relation called f.-twisted
conjugacy on D(X):

ap ~ oy = Jve D(X) Lo = ’7042.](*(7)_1'
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Thus, the number of fixed point classes of f is the same as the number of
f«-twisted conjugacy classes of D(X), which is called the Reidemeister number
R(f). Since the Reidemeister number counts both the essential and inessential
fixed point classes, it is an upper bound for the Nielsen number:

N(f) < R(f).

Twisted conjugacy can be defined for any group G and any endomorphism
¢ : G — G: we define the equivalence relation ~, by

Vg, €G:ig~yg == JheG:g=hgph) "

The number of equivalence classes is again called the Reidemeister number and
denoted by R(p). The Reidemeister spectrum of a group is the set

Specg(G) = {R(p) | ¢ € Aut(G)},
and we say that G has the R..-property if Specy(G) = {o0}.

In the 1960’s, Stephen Smale introduced the Lefschetz zeta function Ly(z) of a
self-map f, defined as

and proved that this function is rational. In the 1990’s, Alexander Fel’shtyn
defined the Nielsen and Reidemeister zeta functions of a self-map f analogously
as

Ny(z) :==exp Z N(;:n)z",
n=1

— R(") .,
Rs(z) :=exp zZ".
£(2) nz::l -
Unlike the Lefschetz zeta function, the Nielsen and Reidemeister zeta functions
need not be rational in general. Since the Reidemeister number can be defined
for any group G and endomorphism ¢, we can also define the Reidemeister zeta
function of ¢:

R,(z) :=exp Z R((pn)z".

n

Central to this thesis are the R.-property, the Reidemeister spectrum and the
Reidemeister zeta functions.
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1.2 Overview of the thesis and main results

This thesis consists of three main parts and two appendices.

Part 1. The first part forms an introduction, where we review the topics
needed to understand this thesis. In chapter 2, we give a brief overview of
Reidemeister-Nielsen fixed point theory. We mainly focus on the Reidemeister
number, both in its topological and group-theoretical setting. In chapter 3 we
define nilpotent groups, Lie groups (and algebras), crystallographic groups and
almost-crystallographic groups. Finally, in chapter 4, we mention the main
results in Reidemeister-Nielsen fixed point theory on almost-crystallographic
groups.

Part Il. The second part of this thesis focuses on the R..-property and
Reidemeister spectrum of nilpotent groups. Chapter 5 deals with the finitely
generated, torsion-free, nilpotent groups of dimension at most 4. For each of
these groups, we completely determine the Reidemeister spectrum. Chapter 6
deals with a particular subset of the finitely generated, torsion-free, nilpotent
groups, namely the free nilpotent groups. We determine the Reidemeister
spectra of the free nilpotent groups of nilpotency class 2, obtaining the following
result:

Theorem. A free nilpotent group of rank at least 4 and nilpotency class 2 has
full Reidemeister spectrum.

We also determine the Reidemeister spectra of the free nilpotent groups of rank
2 and 3. At the end of this chapter, we consider direct products of free nilpotent
groups, proving that the Reidemeister spectrum of such product is determined
completely by the spectra of its factors.

Part lll. The final part of this thesis, which is by far the lengthiest part, focuses
on the R..-property, Reidemeister spectra and Reidemeister zeta functions of
(low-dimensional) almost-crystallographic groups.

Chapters 7 and 8 each study a specific family of crystallographic groups, namely
the crystallographic groups with diagonal holonomy Z, and the generalised
Hantzsche-Wendt groups respectively. For both families, we find necessary and
sufficient conditions for a group to have the R..-property, we calculate the
Reidemeister spectra, determine when they admit Reidemeister zeta functions
and prove the rationality of these zeta functions.
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In chapter 9 we study the R..-property for low-dimensional almost-crystallo-
graphic groups. For the crystallographic groups with finite outer automorphism
group, we provide an algorithm that determines whether the group has the
Ro-property; for the crystallographic groups with infinite outer automorphism
group and the non-crystallographic almost-crystallographic groups we use ad
hoc methods. For the following groups, we determine whether or not they have
the Roo-property:

e the almost-crystallographic groups of dimension at most 4,

« the crystallographic groups of dimension at most 6 whose outer automor-
phism group is finite.

In chapter 10 we study the Reidemeister spectra of the low-dimensional almost-
crystallographic groups that do not have the R..-property, as determined
in the previous chapter. For the crystallographic groups with finite outer
automorphism group, we provide an algorithm that calculates the Reidemeister
spectrum; for the crystallographic groups with infinite outer automorphism
group and the non-crystallographic almost-crystallographic groups we again use
ad hoc methods. We calculate the Reidemeister spectra of the following groups:

o the almost-crystallographic groups of dimension at most 3,
e the almost-Bieberbach groups of dimension at most 4,
o the crystallographic groups of dimension at most 6 whose outer automor-

phism group is finite.

In chapter 11 we study the existence and rationality of Reidemeister zeta
functions of the low-dimensional almost-crystallographic groups. We determine
which almost-crystallographic groups of dimension at most 3 admit Reidemeister
zeta functions, and obtain the following result regarding their rationality.

Theorem. A Reidemeister zeta function of an almost-crystallographic group
of dimension at most 3 is rational.

Appendix. There are two appendices.

Appendix A is about isogredience, a concept closely related to twisted conjugacy.
For the following groups, we determine whether or not they have the S..-

property:

e the almost-crystallographic groups of dimension at most 3,
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¢ the crystallographic groups of dimension at most 4.

We also calculate the isogredience spectra of the almost-crystallographic groups
of dimension at most 3.

Appendix B simply contains tables that are referenced throughout this thesis,
but whose inclusion in the relevant chapters would have seriously hampered
their readability.
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Chapter 2

Reidemeister-Nielsen fixed
point theory

Given a function f : X — X on some topological space X, the goal of topological
fixed point theory is to answer the following question: “Does every map g
homotopic to f admit fixed points, and if so, how many fixed points must g
have at the very least?”. If the space X is sufficiently nice (e.g. a compact
polyhedron or manifold), we can define the integers L(f), R(f) and N(f), each
of which provides certain information pertinent to this question.

The goal of this chapter is to give a quick overview of the ideas and results
in Reidemeister-Nielsen fixed point theory. Since the focus of this thesis is on
Reidemeister numbers, we will mostly provide proofs of theorems when they are
relevant to the Reidemeister number, and omit them otherwise. The interested
reader can find more complete and more detailed expositions in [Bro+05; Jia83;
Tsa89].

2.1 The Lefschetz number

One of the first tools to study the existence of a fixed point is the Lefschetz
number. This concept was introduced by Solomon Lefschetz in a series of papers
[Lef23; Lef25; Lef26; Lef27].

11
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Definition 2.1.1. Let f : X — X be a continuous self-map on a closed,
connected polyhedron X. The Lefschetz number L(f) is defined as

dim X

L(f) == Y (~D)"tr (fin - Ho(X,Q) — Hi(X,Q)),

k=0

where f . is the induced morphism on the k-th homology group Hy (X, Q).

Note that the Lefschetz number is a generalisation of the Euler characteristic,
since L(idx) = x(X). Moreover, it is invariant under homotopy, since homotopic
maps will induce the same morphisms on the homology groups. As we already
mentioned, the Lefschetz number allows us to study the existence of a fixed
point.

Theorem 2.1.2 (Lefschetz fixed point theorem). Let f : X — X be a
continuous self-map on a connected, compact polyhedron X. If L(f) # 0,
then f has at least one fized point.

As the Lefschetz number is homotopy invariant, each g ~ f will have at least
one fixed point as well. However, the converse to the Lefschetz fixed point
theorem is not necessarily true.

Example 2.1.3. The identity map idg: on the circle S' has Lefschetz number
L(idg1) = x(S*) = 0, but obviously ids: has infinitely many fixed points.

Later, in example 4.2.2(2), we will even give an example of a continuous map f
with Lefschetz number L(f) = 0, for which every map g homotopic to f has at
least one fixed point.

2.2 Fixed point classes

Every topological space X in this section is assumed to be a connected, locally
path-connected, semi-locally simply connected topological space. Such space
admits a universal cover p : X — X. Any map is also assumed to be continuous,
and we denote the set of fixed points of a self-map f by Fix(f).

Note that throughout this thesis, we will use non-standard definitions of lifts
and of induced morphisms on fundamental groups. First, let us recall the usual
definition of the induced morphism.

Lemma 2.2.1 (see [Mun00, §52]). Let f: X — Y be a continuous map. Let
x € X and set y = f(x). Then the map

Jr 7T1(X’$) = 71'1(Y,y) : [a] = [foa]
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is a well-defined morphism.

This map is usually denoted by f,, however, we will use f, for a different (but
related) morphism, so we denote this one by f,. Let us also recall the following
lemma:

Lemma 2.2.2 (General lifting lemma, see [Mun00, Lemma 79.1]). Let p :
Z =Y be a covering map and fit y € Y and z € Z such that p(z) = y. Let
f: X =Y be a continuous map, with f(x) =y. Suppose Z is path-connected
and locally path connected.

There exists a continuous map f : X — Z such that:

e pof=F,ie the diagram below commutes,

if and only if
fr(m(X, 2)) C pr(mi(Z, 2)).

Furthermore, if such a map exists, it is unique.

=\
%TN

X

A map f as above is usually called a lift in the literature. However, our definition
of a lift will be as follows:

Definition 2.2.3. Let f : X — Y be a continuous map between two topological
spaces X, Y with universal covers X, Y respectively. Then a lift f : X — Y of
f is a map between the universal covers such that fop=po f . In other words,
the following diagram commutes:

el
AR

The existence of this lift is guaranteed by the general lifting lemma (lemma 2.2.2).
Such a lift is, in general, far from unique, until we impose some extra conditions.
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Lemma 2.2.4. Let f : X — Y be a continuous map between two path-connected
topological spaces X, Y admitting universal covers X, Y. Let z € X,y € Y
such that f(z) =y and choose any preimages & € p~1(x), § € p~*(y). Then
there exists a unique lift f of f such that f(i) =7.

Proof. Apply the general lifting lemma (lemma 2.2.2) to fop: X — Y. Since
X is simply connected, the condition for the existence of a (unique) lift is always
satisfied. 0

Definition 2.2.5. A lift of the identity map idx to X is called a covering
transformation. The group of covering transformations will be denoted by D(X).

Equivalently, it can be defined as the group of self-homeomorphisms vy of X
such that po~ = p, with p: X — X the universal cover.

Some well-known properties of lifts are the following;:

Proposition 2.2.6. Let f : X — X be a self-map and p : X — X be the

universal cover of X.

(i) For any x € X and any &, € p~'(x), there exists a unique covering
transformation v : X — X such that v(£) = &'. In fact, D(X) is
isomorphic to the fundamental group m (X, x).

(ii) Let x € X and o’ = f(x). If & € p~*(2) and &’ € p~*(2/), there exists a
unique lift f such that f(Z) = &'.

(iii) Let f be a lift of f and a, 8 € D(X). Then Bo foa™' is a lift of f.
(iv) Let f.f be two lifts of f. Then there is a unique v € D(X) such that
fr=aef.

Proof. We prove the four statements one by one.

(i) The first part of this statement is a special case of lemma 2.2.4. The
second part is exactly [Mun00, Corollary 81.4]. Rather than giving the
full proof, we will give an explicit isomorphism: consider the map

O; :D(X) - m(X,z): v~ [a],

where & = po @& is a path in X and is the projection of a path @& in X
with @&(0) = Z and &(1) = v(&).

(ii) Again, this is a special case of lemma 2.2.4.
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(iii) Using that a~! and j are lifts of the identity map, we obtain:

pofBofoat=pofoal
:fopocf1
=fop,
hence Bo foa ! is indeed a lift of f.

(iv) Let z € X and & € p~'(z). Take j = f(&) and ¢ = f’(fcz By property (i)
there exists a 7 € D(X) such that () = §’. Thus (yo f)(Z) =~(7) =7
But f'(#) = ¢’ as well. By the uniqueness in property (ii) we obtain that

yof=/[. O

If we fix a reference lift fo of f, then for any other lift f there is a unique
covering transformation 4 € D(X) such that f = o fo. This provides a
one-to-one correspondence between the set of lifts of f and the group of covering
transformations D(X).

We are interested in fixed points of self-maps. The following proposition tells
us how fixed points behave under lifts.

Proposition 2.2.7. Let f: X — X be a self-map on X, let p: X — X be the
universal cover of X and let x € X.

(i) Let # € p~Y(x). Then f(z) =2 <= f(&)€p Y(x).

(ii) f(z) =& <= for any & € p~'(x), there is a unique lifting f which
leaves T fized.

(iii) Let f be a lift of f and T € p~Y(x), such that f(&) = &. Suppose that

v € D(X). Then yo foxy~1 is the unique lift of f that has a fized point
at v(z) € p~*(x).

Proof. We prove the three statements one by one.

(i) If f(2) = a, then (po f)(&) = (f o p)(F) = f(x) = x hence f(Z) € p~" ().

Conversely, f(z) = (f o p)(7) = (po f)(#) = .

(ii) This follows immediately from combining property (i) with proposi-
tion 2.2.6 (ii).

(iii) This follows from the previous properties and proposition 2.2.6. O
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This leads us to the following definition:

Definition 2.2.8. Two lifts f; and f; of a selfmap f : X — X are Reidemeister-
equivalent if and only if there exists some v € D(X) such that f; =~yo faoy~ L

The equivalence classes (denoted by [f]) are called lifting classes, and the
number of such classes is called the Reidemeister number R(f).

There is a close connection between these lifting classes and the fixed points of
a self-map.

Theorem 2.2.9. Let f: X — X be a self-map, p : X — X be the universal
cover of X and f, " be lifts of f. Then:

(i) Fix(f) = | p(Fix(F)),
f

(i) [f] = [J'] = p(Fix(f)) = p(Fix(f"))

(iii) [f] # [f'] = pEFix(f) NpFix(f)) = 2.
Proof. All of this follows from proposition 2.2.7 (ii) and (iii). O

This leads naturally to the definition of (Nielsen) fixed point classes, which were
introduced by Jakob Nielsen [Nie24; Nie27].

Definition 2.2.10. The subset p(Fix(f)) of Fix(f) is called a fired point class

of f, determined by the lifting class [f] of f. The number of fixed point classes
is called the Reidemeister number of f, denoted by R(f).

Of course, we had already defined the Reidemeister number as the number of
lifting classes of f. But since the number of lifting classes is the same as the
number of fixed point classes, both definitions are equivalent.

We may restate theorem 2.2.9 as follows:

Theorem 2.2.11. Let f : X — X be continuous. Then

Fix(f) = UP(FIX(JF))
(7]

It may be tempting to interpret this theorem as saying that the fixed point
classes form a partition of the set of fixed points. However, there is a small but
important caveat: some fixed point classes may be empty. It is imperative to
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note that an empty fixed point class is still counted as a fixed point class, i.e.
the Reidemeister number also counts the empty fixed point classes.

The following theorem provides a more intuitive understanding of what it means
for two fixed points to belong to the same fixed point class.

Theorem 2.2.12. Let f : X — X be a self-map, p: X — X be the universal
cover of X and x,x’ € Fix(f). Then x and x’ belong to the same fized point
class if and only if there exists a path ¢ in X from x to 2’ such that

focy,c

i.e. ¢ is path-homotopic to its image under f.

Proof. Let x be a fixed point of f that belongs to the fixed point class p(le(f))
of a lift f. Then there exists some # € p~'(z) such that f(Z) = #. Let 2’ be
another fixed point of f.

First, let us assume that z and 2’ belong to the same fixed point class, i.e.
2’ € p(Fix(f)). Take #’ € p~'(2') such that f(i’) = #’ and choose some path
¢in X from # to #/. Then the path f o is also a path from # to #’ and is
path-homotopic to ¢, since X is simply connected. Let ¢ = p o & which is then
a path from x to 2’ in X. We have that

c=poéy,po(foé)=(pofloé=(fop)oé=foc.

Conversely, let ¢ be a path from z to 2’ which is path-homotopic to its image
under f, and let ¢ be the lift of ¢ that starts at #. Since ¢ ~, f o ¢, we must
have that ¢ and f o & both end in the same terminal point &’ € p~!(z’). Hence
f(@) =&, thus z’ € p(Fix(f)). O

At this point, one may wonder why the theorem above is not used as the
definition of a fixed point class. The reason is that this theorem does not
account for the existence of empty fixed point classes, and as we will show later,
the number of non-empty fixed point classes is not a homotopy invariant. The
number of all fixed point classes, including the empty ones, is.

Theorem 2.2.13. The Reidemeister number R(f) is a homotopy invariant.

Proof. Let f,g: X — X be self-maps and let H = {ht}ter : X x I — X be
a homotopy between f and g. Since p x id : X x I — X x I is the universal
cover of X x I, we may consider lifts H = {ht}te 1 of H such that the following
diagram commutes:
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XXILX

LDX id lp

XxI -2, x

This means that for every ¢t € I, h; must be a lift of h;. Because lifts are unique
once we fix a pair of points, H is uniquely determined once we fix ho = f , and
in particular 7y = § will be uniquely determined. The same reasoning can be
done for the inverse homotopy H ! = {h1_;}+er, hence H induces a one-to-one
correspondence between the lifts of f and g.

Now, if H = {ﬁt}ze] is a homotopy between f and g, then for every v € D(X)
we have that {yoh; oy} is a homotopy between yo foy™! and yogoy~!.
Thus, the one-to-one correspondence preserves the lifting classes and hence

R(f) = R(g). 0
The example below illustrates that, while the Reidemeister number is invariant
under homotopies, the (non)-emptiness of a fixed point class is not.

Example 2.2.14. Consider the unit circle S', and represent points of the circle
by the angle 6 € [0,27). The universal cover of S is given by

p:R — St tmod 2n.

Consider the map
f:8' =80 0+ emod 2m,

where € is small. Then f is homotopic to idg:, and an explicit homotopy is
given by
= {hi}rer : ST x T — S : (0,t) — 0 + te mod 27.

If we take the lift

H={h}ier :RxT—=R:(0,t) = 0+te,
we find that p(Fix(ho)) = S! but p(Fix(h;)) = &
We conclude this section by discussing the topological properties of fixed point
classes, which will be important for the next section on fixed point indices.
Proposition 2.2.15. Fvery fized point class F of a self-map [ is open and
closed in Fix(f).

Proof. We will start by proving that a fixed point class F is open in Fix(f).
Let x € F and let V be a neighbourhood of x such that every loop with base
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point z is path-homotopic (in X) to the trivial loop at . Now take an open
neighbourhood U, C V N f~1(V) of z that is path-connected. We claim that

F= (U Ux> NFix(f) = | J (U NFix(f)).

z€F z€F

It suffices to prove that if y € U, N Fix(f) for some = € F, then y € F. Because
U, is path-connected, there exists some path ¢ in U, C V from z to y. Then
focisapath from x to y in V' as well. By the definition of V', ¢ and f o c are
path-homotopic in X, and by theorem 2.2.12 x and y belong to the same fixed
point class.

Next, we prove that a fixed point class F is closed in Fix(f). Consider the open
set U defined as
U .= U U,.
zeFix(f)\F

Now F is exactly the intersection of Fix(f) and the complement of U. O

Proposition 2.2.16. If X is Hausdorff, then Fix(f) is closed in X for any
self-map f: X — X.

Proof. Since X is Hausdorff, the diagonal Ax := {(z,z) | z € X} is a closed
subset of X x X. But Fix(f) = (f x id)"*(Ax). O
Corollary 2.2.17. If X is compact and Hausdorff, then the number of non-
empty fized point classes of a self-map f: X — X is finite.

Proof. For any = € Fix(f), let the set U, be as in the proof of proposition 2.2.15.
For any fixed point class [F, we define the open set Up as

Us == | Us.
x€elF

Consider the open cover of X given by X \ Fix(f) and all the open sets Ur. By
compactness of X, this covering must have a finite subcover, hence only finitely
many of the sets Ur can be non-empty. O

2.3 Fixed point index

In the previous section, we have introduced fixed point classes, and we have seen
that the emptiness of a fixed point class is not a homotopy invariant. Moreover,
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a fixed point class could also contain more than a single point, meaning that so
far these fixed point classes tell us very little about the number of fixed points.

In order to study fixed point classes in more detail, we will assign an integer
to each of them, called the fixed point index. We will take the approach from
[FPS04], which is to introduce this index as the unique function satisfying
certain properties, though we will also briefly mention the original construction.

Throughout this section, let X be a connected, Hausdorff, second-countable
smooth manifold.

Definition 2.3.1. Let U be an open subset of X. The pair (f,U) is called
admissible if Fix(f,U) := Fix(f) N U is compact in X. Denote the set of all
admissible pairs on X by A(X).

Let H : X x I — X be a homotopy with H(z,0) = fo(z) and H(z,1) = f1(z)
for all x € X. We call H admissible in U if the set

{(z,t) e U x I | H(z,t) = z}

is compact in X x I.

We can now define the fixed point index.
Theorem 2.3.2. There exists a (unique) function Ind : A(X) — 7Z satisfying
the following:

WEAK NORMALISATION
If f: X — X is a constant function, then

Ind(f, X) = 1.

ADDITIVITY
Let (f,U) be an admissible pair and Uy, Us disjoint subsets of U such that
Fix(f,U) C Uy UUs,. Then

Ind(f,U) = Ind(f,Uy) + Ind(f, Us).

HOMOTOPY-INVARIANCE
If H is an admissible homotopy on U between functions fy and f1, then

Ind(an U) = Ind(fl, U)

Proposition 2.3.3. The function Ind as defined above satisfies the following
properties:
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EMPTY SET
Ind(f, @) = 0.

SOLUTION
If (f,U) is admissible and Ind(f,U) # 0, then Fix(f,U) # @.

EXCISION
If V is an open subset of U containing Fix(f,U), then

Ind(f,U) = Ind(f,V).

COMMUTATIVITY
Let X, Y be connected manifolds and f : X =Y, g:Y — X be continuous
maps such that (go f,U) is admissible. Then (fog,g=1(U)) is admissible
as well, and

Ind(go f,U) = Ind(f o g, g~ (U)).

STRONG NORMALISATION
Let X be compact, then

Ind(f, X) = L(f).

We can now define a (more or less) new function Ind which assigns integers to
pairs consisting of a function and a fixed point class, rather than to admissible
pairs. However, we will need to assume that the space X is compact.

Any fixed point class F is an open subset of Fix(f), hence there exists an open
U C X such that F = Fix(f) N U. At the same time, F is closed in Fix(f) and
hence in X, and therefore it is compact (by compactness of X). We then define

Ind(f,F) := Ind(f,U).

Note that this definition is independent of the choice of open set U. Indeed,
if V' is another open subset of X such that F = Fix(f) NV, then also F =
Fix(f) N (UNV), and by the excision property we have

Ind(f,U) = Ind(f,UNV) =1Ind(f,V).

The original construction of the fixed point index used the degree of maps on
spheres, see [Bro71; Jia83]. For completeness’ sake, we will give the construction
below. Let z € Fix(f) be an isolated fixed point. Because X has a manifold
structure, there exists an open neighbourhood U > z such that

e U, f(U) lie completely in the image of a chart ¢ : V C R" — X



22 REIDEMEISTER-NIELSEN FIXED POINT THEORY

e U, f(U) do not contain any other fixed points.

Then f' ="' o fo1 is a function =1 (U) C R® — R™. Now pick a sphere
Sgill(x) C ¢~ 1(U) centred around ¢ ~!(z), and define

y— ')

ly = W)l

The index Ind(f,x) of the fixed point z is then defined as the degree of this
map.

of: S:Zill(x) =Sy

We conclude this section with the Lefschetz-Hopf fixed point theorem, which
follows from the additivity and strong normalisation properties of the fixed
point index.

Theorem 2.3.4 (Lefschetz-Hopf fixed point theorem). Let f : X — X be a
self-map on a compact space X. Then

L(f) = _Ind(f,F).

2.4 The Nielsen number

Because the fixed point index has the solution property, it allows us to make
statements about the existence of fixed points. We can now define the Nielsen
number N(f) of a self-map f which, unlike L(f) and R(f), tells us something
about the number of fixed points.

Definition 2.4.1. A fixed point class F is called essential if Ind(f,F) # 0, and
inessential otherwise. The Nielsen number N(f) of f is the number of essential
fixed point classes.

Since every essential fixed point class must contain at least one fixed point (the
solution property), we have the following theorem:

Theorem 2.4.2. The Nielsen number N(f) is a lower bound for the number
of fized points of f, i.e. N(f) < Fix(f).

By corollary 2.2.17, the number of non-empty fixed point classes is necessarily
finite, and thus the number of essential fixed point classes is finite as well.

Proposition 2.4.3. The Nielsen number is finite.
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We have shown before that the number of (non)-empty fixed point classes is not
a homotopy invariant. However, it can be shown that the number of (in)essential
fixed point classes is a homotopy invariant.

Theorem 2.4.4. The Nielsen number is a homotopy invariant, i.e. if f ~ g,
then N(f) = N(g).

The proof is non-trivial and can be found in e.g. [Jia83]. We will give a basic
idea of the proof.

Idea of proof. Let H = {hi}te; : X x I — X be a homotopy with hy = f
and h; = g, and let Fy, F; be fixed point classes of f and g respectively
corresponding through H. We will extend H to the fat homotopy

Hpgr : X xI = X x1:(z,t)— (H(x),1).

Because H preserves the lifting classes, there exists a fixed point class F of H
such that Fy and F; are exactly the 0— and 1—slices of F.

We know there exists some open set U C X x I such that F = Fix(Hq) NU.
Define U; and F; as the t-slices of U and F respectively, then F; = Fix(h;) N U,
is a fixed point class of h;. By “squeezing H into a thin map resembling h;”
(see [Jia83, Corollary 3.10]) we obtain that

Ind(he,Fy) = Ind(Hyqe, F) for all t € 1.
In particular, setting t = 0, 1, we find that
Ind(f,Fo) = Ind(H e, F) = Ind(g, Fq).

Thus, homotopies preserve the index of a fixed point class, and in particular
whether or not a fixed point class is essential. O

Corollary 2.4.5. The Nielsen number N(f) is a lower bound for the number
of fized points of every g ~ f:
N(f) < min# Fix(g).

g=f

Often, the Nielsen number is a sharp bound, as proved by Wecken [Wec42].

Theorem 2.4.6. Let f : X — X be a continuous self-map on a compact,
connected manifold X with dim(X) > 3. Then there exists a self-map g ~ f
such that

N(f) = N(g) = #Fix(g).
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2.5 The Reidemeister number

In the previous sections, we defined an equivalence relation on the set of lifts of a
self-map f : X — X. Moreover, we showed there is a one-to-one correspondence
between the set of lifts and the group of covering transformations D(X). Hence,
this equivalence relation induces induces an equivalence relation on D(X) using
this one-to-one correspondence. This approach was first suggested by Kurt
Reidemeister in [Rei36].

Lemma 2.5.1. Fiz a reference lift fo of a self-map f : X — X. Then f
induces an endomorphism f. on D(X) given by

fe(Wofo=foor

for all v € D(X). The choice of reference lift fo determines f. up to an inner
automorphism of D(X).

Proof. The existence of f. is given by part (iv) of proposition 2.2.6. Now let fo
and fo be two reference lifts with induced maps fx, f. respectively. Then for
some o € D(X), we have f; = a0 fo. For every v € D(X) we then have that

f() fo foO’Y

and thus R ~
filv)oao fo=aofyon.
Rearranging this slightly, we obtain
o fl(v)eao fo=foor.

Thus, for every v € D(X) we have a~to fl(y)oa = f.(7), and hence f. = 14 f+,
where ¢, € Inn(D(X)) is the inner automorphism

la :D(X) = D(X):y—aoyoat. O
There is a natural link between f, and any f, defined from lifts. To

make this more concrete, recall the group isomorphism between the covering
transformations and the fundamental group we mentioned in proposition 2.2.6:

Oz : D(X) —» m(X,z) : v o],

which depends on the choice of # € p~1(z).
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Proposition 2.5.2. Let f be any lift of f, choose & € p~(x) and set
Now let f, be the endomorphism on D(X) induced by f. Then

cbﬂof*:fwoqjiv

i.e. the following diagram commutes:

D(X) —L— D(X)

z”l‘bi’ Z\Il‘l’g

m(X,7) — m(X,y)

Proof. Let v € D(X). Its image under ®; is [a], where

e o =poa for some path & in X,
e a(0)=2
« a(l) =7(7)

On the other hand, (®5 o f.)(7) = ®5(f«(7)) = [], where

. ﬁ:poB for some pathB in X,
(0) =7,
e B() = f.(N@)-

oW

= f(®).

Thus, f o @ and f3 are two paths in X from § to f,(7)(7), and must therefore

be path-homotopic, and hence [f o a] = [5].

O

Definition 2.5.3. Two elements «, § € D(X) are f,-twisted conjugate if and

only if there exists v € D(X) such that
a=pf. (7)71

Just like the usual notion of conjugacy, this is an equivalence relation. The

number of equivalence classes is called the Reidemeister number R(f.).
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We show that this is indeed the equivalence relation induced by the equivalence
relation on lifts.

Proposition 2.5.4. Letfl,fg be two lifts of a self-map f: X — X and fo be
a reference lift such that f; = a; o fo fori = 1,2, with a; € D(X), and let f. be
the endomorphism on D(X) induced by fo. Then

f1 ~ f2 — Q1 ~y, Qag,
and hence R(f) = R(f.).

Proof.
lefz <~ Oé10f0N0420f0

— FyeDX):a10fo=voazo fooy !

> FyeDX):arofy=70az0 fu(y) " o fo
= T eDX): a1 =yoazo fu(y)7!
— Qq ~f, Q9. O

2.5.1 Group-theoretic Reidemeister number

Definition 2.5.3 gives a purely algebraic definition of the Reidemeister number.
In fact, there is no real reason to only define the Reidemeister number for
endomorphisms on fundamental groups induced by self-maps.

Definition 2.5.5. Let G be a group and ¢ : G — G an endomorphism. Define
an equivalence relation ~, on G by

Vg, €G:g~yg < FhEG:g=nhg'oh)
The equivalence classes are called Reidemeister classes or twisted conjugacy
classes, and we will denote the Reidemeister class of g under the endomorphism
¢ by [g],. The set of Reidemeister classes of ¢ is denoted by 9i(¢). The
Reidemeister number R(p) is the cardinality of () and is therefore always a
positive integer or infinity.

Definition 2.5.6. Let Aut(G) be the automorphism group of a group G. We
define the Reidemeister spectrum as

Specp(G) = {R(p) | ¢ € Aut(G)}.

If Specr(G) = {oo} we say that G has the R -property, and if Specy(G) =
N U {oco} we say G has full Reidemeister spectrum.
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Similarly, we can define such spectrum for endomorphisms:

Definition 2.5.7. Let End(G) be the set of endomorphisms of a group G. We
define the extended Reidemeister spectrum as

ESpecy(G) = {R() | ¢ € End(G)}.

If ESpecy(G) = NU {oo} we say G has full extended Reidemeister spectrum.

For any group G, 1 € ESpecy(G), since the Reidemeister number of the trivial
endomorphism g — 1 is 1. Let us provide some examples.

Example 2.5.8. Let G be a finite abelian group and ¢ € End(G). Then for
any two elements g, g’ € G, we have

gro g = JheG:g=h+g —oh)
< FheG:g—g = (id—p)(h)
< g—g¢ €im(id —¢).
Thus, for the Reidemeister number R() we find that
R(p) = #(G/im(id —¢))
= #G/#im(id —p)
= #ker(id —¢)
= # Fix(p).

If G = Z,, with p > 2 prime, then any endomorphism ¢ is completely determined
by the image of 1. We have three cases:

(1) = 0. This is the trivial endomorphism, which only fixes 0, hence
=1

(¢)

(2) ©(1) = 1. This is the identity, which fixes every element, hence R(p) = p.

=6

(3) o(1) =k, with 1 < k < p. If p(x) = z, then (k — 1)x = 0 mod p, hence
either x = 0 or k = 1. Since we excluded the latter case, 0 is the only
fixed point and R(p) = 1.

Thus, we have that Specy(Z,) = ESpecy(Z,) = {1, p}.
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To simplify notation in the next example (and the remainder of this thesis), we
introduce the following map:

| Joo : Z = NU{oo} iz |x]oo = {|x| fo?éo’

oo ifx=0.
Example 2.5.9 (see [Bro+75]). Let G =Z" and D € Z™*"™ an endomorphism.
Just like in the previous example, R(¢) = #(Z"/im(1,, — D)). The Smith
normal form of 1,, — D is a diagonal matrix with a1, as,...,ax,0,...,0 on the
diagonal for some k < n, a; # 0. Then

2" im(l, — D) =2 Ly, ® Loy ® - S Ly, ®Z"F,

and hence R(D) = |det(1,, — D).

The following lemma is pivotal in determining the R..-property of many groups.

Lemma 2.5.10 (see [Hea85, Theorem 1.8], [KLLO05, §2], [GW09, Lemma 1.1]).
Let N be a normal subgroup of a group G and ¢ € End(G) with ¢(N) C N.
We denote the restriction of ¢ to N by ¢|n, and the induced endomorphism on
the quotient G/N by ¢'. We then get the following commutative diagram with
exact rows:

1 N~ G-+ G/N 1
JfPlN ® prl
1 N~ a5 G/N 1

Note that, if p and @|n are both automorphisms, then ¢’ is an automorphism
as well. This diagram induces the following exact sequence of pointed sets:

1 —— Fix(p|y) —55 Fix(p) 25 Fix(p')

)

R(pln) —— R(p) —— R(Y) 1

where all maps are evident except &, which is defined as 6(gN) = [gp(g9) ]
We obtain the following properties:

o|n-

(1) R(p) > R(¢"),
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(2) if R(p|n) = 00 and |Fix(¢')| < 0o, then R(p) = oo,
(3) if R(¢|n) < o0, R(¢') < oo and N C Z(G), then R(p) < R(¢|n)R(¢").

Proof. Proving that the diagram commutes and that it has exact rows is
straightforward. For the cohomological background of the exact sequence, we
refer to [FT15, Section 2.2].

The only map that is not obviously well-defined, is §. Consider the natural
action of Fix(¢") on R(p|y) given by
gN - [n]CPlN = [gn‘P(g)_l]ap\N

Since
p(gnp(g)™") = gN - ¢'(gN)~! = 1N,

we have that gny(g)~t € N. Moreover, if ¢’ N = gN, then g = n’g’ for some
n’ € N. Hence

[gne(9) Mo = [ g'np(g") M eln () gy = [9'ne(d)  olns

so this action is well-defined. We can write 0 in terms of this action as §(gIN) =
gN - [1]gy» hence 0 is well-defined.

Next, we prove the exactness of the sequence step by step.

(1) ipix is injective and im(ipix) = ker(prix). These follow readily from the
exactness of the diagram.

(2) im(prix) C ker(d). Let gN € im(prix), then we may assume that ¢(g) = g.
So
3(gN) = lge(9) eln = 997 Toln = [Wgln
therefore gN € ker(9).

(3) im(prix) 2 ker(d). Let gN € ker(d), then [go(g) oy = [1py- This
means there exists some n € N such that ngp(g)~to|n(n)~! = 1, which
is equivalent to ng = ¢(ng). Then ng € Fix(p) and prix(ng) = gV, thus
gN € im(prpix).

(4) im(0) C ker(?). Let [n
that [n],)y = [9¢(9)~

W([n)gy) = [g90(9) ein) = l92(9) "o = [

thus [n],|, € ker(2).

€ im(9), hence there exists gN € Fix(¢') such

Joln
Yot~ Then
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(5) im(0) D ker(2). Let [n],), € ker(i), then

i([n}@m) = [n}tp = [1]907
so there exists some g € G such that gp(g)~! = n, or equivalently

©0(g) =n"1lg. Then ¢'(gN) = gN and

5(gN) = [g0(9) ey = [Mlgln

therefore [n],, € im(J).

(6) im(?) = ker(p) and p is surjective. Again, these follow readily from the
exactness of the diagram.

Finally, we prove the 3 properties:

(1) This follows from p being surjective,

(2) Since R(p|n) is infinite and Fix(y’) is finite, the action of Fix(y’) on
R(p|n) divides the latter into infinitely many orbits. However, two
elements [n],, and [n],|, belong to the same orbit if and only if i(n) ~,
i(n'), thus R(p) must be infinite.

(3) Let
E)%(<)0|N) = {[nl}éﬂz\f’ [n2]@\N7 Tt [nR(@|N)]<P|N}7
m(w/) = {[glN]QO’? [gQN]go’v ey [gR(cp/)N]ap’}
Let g € G, then gN € [g; N], for some i, so there exists some hN € G/N
such that

gN = hN - g;N - <p’(hN)71 = hgigo(h)le.
Hence there exists some n € N such that
g = hgip(h) " 'n.

In turn, n € [n;] for some 7, hence there exists an m € N such that

eln
n = mngpln (m) ™

Since n,m € N C Z(G), we obtain
9= hgip(h)~'mn;p|n(m) ™" = (hm)(gin;)e(hm) ™",

therefore g € [gin;],. Since this is true for arbitrary g € G, we obtain
that R(p) < R(¢|n)R(¢"). O
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Note that in the above lemma, if the group G is abelian, then all of the sets of
Reidemeister classes are abelian groups as well, and the exact sequence becomes
an exact sequence of groups. This is used in the following example.

Example 2.5.11. Let G be a finitely generated abelian group and ¢ € End(G).
Then G = Z" @ 7(G) where 7(G) is the (fully characteristic) torsion subgroup,
hence we get the commutative diagram

1 — 7(G) —— ¢ 2 zn 1
J{‘P‘T(G) 12 Lﬂ/
1 — 7(G) —— @ L zn 1

The induced endomorphism ¢’ on G/7(G) = Z™ is given by some matrix
D e 7"*™. Since R(¢') = |det(1,, — D)|c, we have that

R(¢') < 00 < det(l,, — D) #0 < Fix(¢’) = 1.

First, consider the case where R(¢’) = co. Then R(p) = oo as well due to
the first property in lemma 2.5.10. Second, let R(p’) < oo. Then the exact
sequence becomes

1 —— R(pla) —— Rlp) —— R(Y) 1

However, since G is abelian, all of these sets of Reidemeister classes inherit the
(abelian) group law from G, and hence this is an exact sequence of finite groups.
In particular, we have that

R(p) = R(¢|@))R(¥).

The same result actually holds for any group of the form G = Z"™ @ 7(G) with
7(G) any finite (not necessarily abelian) group, see [Fel00, Proposition 3].

Corollary 2.5.12. Let N be a characteristic subgroup of G. If either

(1) the quotient G/N has the Ro.-property, or
(2) N has finite index in G and has the Roo-property,

then G has the Ro.-property as well.

Proof. This follows from property 1 in lemma 2.5.10. O
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The following proposition is well-known, see for example [KLLO05, Lemma 2.1].
However, identity (3) is usually proven only for an endomorphism f, on a
fundamental group induced by a self-map f, since the proof is topological in
nature. We will provide a purely group-theoretic proof.

Proposition 2.5.13. Consider the situation from lemma 2.5.10. Let g € G
and 14 its corresponding inner automorphism. Then we have the following exact
sequence of pointed sets

1 —— Fix(¢q0|n) LN Fix(eq¢) LN Fix(tgn¢’)

R(tgpln) — R(egp) — Regny') —— 1
from which we obtain the following identities:

(1) #p~ ' ([gN]yr) = #im (i),

(2) R(p) = > #im(i,),
[gN]

(3) #i7 ([nl.ye) = [Fix(egn @) = Prg(Fix(tngp))],
(4) [G:N]= #[QN]LQNW ) #FiX(LgNWI)-

Proof. We will prove this item per item. When g = 1, the maps ; and p; equal
the maps 7 and p from lemma 2.5.10 respectively.

(1) First, note that #p~"([gN]yr) = #p, " ([LN],, ) because
Wy €52 (gN)y) = [hN]y = [gN],»
< 3k € G:hN = kgp(k)"'N
< ke G:hg !N =kgp(k) 'g”'N
= [hg" ' N]iywer = [IN], ner
= [hg ™ ipp €5y (N yner).

By exactness, p; ' ([1N],,y,r) = im(iy).
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(2) Because p is surjective, we have the disjoint union

Rp) = || " ([gN]y).

[gN],r

Applying (1), we get

Rip)= > #p '([gN]p) = > #im(i,).

[gN],r [gN],r

(3) #ig " ([n]iye0) = #ing ([1].,,0), because

A

[m]u,0in €05 (In]ye) = (M, = [0,
= I eG:m=kn(p) (k)"
< FkeG:mn ! =kn(,p) (k) 'nt
= e = Wy
= [mn ey € g ([Wige)-
By exactness, 2,7 ([1],,,¢) = im(d,g). Now note that

ng

ng(MN) = 6pg(haN) <= [h1(tngep)(h1) "]

Lng‘PlN -

[h2(5n9§0)(h2)71}bnwlw
< IMEN : hi(tngp)(hy) =
mh(tngp) (h2) ™ (tngtp) (m)
— Im e N:hy'm hy € Fix(tngp)
> hy'MN € pug(Fix(tngp))-

Therefore, #im(d,y) = [Fix(tyn¢’) : Png(Fix(tngp))], from which the
result follows.

(4) The quotient group G/N acts transitively on [gN],, o by
hN - [gN],ne = [hgp(h) I N, yer-

The result then follows from the orbit-stabiliser theorem. O
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We can now prove the following inequalities.

Proposition 2.5.14. Let G be a group with finite index normal subgroup N,
and ¢ an endomorphism such that p(N) C N. Then we have

ZR Lg‘P|N ZR Lg@‘N

Proof. From proposition 2.5.13 we can deduce that

= ) #im(i,)

[gN],

-y ¥ o

[gN]¢’ [”]ngeim(ig)

1 1
_921\;#[91\7]4:/ X F i .

["]ng\N

#png FIX(LngSD))
2 2 FLNL, R R

Lq«P\N

- m%z > #png(Fix(tag)).

gN [n]g0)y

Clearly #png(Fix(Lngap)) > 1, hence

RO Z D 2. ! ZR g9In).

gN [77/ tgeln

On the other hand, #pyq(Fix(tng)) < [G : NJ, hence

R(y

= Rlgeln). O

low [n]WN

Corollary 2.5.15. Let G be a group with finite index normal subgroup N, and
© an endomorphism such that ¢(N) C N. Then we have

R(p) =00 <= JgN € G/N such that R(tg¢|n) = 00

The following formula is often called the averaging formula.
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Proposition 2.5.16. Let G be a torsion-free group with finite index normal
subgroup N; and let ¢ be an endomorphism such that @(N) C N and
Fix(tq¢|n) =1 for all g € G. Then we have

R(o) = 7 ?N] > R(1g¢ln)-

Proof. Consider eq. (2.1): it suffices to show that Fix(t4¢) =1 for all g € G.
Suppose that h is a fixed point of ¢4¢. Because G/N is finite, there exists some
k € N such that h*N = 1N, and therefore h* € N. But then (:,¢|n)(h*) =
(t40)(h)* = h*. Because 1 is the only fixed point of 4|y, this means that
h* =1, and because G is torsion-free, h = 1. O

A similar result is the following, often called the addition formula.

Proposition 2.5.17 (see [Won01, Proposition 1]). Let G be a group with finite
index normal subgroup N ; and let ¢ be an endomorphism such that o(N) C N
and Fix(vgng') =1 for all g € G. Then we have

R(p) = Y R(gln)-

[gN],

Proof. Consider proposition 2.5.13(2). If Fix(tgn¢’) = 1 for all g € G, then
#im(iy) = R(tg0|N)- O

Lemma 2.5.18. Let G = G1 X Gy be a direct product where both G1 x {1} and
{1} xGs are (fully) characteristic subgroups. Then Aut(G) = Aut(G1)x Aut(G2)
(End(G) =2 End(G1) x End(Gs)), and for any automorphism (endomorphism,)
© = @1 X @3 we have R(p) = R(p1)R(p2). Hence Specy(G) = Specr(Gh) -
Specr(G2) (ESpecy(G) = ESpecy(G1) - ESpecy(G2)).

Proof. Tt is straightforward to work out that the map

R(p) = Rlpr) x Rlep2) : [(91,92)lp = ([91]615 [92]02)
is a bijection. The result follows immediately. O
We give a lemma that gives equality of Reidemeister numbers of different
endomorphisms of the same group.

Lemma 2.5.19 (see [FLT08, Corollary 3.2]). Let G be a group and let o1, @2 €
End(G). If either of the following holds:
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(1) 3 € Inn(G) such that o1 = @301,
(2) 3 € Aut(G) such that 1 =1p o pyohp™1,

then R(v1) = R(p2).
Proof. We will prove this case by case.

(1) There exists some g € G such that «(h) = ghg™! for all g € G. Let
x ~,, Y, then there exists z € G such that

-1 -1

z = zyp1(2) " = zypa(929g ") = 297 gypa(gzgTt)

Multiplying on the left by g we get

gz = (9297") (9y) p2(g9zg ") 7",

hence the map
9:R(p1) = R(p2) : [z]g, = g2l
is a well-defined bijection, and R(p1) = R(p2).

(2) Let z ~, y, then there exists z € G such that
v =zypi(2) 7 = 2y oo™ )(2) 7
Applying 1! to both sides gives us
Y x) =T (YT ()2 (0T (2)) T
thus ¢~ (z) ~p, ¥~ (y). Hence the map
b R(p1) = R(pa) : [tlpy = [0 (@)

is a well-defined bijection, and then R(y1) = R(y2). O

2.6 Dynamical zeta functions

Inspired by the Hasse-Weil zeta function of an algebraic variety over a finite
field, in [AM65] Artin and Mazur defined the zeta function of a map f: X — X
on a topological space X as
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F(™)
n

Fi(z) :=exp Z
n=1

where F(f™) is the number of isolated fixed points of f™. For axiom A
diffeomorphisms on a compact manifold, this zeta function was shown to be
rational [Man71], while in general it need not be, see for example [BL70].

Definition 2.6.1. Let us use (,(z) to denote a zeta function of the form
> a
— n n
Ca(z) = e){png1 L
We say that (,(z) is determined by the sequence a = (ay)nen.

We are particularly interested in when a zeta function (,(z) is rational, since
this means that the infinite sequence of coefficients (a,)nen is determined by a
finite set of complex numbers, i.e. the zeroes and poles of (,(2).

When we say that a zeta function is rational, we actually mean that there
exists a positive radius of convergence on which the power series converges to a
rational function. The power series

9]
n=1

with b € C, has radius of convergence 1/|b| if b # 0 and converges on the entire
complex plane otherwise. The following lemma makes use of this to explicitly
give a link between the rationality and the zeroes and poles.

n

(=

2" = —log(1 — bz),

= |

Lemma 2.6.2. A zeta function (,(z) is a rational function if and only if there

exist complex numbers A1, Aa, ..., Ak, b1, 2, - - -, iy such that
1 k
=30 - SN
j=1 i=1

for all n € N. In particular, the numbers 1/X; and 1/p; are exactly the zeroes
and poles of (,(z) respectively.

Proof. If (,(z) is a rational function, it is of the form

15, (1 Ni2)

“O T )

)
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since (,(0) = 1. Taking the logarithmic derivative, we get

d d (1= Nz
7, [08Ga(2) = -~ log M
Hj:l(l — Wj2)

k !
Zlog(l —\iz) — Zlog(l — [4;%)
i=1 j=1

k
_ Z Ai + i
~ 1— Xz = 1— 2

k oo l
— _ E 2 )\nzn 1 2 § ! anl
i=1n=1 j=1n=1
oo l k

Sour = Yo | e
j=1 i=1

n=1

which must equal

d d & non e
) = 3 = Y

The converse follows from a direct calculation. In particular, the radius of
convergence 7 is given by

1
B max{‘)‘1|7"'v‘)‘k|7 |/1'1|7'~'v|:u'l|}.

It is easy to prove the following corollary using this lemma.

Corollary 2.6.3. Consider two zeta functions

> an o, > bn .,
Ca(2) 7exp; ?z &(2) 7expn§1 ;z ,

and their additive convolution
(Ca* &)(z —epo anbn .

If {, and &, are rational, then so is (g * &p.
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Inspired by the Artin-Mazur zeta function, Smale introduced the Lefschetz zeta
function [Sma67] as

o L(f™)
L = "
7(z) ==exp Z p—
n=1
Smale immediately proved the following:
Theorem 2.6.4. Let f: X — X be a map on a compact polyhedron X. Then
the Lefschetz zeta function Ly of f is rational.
Proof. We know that

dim X

L(f") = Y (~D)'tr(f] : Hi(X,Q) — H;(X,Q)).

=0

Since the homology groups H;(X,Q) are finite-dimensional vector spaces over
Q and the f,; are linear maps, we may express the Lefschetz numbers L(f™) in
terms of the eigenvalues of f; .:

L(f") =) ap = b,
k l

where ay, b; € C are the eigenvalues. The result now follows from lemma 2.6.2.
O

Fel’shtyn defined the Nielsen zeta function of a self-map f analogously as

NG
n )

Ny(z) :==exp Z
n=1

and proved that it has positive radius of convergence [Fel88; FP85]. Unlike the
Lefschetz zeta function, the Nielsen function need not be rational in general.
The question of whether or not a Nielsen zeta function is rational has been
studied recently in various papers, e.g. [DD15; DTV1S; Fel01; Li94; Rom11].

In [Fel91], Fel’shtyn defined the Reidemeister zeta function of a self-map f as
oo
R(f™)
R = "
7(z) ==exp nzz:l —

He also defined the same Reidemeister zeta function for Reidemeister numbers
of group endomorphisms.
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Definition 2.6.5. Let ¢ be an endomorphism of a group G, such that R(¢™) <
oo for all n € N. Then we can define the Reidemeister zeta function of ¢ as

o R n
R,(z) :=exp Z (:f )z"
n=1

Note that a Reidemeister zeta function of a self-map f or an endomorphism ¢
only exists if the Reidemeister numbers R(f™) or R(¢™) are finite for all n € N.

Example 2.6.6 (see [FH94, Lemma 5]). Let G be a finite abelian group and
¢ € End(G). We call g € G periodic if there exists some k € N such that
©*(g) = g, and we define its p-periodic orbit by

l9] == {g,¢(9),....¢" " (g)}.

In example 2.5.8, we have shown that R(¢") = # Fix(¢™). But an element
g € G is a fixed point of ¢™ if and only if it is periodic and #][g]|n, hence

R = 3 #g)
#ll

We can then calculate the Reidemeister zeta function of ¢ as

R, () :expz Z @z"

= Hexp (f log(1 — z#[gl)>

lg]

“1I 1

B 1— Z#[g] ’
lq]

which is rational and has radius of convergence 1.
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Example 2.6.7 (see [Fel00, Lemma 15]). Let G = Z™ for some n > 1, and let
D € Z"*™ be an endomorphism. We know from example 2.5.9 that R(D) =
|det(1,, — D)|oo. If A1,..., A\, are the eigenvalues of D, then

n
| det (1, — D¥)[ =11 = AfI.
i=1
We now consider 4 cases:

1. \; € Rand |\ < 1. Then |1 — M| = 1% — Ak,
2. A €Rand \; < —1. Then |1 — MF| = —(=1)F 4 (=X;)*.
3. i € Rand \; > 1. Then |1 — \¥| = —1%F 4\

4. A\; € C\ R. Then its complex conjugate \; is an eigenvalue of D as well,
and ~ ~
1= AFIIL = AT] = 1% = AT = AF + [ A2

Thus, the product [}, |1 — AF| can be expanded as a sum of terms of the form
£ (N Ay - )\ip)k with p € {0,1,...,n}. For the sake of brevity, we write

n a b
k k k
[T =3 >
i=1 i=1 j=1
for certain p;, v; € C. We can then calculate the Reidemeister zeta function of
@ as

b

o0 a
R¢(z):expz Zuf—ZVJk 7112”
n=1 \i=1 j=1

a oo k b oo k
. u“z n Vj n
= exp 22" — —z
n - n
i=1n=1 j=1n=1
a b
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which is rational and has radius of convergence r given by

1

B max{|:u1‘7"~7|,ua|a|V1‘7"'7|Vb|}.

Applying corollary 2.6.3 to the previous two examples, we also find the following.
This result was obtained through different means in [Fel91, Theorem 2].

Example 2.6.8. Let G = Z™ @ 7(G) be a finitely generated abelian group and
¢ € End(G). From example 2.5.11, we know that R(¢) = R(¢|,(c))R(¢’), with
¢’ the induced endomorphism on G/7(G) = Z". But then R,(z) is exactly
the convolution R, () * Ry (2) of two rational functions, which must be
rational by corollary 2.6.3.

Combining corollary 2.6.3 with lemma 2.5.18, we obtain:

Corollary 2.6.9. Let G = G1 x Gg be a direct product of groups, and consider
an endomorphism ¢ of the form ¢ = ¢1 X 2. If Ry, (2) and R, (z) are rational,
then so is R, (z).

Finally, let us end this chapter with some examples about the existence of
Reidemeister zeta functions:

Example 2.6.10. Let G = Z, whose endomorphisms ¢, are completely
determined by ¢,,(1) = m. From example 2.6.7, we can see that the
Reidemeister zeta function R, (z) will exist if and only if m ¢ {—1,1}, or in
other words when ¢,, is not an automorphism. We separate three cases:

e m =0, then R, (2)= 1;

1-27?

e m< —1,then R,, (2) = 1?7_523

e m>1,then R, (2)= =

1-mz"’
Example 2.6.11. Let G = Z" for n > 2. From example 2.6.7 we can see that

the Reidemeister zeta function Rp(z) of an endomorphism D € Z™*" will exist
if and only if D has no roots of unity as eigenvalues.

In contrast to the one-dimensional case, we have that for any n > 2 there exists
an automorphism D € GL,,(Z) such that its Reidemeister zeta function Rp(z)
exists. Let My € GL2(Z) and M3 € GL3(Z) be the matrices

0 0 1
M2 = <§-) 1) 5 M3 = 1 0 1 5
010
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neither of which have roots of unity as eigenvalues. Thus, depending on whether
n is even or odd, take D to be
Ms
M, M,

M,
D= . or D =

M.
M, 2 M,

respectively. Then Rp(z) exists.






Chapter 3

Almost-crystallographic
groups and infra-nilorbifolds

Almost-crystallographic groups are generalisations of crystallographic groups,
a family of groups well understood by the so-called Bieberbach theorems.
The almost-crystallographic groups arise as the fundamental groups of infra-
nilorbifolds (almost flat orbifolds), and similarly the torsion-free almost-
crystallographic groups, which are also called almost-Bieberbach groups, are
the fundamental groups of the infra-nilmanifolds (almost flat manifolds). This
allows an algebraic study of these spaces and their topological properties.

For more information on crystallographic groups and almost-crystallographic
groups, we refer to [Szc12] and [Dek96] respectively. For information on compact
flat manifolds and infra-nilmanifolds we refer to [Cha86] and [Dek18].

3.1 Nilpotent groups

For an arbitrary group G, we can define the k-fold commutator group % (G)
inductively as

71(G) =G and  y41(G) =[G, (G-
Definition 3.1.1. The lower central series of a group G is the series of groups

G=m(G) 2 1(G) = = (G) = -

45
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If this series eventually becomes the trivial group, i.e. for some ¢ € N we have
Ye(G) # 1 and 7.41(G) = 1, then we call G nilpotent. We say G has nilpotency
class ¢, and if ¢ = 1 that G is abelian.

Example 3.1.2. The discrete Heisenberg group H3(Z) is defined as
H3(Z) := {(a,b,c| [a,b] = ¢, [a,c] =1,[b,c] =1).
Its lower central series is given by
Hy(2) > (¢) > 1,
hence H3(Z) has nilpotency class 2.

Proposition 3.1.3. The k-fold commutator groups v;(G) are fully char-
acteristic subgroups, i.e. for every ¢ € End(G), o(vw(G)) C v (G).
Hence any endomorphism (automorphism) of G restricts to an endomorphism
(automorphism) of vi(G).

Corollary 3.1.4. Let G be a group and ¢ € End(G) (Aut(G)). Then ¢ induces
an endomorphism (automorphism) (©)r on Y&(G)/Vk+1(G).

While the k-fold commutator groups behave very well under endomorphisms,
they will sometimes not have the properties we require. In order to rectify this,
we first need to introduce the concept of isolators.

Definition 3.1.5. Let G be a group. For a subgroup H < G, the isolator of
H in G is defined as

VH={geG|IneN:g"c H}.
In general, the isolator of a subgroup H < G need not be a subgroup itself, for

example the isolator of the trivial group is the set of torsion elements 7(G). The
isolators of k-fold commutator subgroups, however, satisfy some nice properties.

Lemma 3.1.6 (see [Dek96, Lemma 1.1.2 and Lemma 1.1.4]). Let G be a group.
Then

(i) Yk € N $/yi.(G) is a fully characteristic subgroup of G.
(i) Yk € N: G/ §/v(G) is torsion-free.
(iii) Yk, 1 € N: [{/(G), Yn(G)] < ¢/ 1w+(G).

(v) Vk,1 € N with 1 > k: if N := §/n(G), then

N/ m(G/N) = /%(G)/N.
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These properties allow us to define a new central series composed of isolators of
k-fold commutators.

Definition 3.1.7. The adapted lower central series of a group G is given by

G=nG) = V@) == Y@=

The adapted lower central series of a group G will eventually terminate if and
only if G is a torsion-free, nilpotent group. The main advantage of using this
central series over the lower central series is that the factors are torsion-free.

Proposition 3.1.8. All factors $/vi(G)/ $/vk+1(G) in the adapted lower
central series are torsion-free.

Proof. First note that G/ §/vx+1(G) is a torsion-free group for any k € N. Since
$/%(G)/ $/7k+1(G) is a subgroup of this group, it is torsion-free as well. [

3.1.1 Finitely generated, torsion-free, nilpotent groups

We are particularly interested in the case where G is a finitely generated, torsion-
free, nilpotent group. These groups are the nilpotent generalisations of the free
abelian groups Z".

Proposition 3.1.9. Let G be a finitely generated, torsion-free, nilpotent group.
Then the factors of the (adapted) lower central series are finitely generated,
(torsion-free), abelian groups, i.e. for all k € N we have

Yk (G)
Yr+1(G) g
Vu(G) o g

Ve+1(G)
for some ni, € N and some finite, abelian group Fy.

Example 3.1.10. Fix some k € N and consider the finitely generated, torsion-
free, nilpotent group

N :=(a,b,c|[a,b] =", [a,c] = 1,[b,c] = 1).
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We find that v2(N) = (cF), Y¥/72(N) = (c) and v3(N) = Y/73(N) = 1. Thus,
the lower central series has factors

N = (a,b,c||a,b] =1, |a,c| = d=1,c=1)~7°
’Yz(N)_<’b’ |[7b] 17[7] 17[ba] L, 1>—Z ® Zy,
72(1\7)g oy
73(N)_< )22

The adapted lower central series, however, has factors

> (a,b | [a,b] = 1) = 22,

Definition 3.1.11. A group G is called polycyclic if and only if it admits a
series of subgroups

G=Gy>Gi > >Cp1>G,=1,

such that G;11 < G; and the factors G; /Gy are cyclic. The number of infinite
cyclic factors in this series is called the Hirsch length h(G) of the group G.

Example 3.1.12. The discrete Heisenberg group
H5(Z) := {a,b,c | [a,b] = ¢,[a,c] = 1,[b,c] = 1)
has the series of subgroups
H3(Z) = (b,c | [b,d] =1) = {c) 2 1,

for which every factor is isomorphic to Z. Thus H3(Z) is polycyclic and has
Hirsch length 3.

Theorem 3.1.13 (see [KM79, Theorem 17.2.2]). Finitely generated, torsion-
free, nilpotent groups are poly-Z, i.e. they are of the form

((ZXZ)XTZ)---) xZ.

Corollary 3.1.14. A finitely generated, torsion-free, nilpotent group is
polycyclic.
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3.1.2 Free nilpotent groups

Definition 3.1.15. The free nilpotent group N, . of rank r > 1 and nilpotency
class c¢ is the quotient
F,
Yet+1 (FT) ’
where F;. is the free group on r generators.

Ny =

We excluded the case r = 1 from the definition above. If r = 1, then F,. = Z,
and hence v (F,) = 1 for all k > 2. Therefore N1 . = F1/v.+1(F1) = F for all
¢, which means this group has nilpotency class 1 and not c.

Example 3.1.16. The following are examples of free nilpotent groups.

(1) For any r € N, the free nilpotent group N, ; is isomorphic to Z".

(2) The free nilpotent group Nj o is isomorphic to the discrete Heisenberg
group H3(Z) from example 3.1.12.

Free nilpotent groups have the nice property that their lower central series
coincides with their adapted lower central series, hence the factors of the lower
central series are torsion-free. The following proposition makes this more exact.

Proposition 3.1.17. Let N,. be the free nilpotent group of rank r and
nilpotency class c. Then the factors of its lower central series, i.e. the groups

’Yk(Nr,C)
Yi+1(Nr.e)
are isomorphic to Z™ , where

1 k/d
Ng = kdzkzﬂ(d)r / )
with p the Mobius function:
1 ifd=1,
p(d) =40 if d is not square-free, (3.1)
(=)™ if d is the product of n distinct primes.

We will skip the proof of this proposition, but the formula for nj; will follow
from proposition 3.2.29 later in this thesis. In particular, one finds the following:

Corollary 3.1.18. The Hirsch length of a free nilpotent group N, . is given by

TISED SED DI

k=1"" d|k
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3.2 Lie groups and Lie algebras

In this section, we give a concise summary of the theory of Lie groups and Lie
algebras, with a focus on nilpotent Lie groups and algebras.

Definition 3.2.1. A Lie group G is a smooth manifold equipped with a group
structure, such that the maps

G x G —G:(91,92) ¥ 9192,

G—>G:g»—>g_17

are smooth.

Definition 3.2.2. A subgroup H of a Lie group G is called a Lie subgroup

if it is equipped with a manifold structure that makes it a Lie group and the

inclusion map H — G is an immersion.

Let us consider some standard examples:

Example 3.2.3. The real numbers R give rise to many examples of Lie groups.
(1) The n-dimensional real space R™ with addition and its natural manifold

structure is a Lie group.

(2) The non-zero real numbers Ry with multiplication and the positive real
numbers R* with multiplication both form a Lie group.

(3) GL,(R) inherits a manifold structure when seen as a subset of R", and
forms a Lie group when we consider matrix multiplication as its operation.

(4) The Heisenberg group H3(R), defined as

1
HS(R) = 0 ‘ T,Y,% € R )
0

O = 8K
RS

is a Lie subgroup of GL3(R).

Definition 3.2.4. A Lie group morphism f: G — H is a smooth map that is
also a group morphism. If f is bijective and f~! is a Lie group morphism as
well, then f is called a Lie group isomorphism.

Note that it would suffice to define a Lie group morphism as a continuous group
morphism between Lie groups, since any such map is automatically smooth, see
for example [Fer98, Theorem 3.7.1].
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Example 3.2.5. The following are examples of Lie group morphisms.

(1) If H is a Lie subgroup of a Lie group G, then the inclusion map H — G
is an injective Lie group morphism.

(2) If G is a Lie group and g € G, then the inner automorphism

Lg:G—>G:hb—>ghg_1

is a Lie group automorphism.

(3) The determinant map

det : GL,(R) = Ry : M +— det M

is a surjective Lie group morphism.

Definition 3.2.6. A Lie algebra g is a vector space equipped with a bilinear
map

[ Jrgxg—g: (X,Y) = [X,Y]
called the Lie bracket, which satisfies:

ALTERNATIVITY
For all X € g:
[X,X]=0.

JACOBI IDENTITY
For all X,Y,Z € g:
(X, [V, 2|+ [V, [Z2, X]] + [2, [ X, Y]] = 0.

Example 3.2.7. The following are examples of Lie algebras.

(1) Any vector space V becomes an abelian Lie algebra if we equip it with
the trivial Lie bracket, i.e. [X,Y] =0 for all X,Y € V, e.g. R™.

(2) Any associative algebra A becomes a Lie algebra if we equip it with the
Lie bracket
[a,b] = ab — ba,

e.g. the n X n-matrices over the real numbers R"*" equipped with this
Lie bracket form a Lie algebra, which is usually denoted by gl,,(R).

Definition 3.2.8. If g and § are Lie algebras and ¢ : g — § is a linear map,
then ¢ is called a Lie algebra morphism if and only if

P([X,Y]) = [¢(X), o(Y)]

for all X,Y € g. If ¢ is bijective, it is called a Lie algebra isomorphism.
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Example 3.2.9. The following are examples of Lie algebra morphisms.
(1) If V, W are vector spaces equipped with the trivial Lie bracket, then any
linear map V' — W is a Lie algebra morphism.

(2) The trace map
tr:gl,(R) > R: M —tr M

is a Lie algebra morphism.

There is a very close connection between Lie groups and Lie algebras. Let G be
a Lie group with identity 1¢, and define g as the tangent space at 1¢g, i.e.

g:= TIGG~

An inner automorphism ¢, of G is a Lie group isomorphism that fixes 1g, and
hence induces an automorphism (¢4). on g. Define

Ad: G — GL(g) : g — (tg)s

which is a smooth map and hence induces a linear map between the tangent
spaces:
Ad, : g — Tiq GL(g).

Now note that GL(g) is an open subset of A(g, g), the vector space of linear
self-maps on g. Thus, we may identify Tiq GL(g) with TiqA(g, g) = A(g,9). Now
define

ad = Ad, : g — A(g, 9).

Proposition 3.2.10. Let G be a Lie group with identity 1g and g its tangent
space at 1g. If we define a Lie bracket by

[ ]:gxg—9g: (X,)Y)— [X,Y] =ad(X)(Y),

then g equipped with this bracket is a Lie algebra, called the Lie algebra associated
to G.

Example 3.2.11. The following are examples of Lie algebras associated to Lie
groups.

(1) R™ is the Lie algebra associated to the Lie group R™.

(2) R is the Lie algebra associated to both of the Lie groups Rg and R*.

(3) gl,,(R) is the Lie algebra associated to GL,, (R).



LIE GROUPS AND LIE ALGEBRAS 53

A Lie group morphism f : G — H must map 1g to 1g, and therefore induces a
map fi : T1,G — T1,, H. But these tangent spaces are exactly the associated
Lie algebras, and f, will actually be a Lie algebra morphism.

Definition 3.2.12. Let G, H be Lie groups with associated Lie algebras g, b
respectively. A Lie group morphism f : G — H induces a Lie algebra morphism
f+« g = b called the Lie algebra morphism induced by f.

Proposition 3.2.13. Let G be a Lie group with associated Lie algebra g. For
any X € g, there exists a unique Lie group morphism px : R — G such that

(px)«(1) = X.

Definition 3.2.14. Let G be a Lie group with associated Lie algebra g. We
define the exponential map as

exp:g— G: X — px(1).

Lemma 3.2.15. Let G,H be Lie groups with associated Lie algebras g,b
respectively. Let f: G — H be a Lie group morphism inducing a Lie algebra
morphism f. g — b, then the following diagram commutes:

G%H

exp CXPT
fx
g——b

Example 3.2.16. The following are examples of exponential maps.

(1) The exponential map from the Lie algebra R™ to the Lie group R™ is the
identity map.

(2) The exponential map from the Lie algebra R to the Lie group Ry is the
usual exponential map, and similarly for the Lie group R*.

(3) The exponential map from the Lie algebra gl,, (R) to the Lie group GL, (R)
is given by
Mz'
il

exp : gl, (R) = GLy(R) : M +— Y (3.2)
i=0
Also note that the induced morphism by the determinant map is exactly

the trace map, i.e.
det(exp M) = exp(tr M).
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(4) The Lie algebra b associated to the Heisenberg group H3(R) defined in
example 3.2.3(4) is given by

0
h:= 0 | z,y,z € R
0

O O 8
o n

Since M? = 0 for any matrix M € b, the exponential map from eq. (3.2)

reduces to )

M
exp:h—>H3(R):M»—)IL—i—M—&—T7

or equivalently,

0 =z y 1 » y+ %
exp:h—> Hs(R): [0 0 z|— [0 1 z
0 0 O 0 0 1

3.2.1 Nilpotent Lie groups and Lie algebras

We have already defined what a nilpotent group is, hence we can consider
nilpotent Lie groups. Let us define nilpotency for a Lie algebra g with Lie
bracket [.,.]. We define vx(g) inductively as

y1(9) =g and  p1(9) = [9,7(9)]-

Definition 3.2.17. A Lie algebra g is called nilpotent if its lower central series

g="71(0) = 72(0) = =(g) =

eventually becomes trivial, i.e. for some ¢ € N we have v.(g) # {0} and
Ye+1(g) = {0}. We then say g has nilpotency class ¢, and if ¢ = 1 that g is
abelian.

Clearly, the definitions of nilpotency for a Lie group (definition 3.1.1) and a Lie
algebra (definition 3.2.17) are very similar. Knowing the connection between
a Lie group and its associated Lie algebra, it is natural to assume that there
must be some connection between their respective lower central series. This is
indeed the case:

Theorem 3.2.18 (see [Hoc65, Theorem XIL.3.1]). Let G be a connected,
nilpotent Lie group with associated Lie algebra g. Every term v, (G) of the lower
central series of G will be a Lie subgroup of G and have vx(g) as its associated

Lie algebra. Thus, g is also nilpotent and its nilpotency class coincides with
that of G.
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Let us now focus on connected, simply connected, nilpotent Lie groups.

Theorem 3.2.19. Let G be a connected, simply connected, nilpotent Lie group
with associated Lie algebra g. Equipping g with the natural manifold structure,
the exponential map exp : g — G is a diffeomorphism.

Example 3.2.20. The exponential map from R to Ry (which is not
connected) is not surjective, however, the exponential map from R to RT
is a diffeomorphism.

Definition 3.2.21. Let G be a connected, simply connected, nilpotent Lie
group with associated Lie algebra g. We may define the logarithmic map
log : G — g as the inverse of the exponential map.

Example 3.2.22. The following are examples of logarithmic maps.
(1) The logarithmic map from the Lie group R™ to the Lie algebra R™ is the
identity map.

(2) The logarithmic map from the Lie group R™ to the Lie algebra R is the
usual logarithmic map.

(3) The logarithmic map from the Heisenberg group H3(R) to its associated
Lie algebra b is given by

M —1)?
IOgHg(R)*)hMH(Mfﬂ)*%,
or equivalently,
1 =z vy 0 =z y—%
log: H3((R) = Hh:|{0 1 2]+~ |0 O z
0 0 1 0 0 0

Proposition 3.2.23. Let G, H be connected, simply connected, nilpotent Lie
groups with associated Lie algebras g, b respectively. If ¢ : ¢ — b is a Lie algebra
morphism, then there exists a (unique) Lie group morphism f: G — H such

that f. = ¢.

3.2.2 Lattices in nilpotent Lie groups

Lattices of connected, simply connected, nilpotent Lie groups are a vital
ingredient in the definition of (almost-)crystallographic groups.
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Definition 3.2.24. Let G be a connected, simply connected, nilpotent Lie
group. A lattice of G is a discrete, cocompact subgroup N of G. The compact
quotient space N\G is called a nilmanifold and its fundamental group is exactly
N.

Note that the dimension of the manifold N\G will coincide with the Hirsch
length h(N) of N.

Theorem 3.2.25 (see [Mal51; Rag72]).

(1) A lattice of a connected, simply connected, nilpotent Lie group must be a
finitely generated, torsion-free, nilpotent group.

(2) Conversely, if N is a finitely generated, torsion-free, nilpotent group, then
there exists a unique (up to isomorphism) connected, simply connected,
nilpotent Lie group G such that N is a lattice of G. This G is called the
Mal’cev completion of N.

(3) If ¢ is an endomorphism (automorphism) of a finitely generated, torsion-
free, milpotent group N, then ¢ extends uniquely to a Lie group
endomorphism (automorphism) ¢ : G — G of the Mal’cev completion
G of N.

3.2.3 Free Lie algebras and free nilpotent Lie algebras

In what follows, we will define a so-called Hall basis of a free (nilpotent) Lie
algebra. More details (and a more formal treatment) can be found in e.g. [Ser92,
Chapter IV].

Definition 3.2.26. The free Lie algebra f, is the Lie algebra generated by r
elements X1, Xo, ..., X,, on whose Lie bracket we only impose the relations of
alternativity and the Jacobi identity.

Note that this does not mean that r is the dimension of the vector
space underlying f.. For example, the element [X7, X5] is not spanned by
X, Xo, .., X,

A Hall basis H of f, is a vector space basis of f, that is totally ordered, and
which is constructed inductively as a union H = Uy, enH,, with H,, consisting of
n-fold Lie brackets, according to the following rules:

o Hy :={X;,Xs,...,X,}, and the order is given by X; < Xo < -+ < X,..
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We now proceed inductively: let n > 2 and assume that Hj has been defined
for all k < n and that UZ;%H;C has been given a total order.

o We define H,, as the set of elements of the form [Y,Z] with Y € Hj,
Z € H; where

—k+l=n,
-Y<Z
— if Z =[Zy, Z5] for some Zy € Hy,, Zs € Hy,, then Z; <Y.

o We extend the order on UZ;%H % to an order on Uy_; H}, by choosing any
total order on H,, and setting X <Y forall X € H,Y € H, with k < n.

Example 3.2.27. The elements of Hy are of the form
[Xi,Xj], Wlth1§’6<j§7’
The elements of H3 are of the form
(X, [X;, Xg]], withl<j<k<rand1<j<i<r
The elements of H4 depend on the choice of ordering we took for the elements
of HQ.
In a way similar to how we defined free nilpotent groups as quotients of free
groups, we can define free nilpotent Lie algebras.

Definition 3.2.28. Let §,. be the free Lie algebra with r generators. For any
¢ > 1, the quotient
fr

a Ye+1(fr)
is a Lie algebra of nilpotency class ¢ called the free nilpotent Lie algebra of rank
r and nilpotency class c.

Gr.c -

Let G, . be the Mal’cev completion of N, ., the free nilpotent group of rank r
and nilpotency class c. Then the Lie algebra corresponding to G . is exactly
the free nilpotent Lie algebra g, .. If H = UpenH, is a Hall basis of ., then the
natural projections of the elements of length at most ¢ (i.e. Hy UHyU---U H,)
form a basis of g, ., which we also call a Hall basis.

Proposition 3.2.29 (see [Wit37, Satz 3]). Let H = U§_, Hy, be a Hall basis
of gr,c and let k < c. The dimension of vk(8r.c)/Vk+1(8r,c) is given by

1 k/d
#Hy = k%u(d)r "

with p the Mobius function from eq. (3.1).
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3.3 Crystallographic groups

The class of almost-crystallographic groups is a natural generalisation of the class
of crystallographic groups, hence, let us start with exploring the crystallographic
groups. Let R™ be the Euclidean space, and denote the set of isometries on this
space by Isom(R™). Any isometry can be seen as a map

R® - R":2+— Az + a,

with A € O(n) and a € R™. Thus, we can identify this isometry with an element
(a, A) € R" x O(n). In particular, the composition of two elements (a, A), (b, B)
is the map

R" 5 R": 2+ A(Bx+b)+a= ABx + Ab+ a,

hence (a, A)(b, B) = (Ab+a, AB), and thus Isom(R"™) is actually the semidirect
product group R™ x O(n). Similarly, we can see that the affine group Aff(R™)
is the semidirect product R"™ x GL, (R), and clearly Isom(R™) C Aff(R™). Note
that the groups Isom(R™) and Aff(R™) are both Lie groups.

Definition 3.3.1. An n-dimensional crystallographic group is a discrete,
cocompact subgroup of Isom(R™). A Bieberbach group is a torsion-free
crystallographic group.

Example 3.3.2. We list some examples of crystallographic groups.
(1) We may identify Z™ with the subgroup Z" x {1,} of Isom(R™), which is
an n-dimensional Bieberbach group.

(2) Consider the group generated by the isometries

o=((o)- (5 I
Y

This is a two-dimensional Bieberbach group, and can be presented by

{a,b|ab=ba"").

(3) The semidirect product Z x Zs, where Zg = {—1,1} acts on Z by (£1)-x =
+x, is isomorphic to the subgroup of Isom(R) generated by (1,1) and
(0,—1). This is a one-dimensional crystallographic group that is not
torsion-free, and is isomorphic to the infinite dihedral group D, and the
free product Zs * Zo.
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3.3.1 Bieberbach theorems

The structure of crystallographic groups is described by the so-called Bieberbach
theorems which were proved by Bieberbach and Frobenius [Biell; Biel2; Froll].

Theorem 3.3.3 (First Bieberbach theorem). Let I' C Isom(R™) be an n-
dimensional crystallographic group. Then the group of translations N := T NR"
is a lattice of R™ and has finite index in R™.

Being a lattice in R™ implies being isomorphic to Z". In particular, this means
a crystallographic group fits in a short exact sequence

/R, F——1

with 4(Z™) maximal abelian in I" and F' finite. We call F' the holonomy group
of I'. This short exact sequence induces a faithful representation p : F' —
Aut(Z™) = GL,(Z) called the holonomy representation, meaning that we can
see F' as a finite subgroup of GL,(Z). Also note that i(Z") being maximal
abelian implies it is a characteristic subgroup of I', though it is not necessarily
a fully characteristic subgroup.

Example 3.3.4. Consider the crystallographic group I' generated by

(G109 2 (E1 ) (06 %)

The map ¢ defined by p(a) = ¢ and p(b) = ¢(c) =1 is an endomorphism of T’
that does not leave the translation subgroup invariant.

In [Zas48|, Zassenhaus proved the following converse to the first Bieberbach
theorem.

Theorem 3.3.5. Let G be any group that fits in a short exact sequence as
above, where F is finite and i(Z") is maximal abelian in G. Then there exists an
embedding j : G — Isom(R™) such that j(G) is an n-dimensional crystallographic
group.

The second Bieberbach theorem describes the structure of isomorphisms between
crystallographic groups.

Theorem 3.3.6 (Second Bieberbach theorem). Let I',T be n-dimensional
crystallographic groups and ¢ : T' — TV be an isomorphism. Then there exists
some 0 € Aff(R™) such that

o(y) =60~
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forally €T, i.e. p is the restriction to I' of some inner automorphism ts of

AfE(R™).

Since the translation subgroup of a crystallographic group I' is isomorphic to
Z"™ and the holonomy group is isomorphic to a subgroup of GL,(Z), there
exists a finite set of vectors ai,as,...,ar € R™ and a finite set of matrices
A1, As, ... Ax € GL,(Z) such that

r= <(Zn’]ln)’(a17A1)7(a2>A2)a"'7(a/k7Ak>>a
F= <A17A27"'7Ak>'

The group I generated by Z™ and the set {(a1, A1), (ag, A2),. .., (ar, Ak)} is
isomorphic to I, but may no longer be a subgroup of Isom(R"). We will also
call such TV C Aff(R™) with translation subgroup Z™ a crystallographic group,
and remark that I'" is conjugate to I' inside Aff(R™).

While we lose the geometric aspect of being a group of isometries, this allows
us to restate the second Bieberbach theorem in the following (helpful) way.

Proposition 3.3.7. Let I' be an n-dimensional crystallographic group whose
translation subgroup is exactly Z™ and whose holonomy group F' is a subgroup of
GL,(Z). Let p € Aut(I') be an automorphism. Then there exist some d € R™,
D € Nqu,, (z)(F') such that

SD(PY) = (da D)’Y(dv D)il

forall v eT.

Proof. T is conjugate (in Aff(R™)) to a crystallographic group IV C Isom(R"),
hence from the second Bieberbach theorem, we know that there exist d € R",
D € GL,(R) such that ¢(vy) = (d, D)y(d, D)~! for all v € I". Because Z" is a
characteristic subgroup of T, ¢ induces an automorphism ¢’ : F' — F : A —
DAD™!, and therefore D € N, (z)(F). O

This normaliser Ngr,, (z)(F) gives us information about the (in)finiteness of the
outer automorphism group Out(T").

Theorem 3.3.8 (see [Szcl2, Section 5.1]). Let T' be an n-dimensional
crystallographic group whose translation subgroup is exactly Z"™ and whose
holonomy group F' is a subgroup of GL,(Z). Then #Ngu,, (z)(F) = oo if and
only if # Out(T') = co.
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Let us now agree on some notation. If T" is a crystallographic group with
holonomy group F C GL,(Z), and ¢ € Aut(I') is conjugation by (d, D) €
Aff(R™), we set:

Nr = Nav, @) (F),
§apy =T —=T:y~(d, D)y(d, D)™ .

The third Bieberbach theorem talks about the finiteness of the number of
crystallographic groups.

Theorem 3.3.9 (Third Bieberbach theorem). For any n € N, there are (up to
isomorphism) only finitely many n-dimensional crystallographic groups.

The crystallographic groups have been classified up to dimension 6. In table 3.1
we give the number of crystallographic groups and Bieberbach groups in every
(known) dimension. We also mention the number of crystallographic groups
with finite outer automorphism group, as this property will be crucial later in
this thesis.

dim | # cryst. groups | # with #Np < co | # Bieberbach groups
1 2 2 1
2 17 15 2
3 219 204 10
4 4 783 4 388 74
5 222 018 204 768 1 060
6 28 927 915 26 975 265 38 746

Table 3.1: Number of crystallographic groups

The 2-dimensional groups were classified by Fedorov and Pélya [Fed91; P6124],
the 3-dimensional groups by Barlow, Fedorov and Schonflies [Bar94; Fed91;
Sch91], the 4-dimensional groups by Brown, Biilow, Neubiiser, Wondratscheck
and Zassenhaus [Bro+78] and the 5- and 6-dimensional groups by Plesken and
Schulz [PS00], who made use of CARAT [Car06].

3.3.2 Flat manifolds and orbifolds

There is a geometrical interpretation of crystallographic groups.

Proposition 3.3.10. Let I' be an n-dimensional crystallographic group. Then
I’ (as a subgroup of Aff(R™)) acts on R™, and this action has the following
properties:
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o I' acts properly discontinuously on R™, i.e.
#{yel |y KNK #0} <o
for any compact subset K C R™.
o T acts cocompactly on R™, i.e. the orbit space T\R" is compact.

o The action of I' on R™ is free if and only if I is torsion-free.

In particular, this means that T'\R"™ is a compact topological space, and the
manifold structure from R™ induces a manifold (orbifold) structure on I'\R"™
if I is a Bieberbach (crystallographic) group, and the (orbifold) fundamental
group is exactly I'.

Remark 3.3.11. Note that it is important that we talk about the orbifold
fundamental group and not the usual topological fundamental group when I" is
not torsion-free. It can be proven that the topological fundamental group of
M\R" is exactly T'/(7(T)), whereas the orbifold fundamental group is T

Moreover, because I' (as a subgroup of Isom(R™)) acts on R™ by isometries,
the (flat) Riemannian metric on R™ induces a metric on I'\R™. Thus, I'\R"
is a compact, flat manifold (orbifold). The converse is also true: any flat
manifold (orbifold) can be obtained as a quotient I'\R™ with I" a Bieberbach
(crystallographic) group.

Example 3.3.12. Consider the crystallographic groups from example 3.3.2.

(1) Z™\R™ is the n-dimensional (flat) torus, the direct product of n copies of
the circle S*.

(2) If T = (a,b | ab = ba~1), then I'\R? is the Klein bottle.
(3) ! T' = Z % Zo, then I'\R is a closed interval.

This allows us to interpret the second and third Bieberbach theorems
geometrically. The second Bieberbach theorem states that, up to affine
equivalence, a flat manifold (orbifold) is completely determined by its (orbifold)
fundamental group. The third Bieberbach theorem states that for any dimension
n € N, there are only finitely many compact, flat manifolds (orbifolds).

3.3.3 Generalised Hantzsche-Wendt groups and manifolds

A subclass of the Bieberbach groups that has received special attention, is
the class of (generalised) Hantzsche-Wendt groups, see for example [DDMO04;
DHS09; DP09; MR99b; RS05].
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Definition 3.3.13. An n-dimensional Bieberbach group I' with holonomy
group isomorphic to Zg_l is called a generalised Hantzsche-Wendt group, or
GHW group. If I is orientable, i.e. det(A) =1 for every A € F, it is called a
Hantzsche- Wendt group, or HW group.

The corresponding flat manifolds are generalised Hantzsche-Wendt manifolds,
or Hantzsche-Wendt manifolds if they are orientable.

Example 3.3.14. The (classical) Hantzsche-Wendt group is the Bieberbach
group generated by the isometries

N /1 0 0 0\ /-1 0 0
( 0 ) 0 -1 0 )7 ( % ) 0 1 0 )
0 0 0 -1 5 0 0 -1

The corresponding flat manifold is called the Hantzsche-Wendt manifold [HW35].
In fact, it is the only Hantzsche-Wendt group of dimension 3.

Theorem 3.3.15 (See [RS05, Section 2|). A Hantzsche-Wendt group is
necessarily of odd dimension.

We need the following theorem to provide a nice presentation of a GHW group.

Theorem 3.3.16 (see [RS05, Theorem 3.1]). Let I" be an n-dimensional GHW
group. Then there exists a presentation of I' such that for every A€ F, A is a
diagonal matriz.

Definition 3.3.17. We say that a HW group is in standard form if it is
generated by Z" and (a1, A1),..., (an, A,) where A; is the diagonal matrix
with 1 on the i-th place and —1 on the other places, and where a; € {0,1/2}".

Every HW group is isomorphic to a HW group in standard form, hence from
now on we will always assume that a HW group is in standard form. Let I" be
a Hantzsche-Wendt group with standard generators (aq, A1), ..., (an, A,). We
define the n x n-matrix A as

A= (aij)ij,

where a;; is the j—th coordinate of a;. This is called the matrix associated to a
HW group.

Example 3.3.18. The Hantzsche-Wendt group with the generators given in
example 3.3.14 is in standard form with associated matrix

S ONi=
NI=I= O
N[0 |0 [ =
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One can then consider the problem of which matrices with entries in {0,1/2}
are associated matrices of HW groups. The following proposition provides a
necessary and sufficient condition for this.

Proposition 3.3.19 (see [MR99b, Proposition 1.2]). Consider the crystallo-
graphic group T' = (Z", (a1, A1), ..., (an, Ayn)), with n odd, A; as before and
a; €{0,1/2}". Then T is a HW group if and only if, for any I C {1,2,...,n}
with #1 odd we have:

In particular, for each fized j, we have that aj; =1/2 and #{i | a;; = 1/2} is
even.

This was used by Miatello en Rossetti to classify the Hantzsche-Wendt groups
up to dimension 7 in [MR99a].

3.4 Almost-crystallographic groups

In this section, we generalise the previous section by going from abelian groups
to nilpotent groups. Let G be a connected, simply connected, nilpotent Lie
group. We define Aff(G) as the semidirect product Aff(G) = G x Aut(G) where
multiplication is defined by (di, D1)(d2, D2) = (d1D1(d2), D1 o D3). Then
Aff(G) acts on G by

(d,D)(g) = dD(g) for all (d, D) € Aff(G) and all g € G.

We will often consider G as a subgroup of Aff(G) by identifying g € G with
(g9,idg). Let C' be a maximal compact subgroup of Aut(G), then G x C is a
subgroup of Aff(G). Such C is unique up to inner conjugation in Aut(G). Note
that the group G x C can be interpreted as a group of isometries of G, see
[Dek18, Section 3].

Definition 3.4.1. An n-dimensional almost-crystallographic group modelled
on the Lie group G is a discrete, cocompact subgroup of G x C'. The dimension of
I" is defined as the dimension of G. An almost-Bieberbach group is a torsion-free
almost-crystallographic group.

Example 3.4.2. Consider the following examples of almost-crystallographic
groups:

(1) Consider the family of groups Ny defined as

1z ¥
Ny = 01 z||zyz€Zy,
0 0 1



ALMOST-CRYSTALLOGRAPHIC GROUPS 65

with k& € N. Every group in this family is a lattice of the Heisenberg
group H3(R). Note that N is actually isomorphic to the group from
example 3.1.10.

(2) Let k € 2N and define the automorphism ¢ : H3(R) — H3(R) as follows:

1 =z gy 1 —2 y— %
o(f0 1 z]):=10 1 x
0 0 1 0 0 1
Fix some k € N, and define I as
10 %
I':= <(Nkvld)7( 010 7410)>
0 0 1

This is an almost-Bieberbach group. If we replace the i by 0, we get an
almost-crystallographic group which is not torsion-free.

3.4.1 Generalised Bieberbach theorems

The three Bieberbach theorems have been generalised to almost-crystallographic
groups.

Theorem 3.4.3 (Generalised first Bieberbach theorem, see [Aus60]). Let T' be
an almost-crystallographic group modelled on the Lie group G. Then the group
of translations N :=T NG is a lattice in G and has finite index in G.

Similar to the crystallographic case, being a lattice implies that the translation
group is a finitely generated, torsion-free, nilpotent group. Thus, an almost-
crystallographic group fits in a short exact sequence

1 N ‘.71 F——1

with N a finitely generated, torsion-free, nilpotent group, i(N) maximal
nilpotent in I and F finite. Once again, we call F' the holonomy group of I' and
i(N) is a characteristic subgroup of I'. Due to the bijectivity of the log-map,
there is a one-to-one relation between Aut(G) and Lie algebra automorphisms
of g, the Lie algebra associated with G. Hence, by fixing a basis for g, there
exists a faithful representation p : F' — GL,(R).

Again, i(N) is not necessarily fully characteristic, but it does contain a fully
characteristic subgroup of finite index.
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Lemma 3.4.4 (see [LL06, Lemma 3.1]). Let ' be an almost-crystallographic
group with translation subgroup N. Then I' contains a fully characteristic, finite
index subgroup H C N.

The converse to the generalised first Bieberbach theorem holds as well.

Theorem 3.4.5 (see [Lee88]). Let I' be any group that fits in a short exact
sequence as above, where F' is finite, N is finitely generated, torsion-free and
nilpotent, and i(N) is mazimal nilpotent in I'. Then I is (isomorphic to) an
almost-crystallographic group.

Theorem 3.4.6 (Generalised second Bieberbach theorem, see [LR85]). Let
I, IV be n-dimensional almost-crystallographic groups modelled on a Lie group
G and ¢ : T — T’ be an isomorphism. Then there exists some § € Aff(G) such
that

o(y) =65~

for all vy € T, i.e. p is the restriction to I' of some inner automorphism s of

AF(G).

We will again use &s to denote an automorphism that is conjugation by § €

AF(G).

Generalising the third Bieberbach theorem is more tricky: for any dimension
n > 3, there are infinitely many (non-isomorphic) almost-crystallographic
groups. This is true even if we only consider the almost-crystallographic groups
modelled on a fixed connected, simply connected, nilpotent Lie group. For
example, example 3.4.2(1) gives an infinite family of almost-crystallographic
groups modelled on the Heisenberg group Hs(R).

From an algebraic point of view, however, the translation subgroup of a
crystallographic group is always isomorphic to Z™. Hence, we can reformulate
the third Bieberbach theorem as saying that for any dimension n, there are only
finitely many crystallographic groups with translation subgroup (isomorphic to)
Z". This statement can then be generalised to the almost-crystallographic case.

Theorem 3.4.7 (Generalised third Bieberbach theorem, see [DIM94; Lee88]).
Let N be a finitely generated, torsion-free, nilpotent group. There are (up to
isomorphism) only finitely many almost-crystallographic groups for which the
translation subgroup is isomorphic to N.

The 3-dimensional almost-crystallographic groups were fully classified by
Dekimpe in [Dek96]. This book also contains a partial classification of the
4-dimensional almost-crystallographic groups, including a complete classification
of the 4-dimensional almost-Bieberbach groups.
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The following lemma is at the basis of this classification:

Lemma 3.4.8 (see [Dek96, Lemma 2.4.2]). Let ' be an almost-crystallographic
group with translation subgroup N of nilpotency class ¢, and define Z =
N/ve(N). Then T'/Z is an almost-crystallographic group with translation
subgroup N/Z of nilpotency class ¢ — 1.

Using lemma 3.1.6(iv), we may upgrade this lemma.

Corollary 3.4.9 (see [Dek96, Lemma 2.4.2]). Let T' be an almost-crystallo-
graphic group with translation subgroup N of nilpotency class ¢, and define
Z := Y/v(N) with k < c. ThenT'/Z is an almost-crystallographic group with
translation subgroup N/Z of nilpotency class k — 1. In particular, if k = 2, then
T'/Z is crystallographic.

This means that every almost-crystallographic group has a quotient group that
is crystallographic. We may thus classify the almost-crystallographic groups
into families based on the nilpotency class of their translation subgroups and
on this crystallographic quotient.

3.4.2 Infra-nilmanifolds and orbifolds

The entirety of proposition 3.3.10 generalises to the case of almost-crystallo-
graphic groups. Hence, I'\G is again a compact manifold (orbifold) if T is an
almost-Bieberbach (almost-crystallographic) group modelled on the Lie group
G. We call such manifold (orbifold) an infra-nilmanifold (infra-nilorbifold).

A nice result by Gromov and Ruh shows that infra-nilmanifolds are generalisa-
tions of flat manifolds.

Theorem 3.4.10 (see [Gro78; Ruh82]). A compact manifold M is infra-nil
if and only if it is almost flat, i.e. for any e > 0, there exists a Riemannian
metric g. such that

o diam(M,g.) <1,

o |K, | <e with K, the sectional curvature.

This result has been generalised to infra-nilorbifolds and almost flat orbifolds
by Ghanaat [Gha97].

The following diagram summarises the underlying relations between most of
the concepts introduced in this chapter.
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t.]-?fl.n;.abgeelrila-n < BiegforESCh < Crystg%{)ollggaphic
group
[ e
TS
Compact flat Compact flat
— . .
J Flat torus \L manifold \L orbifold
Fin. gen. Almost- Almost-
t.-f. nilpotent ~———— | ——— Bieberbach ~——— | ————— crystallographic
group group group
R ISt QRS
1\?-1 ifold © ; Infra- Infra-
Himanitto nilmanifold nilorbifold

3.4.3 Self-maps on infra-nilmanifolds

Define the semigroup

aff(G) :== G x End(G).

The following theorem generalises the generalised second Bieberbach theorem
even further, namely from automorphisms to endomorphisms.

Theorem 3.4.11 (see [Leec95, Theorem 1.1]). Let T' be an n-dimensional
almost-crystallographic group modelled on a Lie group G and ¢ : I' = I be an
endomorphism. Then there exists some (d, D) € aff(G) such that

¢(7) o (d, D) = (d, D) oy
forallveT.
In fact, this can even be generalised to any morphism between two almost-

crystallographic groups, not necessarily modelled on the same Lie group, see
[Dek18, Theorem 5.1].

This theorem allows us to construct a self-map on an infra-nilmanifold induced
by an endomorphism.

Lemma 3.4.12. Let T’ be an almost-Bieberbach group modelled on a Lie group
G, and let ¢ = §q,p) be an endomorphism on I'. Then

fo:=(d,D):T\G —-T\G:T'-g—T-dD(g)

s a well-defined map.

Remark 3.4.13. If we take (d, D) as the reference lift of f,, = (d, D), then the
equation () o (d, D) = (d, D) o v means that the induced endomorphism on
the fundamental group of I'\G is exactly ¢, i.e. f,. = ¢. Picking a different
lift will change the induced morphism by an inner automorphism.
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Theorem 3.4.14. Let f, g be two self-maps on an infra-nilmanifold T\G. If
the induced endomorphisms fi, g« on I' (with respect to certain lifts) are equal
up to inner automorphism, then f and g are homotopic.

Corollary 3.4.15. Let f : T\G — I'\G be a self-map on an infra-nilmanifold.
Then there exists an affine map (d, D) € aff(G) such that the induced map
(d,D) on T\G is homotopic to f. We call (d, D) an affine homotopy lift of f.

In general, the affine map (d, D) is far from unique. The Lie group endomorphism
D is determined up to an inner automorphism of GG, and the translation part d
is determined up to an element of Fix(F') C G, the elements that are invariant
under the action of the holonomy group F on G [Lee95, Proposition 1.4]. A
first remark we can make, is that if I" is crystallographic, then D is unique. A
second remark is that if we consider a self-map on a nilmanifold, then we may
always pick d = 1¢ for the affine homotopy lift. This leads us to the following
theorem.

Theorem 3.4.16 (sece [McC97, Lemma 2.7]). Let f: N\G — N\G be a self-
map on a nilmanifold. Then there exists a Lie group endomorphism D : G — G
such that D is an affine homotopy lift of f.

The situation for infra-nilorbifolds is more difficult, since many (often non-
equivalent) notions of an orbifold map exist. For all common notions of orbifold
maps, it is possible to generalise lemma 3.4.12: any endomorphism of the
orbifold fundamental group will induce an orbifold map. However, the converse
need not be true: an orbifold map does not necessarily admit a “global” lift to
the universal orbifold cover.






Chapter 4

Reidemeister-Nielsen fixed
point theory on
almost-crystallographic
groups

Having introduced both Reidemeister-Nielsen fixed point theory and almost-
crystallographic groups, we are now ready to combine the two. This will
result in algebraic formulas to compute Lefschetz, Nielsen and Reidemeister
numbers for infra-nilmanifolds, and some results on Reidemeister numbers of
almost-crystallographic groups.

4.1 Nilmanifolds

Theorem 4.1.1 (Anosov theorem, see [Ano85; FH86]). Let f : N — N be a
self-map on a nilmanifold. Then N(f) = |L(f)|.

The idea behind this theorem is that every fixed point class of a self-map f on a
nilmanifold has the same index, and this index is always —1, 0 or 1. In general,
we say that the Anosov relation holds for a self-map f whenever N(f) = |L(f)|.

There exist easy formulas for the Nielsen, Lefschetz and Reidemeister number
of self-maps on nilmanifolds.

71
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Theorem 4.1.2 (see [Ano85]). Let f : M — M be a self-map on a nilmanifold
M = N\G. Let D : G — G be an affine homotopy lift of f, then

L(f) = det(1 — D,),
N(f) = [det(l = D.)],

Theorem 4.1.3 (see [HK97]). Let f: N — N be a self-map on a nilmanifold.

Then either all fized point classes are essential, or all of them are inessential.

In the literature, a space for which this property holds is called weakly Jiang.

Corollary 4.1.4. Let f : N — N be a self-map on a nilmanifold. Then

R(f) = IN(f)loe-

Due to the connection between nilmanifolds and finitely generated, torsion-free,

nilpotent groups, theorem 4.1.2 also implies the following;:

Theorem 4.1.5. Let N be a finitely generated, torsion-free, nilpotent group,
and ¢ € End(N). Let G be the Mal’cev completion of N and let D : G — G be
an affine homotopy lift of p. Denote by D, the induced endomorphism on g.
Then

R(¢) = | det(1 - D.)|w.

Theorem 4.1.6 (see [Romll, Theorem 2.6]). Let N be a finitely generated,
nilpotent group. Let

N=N; >Ny >--->N.2>Ney1 =1

be a central series of N, such that all factors Ny/Nii1 are torsion-free. If
v € End(N) and ¢(Ny) C Ny for all k, then

R(¢) = [] R((o)n).
k=1
where (@) is the induced endomorphism on the factor Ni/Niy1.

Proof. We prove this by induction on the length ¢ of the central series. If ¢ = 1,
the result follows trivially. Let ¢ > 1 and assume the theorem holds for a central
series of length ¢ — 1. Let ¢ € End(N), then ¢(N.) C N, and hence we have
the following commutative diagram of short exact sequences:
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1 N, —— N -2 N/N. 1
l( P lsa l‘P !
1 N, —— N — N/N, 1

The quotient N/N., is a finitely generated, nilpotent group with central series
Nl/Nc Z N2/Nc Z Z Nc—l/Nc Z 1

of length ¢ — 1. Every factor of this series is of the form (N /N.)/(Ng41/Ne),
which is isomorphic to Ni/Ng11 by the third isomorphism theorem, hence it is
also torsion-free. Moreover, because of this natural isomorphism we know that
for every induced automorphism (¢’)x on (Ni/N.)/(Nk+1/N¢) it holds that

R((¢")r) = R((¢)k)-

First, assume that R(¢’) = oo, in which case we find R(p) = by
lemma 2.5.10(1). Then by the induction hypothesis R((¢)x) = R((¢')x) = o©
for some k € {1,...,¢— 1}, so the theorem holds in this case.

Next, suppose that R(¢') < oo and R(p.) = oo. We then know from the
induction hypothesis that R((¢')x) < oo for every k € {1,...,¢— 1}. Note that
(Nk/N¢)/(Nk41/Ne) is isomorphic to Z™ for some n € N, so (¢') can be seen
as a matrix in GL,(Z) and hence

R((¢")) = | det(L = (¢"))|oc < 00,

or equivalently Fix((¢')r) = {1}. Suppose that | Fix(¢')| = co. Because N/N, is
a finitely generated, torsion-free, nilpotent group, there exists some g\N. € N/N,
of infinite order such that

¢'(gNe) = gNe.
Suppose that gN. € Ni/N. but gN. ¢ Ngy1/N.. Then

(¢ )k(gNrs1/Ne) = gNpy1/Ne,

which contradicts the fact that Fix((¢')x) = {1} for all k. Thus | Fix(¢')| < o0
and by lemma 2.5.10(2) R(p) = co. Again, the theorem holds in this case.

The final case is the one where R(¢") < oo and R((¢).) < co. Let [g1Nc]or, - .-,
[9nNe],r represent the Reidemeister classes of ¢ and [c1](y).,- - -, [cm](p). the
Reidemeister classes of (¢).. Since N, C Z(N), we can apply lemma 2.5.10(3),
hence it suffices to prove that every class [c;g;], represents a different
Reidemeister class of ¢ to obtain

R(p) = R(pc)R(¢),
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and then the theorem follows from the induction hypothesis.
Suppose there exists some h € N such that
cigj = heagop(h) ™.
Then by taking the projection to N/N, we find
9:Ne = p(cig;) = p(heagep(h) ™) = (hNe)(goNe) ' (AN:) ™!
hence [g;Nc], = [gpNc],r. Now assume that
¢igj = heagjo(h) ™"

If he€ N, C Z(N), then [¢;](,). = [ca] ()., 50 assume h ¢ N, and let N be the
smallest group in the central series that contains h. Then

¢icy ' Nig1 = g; 'hgjp(h) " Niyr = [g5, b (hep(h) ") Niy 1.

As cic;t € N, C Niqq and [gj, h™!] € Ni11, we find that

(©)k(ANgs1) = hNp11.

This would mean that Fix((¢')x) # 1, which in turn would imply that R(¢’)
00, which is a contradiction. Hence the result follows.

o

We may also take a quick look at the zeta functions.

Theorem 4.1.7 (see [Fel00, Theorem 45]). Let f be a self-map on a nilmanifold.
Then the Nielsen zeta function Ny¢(z) is rational. If the Reidemeister zeta
function Ry(z) exists, it equals the Nielsen zeta function (and is hence rational).

One can simply mimic example 2.6.7 to prove this, with the addition of the
case where A = 1 for an eigenvalue A of D,.

4.2 Infra-nilmanifolds and almost-crystallographic
groups

Just like for nilmanifolds, there exist algebraic formulas to calculate the Lefschetz,
Nielsen and Reidemeister numbers of a self-map on an infra-nilmanifold.
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Theorem 4.2.1 (see [KLL05; LL09] and [HLP12, Theorem 6.11]). Let I'\G be
an infra-nilmanifold and let F C Aut(Q) be the holonomy group of T'. If f is a
self-map on T\G with affine homotopy lift (d, D) : G — G, then

L(f) = #%? > det(l — A.D,),

AeF
1
N(f) = 57 2 [det(T = A.D.)],
1
R(f) = — |det(1 — AvDy)|oo-

As one can expect from these formulas, for infra-nilmanifolds it is not true in
general that N(f) = |L(f)| and R(f) = |N(f)|co-

Example 4.2.2. We provide a counterexample for each statement.
(1) Consider the group introduced in example 3.3.2(2), which was the

fundamental group of the Klein bottle. Let f be a self-map on the
Klein bottle inducing the automorphism f. = §,p) with

D:G _01).

Then using the formulas from theorem 4.2.1, we find that N(f) = 2 but
R(P) = .

(2) Consider the Bieberbach group generated by Z™ and

0 -1 0 0
(fo].lo -1 0])).
z 0 0 1

Let f be a self-map inducing the endomorphism f. = £, p) with
5 2 0
0,3 1 0f).
0 0 3

Then using the formulas from theorem 4.2.1, we find that N(f) = 12 but
L(f)=0.

However, the Nielsen and Reidemeister numbers are still closely related. The
following easily follows from the averaging formulas.
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Theorem 4.2.3. Let f be a self-map on an infra-nilmanifold. Then:

o |[LINHI<N(f),
e If R(f) < o0, then N(f) = R(f).

Proposition 4.2.4 (see [FL15, Remark 9.4]). Let M = T'\G be an infra-
nilmanifold and ¢ = {4 py an endomorphism of I' inducing a self-map f, =

(d,D): M — M. If N(f,) #0, then N(f,) = #Fix(f,)-

The above proposition says that when N(f,) # 0, every map homotopic to f,
has at least as many fixed points as the map f.

There is also an easy criterion to determine whether a map has finite Reidemeister
number. This criterion can be stated purely on the level of the almost-
crystallographic group, hence we will talk about the Reidemeister number
R(yp) instead of R(f,). In fact, this is corollary 2.5.15 adapted to the case of
almost-crystallographic groups.

Theorem 4.2.5 (see [DP11, Corollary 3.12]). Let I' be an almost-crystallo-
graphic group with holonomy group F. Let ¢ = &4 py be an automorphism of T'.
Then

R(p) =00 <= JA € F such that det(1 — A,D,) =0.

The averaging formula for the Reidemeister number of a self-map given in
theorem 4.2.1 can naturally be restated for endomorphisms, which we do below.
The original proof of this formula was done in a topological way, though it is
possible to give a purely group-theoretic proof.

Theorem 4.2.6 (averaging formula, see [HLP12, Theorem 6.11]). Let T' be an
almost-Bieberbach group modelled on the Lie group G and with holonomy group
F, and let ¢ = §q,p) be an endomorphism of I'. Then

1

R(p) = ﬁ

> det(1 = AuDy)|oo-
AeF

Proof. Let H C N be a fully invariant, finite index subgroup of I', which exists
due to lemma 3.4.4. H is, just like N, a finitely generated, torsion-free, nilpotent
group. For any a = (a, A) € T, the map tqp|g : H — H is a well-defined
endomorphism with ¢,4(4)AD : G — G as affine homotopy lift. One can verify
that

Fix(tapln) #1 <= det(1 — 144y« AxDx) =0 <= R(ta|n) = 0.
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However, the inner automorphism ¢,4(4y has little impact here, since

det(]l — LaA(d)*A*D*) = det(]l — A*D*)

If R(tawlm) = oo, then also R(¢) = oo by lemma 2.5.10(2) and hence the
formula holds in this case. So now assume that Fix(ta¢|g) =1 for all o € T

Consider the short exact sequence of finite groups
11— N/H—»T/H-L25F —1.

Fix a preimage p~'(A) for any A € F. There is a one-to-one correspondence
between the elements aH € I'/H and the products i(aH)p~t(A) with aH €
N/H and A € F. By proposition 2.5.16 and theorem 4.1.5, we have:

R(¢) = 5177 X Rshn)

1
=MV E 2 2 Rluwmiiaeln)
aHEN/H ACF

1 1
= TNV > ) ldet(l — AuD.)|oe

aHEN/H A€F

- L

y2 > [det(l — A,D,) . O

AeF

This averaging formula does not hold in general for almost-crystallographic
groups. See propositions 7.1.6, 10.1.6 and 10.2.1 for counterexamples.

Finally, let us again consider dynamical zeta functions. Theorem 4.2.3 says
that if the Reidemeister number is finite, it equals the Nielsen number. We
immediately obtain the following implication for the zeta functions.

Corollary 4.2.7. Let M be an infra-nilmanifold and f : M — M a self-map.
If Ry(z) exists, then Ry(z) = Ny(z).

The rationality of Reidemeister and Nielsen zeta functions on infra-nilmanifolds
was first studied in [Won01], and was proven by Dekimpe and Dugardein in
[DD15, Corollary 4.7].

Theorem 4.2.8. Nielsen zeta functions on infra-nilmanifolds are rational.
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This theorem is proven by showing that a Nielsen zeta function Ny(z) must
always equal one of Lf(z), Ly(z)~Y, Ly(—=2), Ly(—2)!, or the quotient of two
Lefschetz zeta functions. Since Lefschetz zeta functions are always rational, the
result follows.

Of course, since Reidemeister zeta functions coincide with Nielsen zeta functions,
Reidemeister zeta functions on infra-nilmanifolds are always rational. This was
also mentioned in [FL15, Proposition 3.2].

The proof of theorem 4.2.8 is topological in nature, since it uses the existence
of Lefschetz numbers, Lefschetz zeta functions, etc. To the author’s knowledge,
Reidemeister-Nielsen theory has not been developed for orbifolds, hence these
techniques cannot be used to research the rationality of Reidemeister zeta
functions of almost-crystallographic groups.
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Nilpotent groups






Chapter 5

Finitely generated,
torsion-free, nilpotent groups

In this chapter, we will determine the (extended) Reidemeister spectra of certain
finitely generated, torsion-free, nilpotent groups. Let us start by proving that
any such group has oo in its Reidemeister spectrum, so that we may omit this
calculation later.

Proposition 5.0.1. Letidy be the identity map on a finitely generated, torsion-
free, nilpotent group N. Then R(idy) = oo.

Proof. If G is the Mal’cev completion of N, then idg : G — G is an affine
homotopy lift of id v, and the induced morphism on the associated Lie algebra g is
the identity as well. By applying theorem 4.1.5 we obtain that R(idy) = co. O

5.1 Abelian groups

A finitely generated, torsion-free, nilpotent group is abelian if and only if its
nilpotency class is 1. Such group is isomorphic to the group Z"™, where n is its
Hirsch length. The Reidemeister spectra of these groups are well-known (see
for example [Rom11, Section 3]), but for the sake of completeness we will prove
them anyway.

Theorem 5.1.1. The group Z has Reidemeister spectrum {2,00} and full
extended Reidemeister spectrum.

81
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Proof. Any endomorphism of Z is uniquely determined by the image of 1, since
this element generates Z. Let us use ,, to denote the endomorphism satisfying
¢n(1) = n. From example 2.5.9 we know that

R(pn) = [1 = 1o

If m € N, then R(p1-m) = m and R(¢1) = oo, hence Z has full extended
Reidemeister spectrum. The only values of n for which ¢,, is an automorphism
are n € {—1,1}. These have Reidemeister numbers 2 and oo respectively, hence
Z has Reidemeister spectrum {2, co}. O

Theorem 5.1.2. The groups Z™ with n > 2 have full (extended) Reidemeister
spectrum.

Proof. Consider the family of n x n-matrices

0 0 1

1 0
DmZ: 0 )

: . .0 0

0O --- 0 1 —m

with m € N. By expanding the determinant of the matrix 1,, — D,,, along its
n-th column, we obtain

1 0 0 -1
-1 0
det(lln — Dm) = det 0 0
: . -1 0
o -+ 0 -1 14+4m

— (_1)2n—1 + (_1)2n(1 + m)

Each matrix D,, is an automorphism of Z™, hence using the formula from
example 2.5.9, we obtain that Z"™ with n > 2 has full (extended) Reidemeister
spectrum. O
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5.2 Nilpotent groups

To calculate the Reidemeister number of an automorphism of a finitely generated,
torsion-free, nilpotent group, we will make use of theorem 4.1.6.

The extended Reidemeister spectrum can be calculated for any such group in a
fairly straightforward way.

Theorem 5.2.1. A finitely generated, torsion-free, nilpotent group has full
extended Reidemeister spectrum.

Proof. Let N be a finitely generated, torsion-free, nilpotent group. Since N is
poly-Z (see theorem 3.1.13), there exists a normal subgroup M < N such that
N is the semidirect product N = M X Z. Let

P:MxyZ —Z:(m,z) 2z,
1:Z—>MxyZ:z—(1,z),

be the projection to and inclusion in the second factor respectively. From any
endomorphism
on L —7Z:zw nz,

we can construct an endomorphism ¢, :=io0 ¢, op on M Xy Z. Two elements
(ma, z1), (ma, 22) are ¢,-equivalent if and only if

(ma,21) ~g, (Ma2,22) <= 3I(mM',2") : (m1,21) = (M, 2')(ma, 22) b (m', )"

= I(m',2): (m1,21) = (M, 2')(ma, 20)(1,n2")~*

< I(m/,2") : (m1,21) = (M (M), 2 + 29 — n2’).

1

Since we can always pick m’ = mq1,/(msg) ™!, we continue with the following

equivalences:
!/ ! /
— d2':z1 =2 + 29 —nz
= 21 Y, 2.

This is just the ¢,-twisted conjugacy on Z, so R(¢,) = R(¢n). From
theorem 5.1.1 we then find that N has full extended Reidemeister spectrum. [

5.2.1 Dimension 3

A finitely generated, torsion-free, nilpotent group of dimension 3 can have
nilpotency class at most 2. It is known (see [Seg83, Chapter 11, Proposition 5])
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that such group is isomorphic to one of the groups
Ni = (a,b,c | [b,a] = ¥, [c,a] = [¢,b] = 1),

with k € N, which we already introduced in example 3.1.10. We also mentioned
there that the adapted lower central series of N} is given by

Theorem 5.2.2 (see [Dugl6, Theorem 9.2.8]). Let N be a finitely generated,
torsion-free, nilpotent group of rank 3 and nilpotency class 2. Then its
Reidemeister spectrum is 2N U {oo}.

Proof. Assume that N = Nj, (as defined above) for some k € N. Let ¢ € Aut(N)
and assume that R(¢) < co. Then ¢ induces the automorphisms

(@)1 N/(c) = N/(c),  (p)z2:(c) = (),

on the factors of its adapted lower central series. We know from theorem 4.1.6
that R(p) = R((¢)1)R((¢)2). Since {c) is isomorphic to Z, theorem 5.1.1 tells
us that R((¢)2) = 2, and hence R(p) € 2N.

Let us now prove that for every m € N, there exists an automorphism ,, with
R(¢m) = 2m. Define ¢, as

om(a) =b, ©m(b) =ab™™, @m(c)=c".
This is a well-defined automorphism on N, since
[om (), om(a)] = b™a b~ ab™™b

=" ta " teFab™ ™D

=" ta " tab b

The automorphism (¢,,)1 on N/(c) = Z? is the matrix

eun=(3 )

which has Reidemeister number R((¢n,)1) = m as proven in theorem 5.1.2.
We also have that R((¢.,)2) = 2, hence R(py,) = 2m and thus Specr(N) =
2N U {oo}. O
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5.2.2 Dimension 4

A finitely generated, torsion-free, nilpotent group of dimension 4 can have
nilpotency class at most 3. In [Dek96, Corollary 6.2.4], it is shown that such
group with nilpotency class 2 is isomorphic to a group

bya] =d* [c,b] =1
Nk=<a,b,c,d| [c,a] = [d,b] =1 >,
[d,a] = [d,c] =1

for some k € N.

Theorem 5.2.3 (see [Dugl6, Theorem 9.2.9]). Let N be a finitely generated,
torsion-free, nilpotent group of rank 4 and nilpotency class 2. Then its
Reidemeister spectrum is 4N U {oo}.

Proof. Assume that N = N}, (as defined above) for some k € N. Consider the
central series given by

N > <Cad| [Cvd] :1> > <d> > 1

The second group is exactly Z(N) and the third is Y/72(IV), hence this central
series satisfies the conditions needed to apply theorem 4.1.6. Let ¢ € Aut(N)
and assume that R(¢) < co. Then ¢ induces automorphisms

(90)1 : N/<Cv d> - N/<Cv d>a
()2 : (e, d)/{d) = (¢, d)/(d),
()3 : (d) = (d),

on the factors of the central series, and

Since both (¢, d)/(d) and (d) are isomorphic to Z, theorem 5.1.1 tells us that
R((¥)2) = R((¢)3) = 2, and hence R(p) € 4N.

Let us now prove that for every m € N, there exists an automorphism ¢, with
R(¢m) = 4m. Define ¢, as

@m(a) =b, @m(b) = ab_mv Qom(c) = C_l, (Pm(d) = d_17

then just like in the proof of theorem 5.2.2, ¢, is a well-defined automorphism,
and we can calculate that R(¢.,) = 4m. Thus Specg(N) = 4N U {co}. O
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Next, let us consider the case of nilpotency class 3. In [Dek96, Proposition
6.2.6], it is shown that such group is isomorphic to

[b,a] = cF1dF2 [e,b] =1
Niy ko ks = <a,b, c,d| lc,a] = d [c,d] =1 > ,
[d,a] =1 [d,c] =1

with k1, k3 € N and ks € Z.

Theorem 5.2.4 (see [Dugl6, Theorem 9.2.10]). A finitely generated, torsion-
free, nilpotent group of rank 4 and nilpotency class 3 has the R, -property.

Proof. Assume that N = Ny, k, k. (as defined above) for some k1, k2, k3. The
adapted lower central series of such group N is given by

N > {c,d|[c,d] =1) > (d) > 1.
Let ¢ € Aut(N) and assume that R(p) < co. Then ¢ induces automorphisms
(0)1: N/{e,d) = N/(c,d),
()2 : (e, d)/(d) — (c,d)/(d),

()3 = {d) = (d).

By theorem 4.1.6 we have that R(p) = R((¢)1)R((¢)2)R((¢)s). Note that if
R((¢)2) < 00 and R((¢)s) < oo, then (p)2(c(d)) = c¢™(d) and (p)3(d) = d™".
So in turn ¢(c) = ¢~ 1d" for some v € Z, and p(d) = d~!. Let us now set

pla) = a® b2 3 d,
go(b) — gPrpP2ePs gPa
Since ¢ is an automorphism, one can compute that

A" = o(d)* = [p(c),p(a)] = ™",

1= [p(e), (b)) = d—+o51.

Thus, ay =1 and $; = 0. But then the matrix corresponding to () is of the

form
wh=(p 1)

Using example 2.5.9 we then find that

Rio) =lder(tz = (1)l =ox

hence also R(p) = oo. O



Chapter 6

Free nilpotent groups

Most of the results of this chapter can be found in [DTV17].

6.1 Reidemeister theory on free nilpotent groups

We would like to use theorem 4.1.6 to calculate the Reidemeister numbers
of free nilpotent groups. Thus, it is essential for us to be able to compute
the determinants det(1 — (¢);) for a given endomorphism ¢ of N, .. This is
equivalent to understanding the eigenvalues of the matrices (¢);. The lemma
below (which is a more explicit version of [DG14, Lemma 2.4]) shows that these
are completely determined by the eigenvalues of (¢);.

Definition 6.1.1. Fix an r-tuple of complex numbers A = (A1, Ao, ..., \).
Let H = U,enH,, be a Hall basis of the free Lie algebra f,.. We define a map
fr: H— C inductively by

o Vi€ {172,...,7'}2 f)\(Xz) =\

Let n > 2 and assume that f\(X) has been defined for all X € Hj with
1<k<n-1

e Consider X € H,, then X = [U, V] for some U € H, and V € H; with
kE+1=mn. Weset fA(X) := fr(U)fr(V).

We will say that fy is the map associated to .

87
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Example 6.1.2. We have that
I([XG, X51) = Ny and fx([XG, [X5, Xe]] = Aidj A

Lemma 6.1.3. Let r > 2 and ¢ > 1 be positive integers and assume that
¢ € End(N,.) is an endomorphism inducing endomorphisms (@), on the
quotients 'Yk(Nr,c)/’Yk-‘rl(Nr,C) (1 <k< C).

Let A1, Mg, -+, Ay be the eigenvalues of (p)1 (each eigenvalue is listed as many
times as its multiplicity). Let H be a Hall basis of the free Lie algebra §,. and
A= (A1, A,..., ). Let fr : H — C be the map associated to A. Then the
eigenvalues of (p)r (1 <k < c) are given by

Spec((p)r) = {/A(X) | X € Hy}.

In this way each eigenvalue is then listed as many times as its multiplicity.

Proof. Let ¢, denote the corresponding morphism on the Lie algebra g, .. As
mentioned before, the eigenvalues of (¢); are the same as the eigenvalues of (. );,
the morphism induced by @, on v;(gr.c)/Vi+1(8rc) (as they can be represented
by the same matrix). It is well known that the semisimple part of ¢, is also an
automorphism of g, . (See for example [Seg83, Corollary 2, page 135]) having the
same eigenvalues as ¢, (also on each quotient v;(g,.¢)/Vi+1(gr.c)). Therefore, we
may assume that ¢, is semisimple. Let ggc = gr,c ®r C be the complexification
of g, then there exists a basis of gfic consisting of eigenvectors for o, (which
we can also consider as being a morphism of g%c). It follows that we can
find 7 eigenvectors X7, Xo,..., X, of gsc such that their canonical projections
X1, Xo,...,X, € gfc/vg(ggc) form a basis of ggc/'yg(ggc). This implies that
X1, Xs,..., X, are free generators of the free nilpotent Lie algebra gSc. We
can assume that H is a Hall basis with H; = {X1, X»,..., X, } and that X is
an eigenvector with eigenvalue A;. By induction, it now follows that if X € H;
(1 <i<¢), then X is an eigenvector for ¢, with eigenvalue fy(X). Indeed,
assume that ¢ > 2 and the claim already holds for smaller values of i, then X is
of the form X = [U, V] with U € Hy, and V € H; for some k,l < i. Then

@ (X) = @i ([U, V]) = [pu(U), (V)]
= (AU, HL(V)V] = AU AU V] = f(X)X.

As the canonical projections of the vectors in H; form a basis for the vector
space fyi(ggc)/fyiﬂ(g%c), it follows that the collection of eigenvalues of (p.);,
and hence also of (¢);, is exactly the collection of values f)(X), where X ranges
over all vectors in H;. O
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Example 6.1.4. Continuing example 3.2.27 and example 6.1.2 we find that
when A\, g, ..., A\, are the eigenvalues of (¢)1, then the eigenvalues of ()2 are

)\i>\j Wlth1§1<]§7”,
and those of (¢)3 are

AMApwith1 <j<k<rand1<j<i<r

We are especially interested in the case that ¢ is an automorphism. In this case
the induced map (p); will be an automorphism of Z". We can consider the
morphism

¥ Aut(N, o) = Aut(Z") : ¢ — (o)1,

which is surjective. Indeed, it is well known that the analogous map Aut(F,) —
Aut(Z") for the free group is surjective (see [MKS76, Theorem N4, Section 3.5]).
Since all automorphisms of F,. induce an automorphism on N, ., the surjectivity
of ¢ follows immediately.

As explained above, R(y) only depends on the eigenvalues of ., which are
completely determined by the eigenvalues of (p); (by lemma 6.1.3). Hence, it
is enough to know the characteristic polynomial of ()1, which is of the form

p(x) =a" + ar" Va4 ag, @ €Z, ag€ {-1,1}, (6.1)
since ag = (—1)" det((¢)1)-

Conversely, any monic polynomial p(z) of degree r of the form (6.1) (still with
a; € Z and ap = £1) is the characteristic polynomial of its companion matrix
C, € GL,,(Z), where

Cy =

1 —0r—1

As 1) is surjective, we know that there exists an automorphism ¢ € Aut(N, )
with (¢)1 = Cp. So instead of focusing on the automorphisms ¢, we will
in the sequel focus on the corresponding characteristic polynomial. Let
p(z) be a polynomial of the form (6.1). We will denote by R.(p(x))
the Reidemeister number of any automorphism ¢ of N, ., such that the
corresponding automorphism (¢); has p(z) as its characteristic polynomial.

Thus, in order to calculate the Reidemeister spectrum of N, ., we have to
compute all possible numbers R.(p(x)) for all possible polynomials p(z).
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6.1.1 Elementary symmetric polynomials

Our approach to calculating the Reidemeister numbers R.(p(x)) makes use of the
so-called elementary symmetric polynomials, i.e. the multivariate polynomials
ey defined as

ep(x1, T, ..., Tpy) = E Xiy Ty =+ Ty
1<i1<ia<--<ip<n

If p(z) is any monic polynomial
p(x) =" +a, 12" + -+ a1z + ao,

with complex roots A1, Ag,..., A, then p(x) can be written as

T

p(z) = H(:c— =z" +Z )'ei(A1, A,y An)a” T,

i=1
or in terms of the coefficients this means that
ar—i = (=1)'e;(A1, A2,y ..oy A,
forall 1 <i<r.

Theorem 6.1.5 (Fundamental theorem of elementary symmetric polynomials,

see [Mac95, Section 1.2]). Let A be any commutative ring and q(x1,x2, ..., xy,)
a symmetric polynomial in Alxy,zo,...,x,]. Then there exists a polynomial
r(z1, 22, ..., xy) in Alx1, 22, ..., x,] such that

q(z1, ..y xn) =rler(@r, .o, Zn)s ooy en(T1y oo Tp)).
This theorem tells us that if we have a symmetric polynomial ¢ € Z[\q, ..., /\r]
whose variables \; are the roots of a monic polynomial p(z) = 2" 4+ Zl 0 @i’
with integral coefficients, then actually ¢ € Z[ao, . .., a,_1].

To calculate the Reidemeister spectrum of IV, ., we will adopt a “divide and
conquer” strategy, splitting up R.(p(z)) in factors that are each symmetric
polynomials in the roots A;, and calculating these factors in terms of the
coefficients a;.

Example 6.1.6. Let ¢ be an automorphism of N,.., let p be the characteristic
polynomial of (p); and Aq,..., A\, the roots of p (and hence the eigenvalues of
(¢)1)- Then

det(t — (@)) = [[(1 = A) = pl1) = S+ 1.
3 1=0
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6.1.2 Results on general free nilpotent groups

For a general free nilpotent group, there exists a sufficient (but not necessary)
criterion such that its Reidemeister spectrum is not full.

Proposition 6.1.7. Let N, . be a free nilpotent group with ¢ > r. Then the

Reidemeister spectrum of Ny . is not full.

Proof. For any polynomial p(z), the r-th factor of R.(p(x)) will be a product

of the form
TT@ = Nixi, - A

Splitting this further up in factors that are each symmetric polynomials, one of
them will be
(1*)\1)\2"'>\r) :170,0,

which is 0 or 2 depending on the constant term ag. Hence either R.(p(z)) = oo
or R.(p(x)) € 2N, and therefore Specy (N, ) C 2N U {co}. O
In section 6.2.2 we will show that the Reidemeister spectrum of N3 is not full,

illustrating that the criterion above is not necessary.

For the R..-property, there does exist a necessary and sufficient criterion. Let
us first recall the following:

Lemma 6.1.8 (see [DG14, Proposition 2.3]). For any r € N, there exists a
matric A, € GL.(Z) with r distinct eigenvalues A1, Aa, ..., Ay such that

Vk€{1,2,...,27“—1},Vi1,i2,...,ik 6{1727~~'7T}:>\i1>\i2"')\ik 7&1

Theorem 6.1.9 (sece [DG14, Theorem 2.5]). A free nilpotent group N, . has
the R, property if and only if ¢ > 2r.

Proof. We first prove that if ¢ > 2r, then R.(p(z)) = co. For any polynomial
p(z), the 2r-th factor of R.(p(x)) will be a product of the form

LT = X h, - A,

Splitting this further up in factors that are each symmetric polynomials, one of
them will be
(1= A3A3 - A0 =1 (a0)* =0,

hence R.(p(z)) = oo.
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Conversely, let ¢ < 2r and let p(x) be the characteristic polynomial of a matrix
A, as defined in lemma 6.1.8. Then R.(p(z)) is the product of factors of the
form

(1 —AigAiy )\Zk)

with k < 2r. Because of the choice of A,., all of these factors are non-zero and
hence R.(p(x)) < oo. O

6.2 Nilpotency class 2

In this section we want to prove that the Reidemeister spectrum of NN, 5 is full
for all r > 4, as well as calculate the spectra of N3 2 and N3 9. The Reidemeister
number Ry (p(x)) is given by

Ro(p(x)) = |JJ(x = 20) JT(@ = aixy)

% 1<j

6.2.1 Rank 2

We are dealing with a polynomial p(z) given by
p(z) = 2% + a1z + ao,

with a1 € Z and ap € {—1,1}. The polynomial p has two roots A1, A2, for which
A2 = ag and A1 + Ay = —aq. As shown in example 6.1.6 the first product of
Ra(p(z)) is p(1) = 14 a1 + ap. The second product is 1 — A\ Az =1 — ag. Thus,

Ry(p(x)) = l(ao + a1 + 1)(1 = ao)oo-

If we assume that the Reidemeister number is finite, then we must have ag = —1.
Then Ry (p(x)) = 2|a1|e and hence Ra(p(x)) € 2N.

We define the family of polynomials ¢, (z) := 22 + nx — 1 with n € N, then
Ry (gn(z)) = 2n, hence Specp(Na,2) = 2NU{oo}. The result of this computation
coincides with theorem 5.2.2 (since N3 o is isomorphic to Ny as defined above
said theorem), and with [Rom11, Section 3], where Specy (N2 2) was computed
via other techniques.
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6.2.2 Rank 3

We are dealing with a polynomial p(z) given by
p(z) = 2% + as2® 4+ a1z + ag,

with a1,a2 € Z and ag € {—1,1}. The polynomial p has three roots A1, Az, Az,
for which

ag = —A1A2A3,
a1 = AAz2 + A3 + Aods,
a9 = 7)\1 — )\2 7)\3.

The first product of Ra(p(x)) is p(1) = 1 + as + a1 + ag. The second product
can be calculated as follows:

[T =xx) = l]‘[ /\k] IT v =)
k

i<j i#k#]
i<j

=—a;" [ M + a0)

k
= ag p(—ao)
= —a%—i—aoag—al +1
= apaz — ay,
where we used that a3 = 1 in the last step. Hence we obtain

Ry(p(x)) = |(1 + a2 + a1 + ao)(apaz — a1)|,

|a2+a1|go if ag = —1,
(a5 +1)% — (ay + 1) ifag = 1.

Thus Ra(p(z)) is a square or the difference of two squares, so it must be a
multiple of four or an odd number. We define two families of polynomials. First,
set q,(z) == 2% + nz? + (n — 1)z + 1 with n € N, then Ra(gn(x)) = 2n + 1.
Second, set r,,(z) := 2% + nz? + (n — 2)x + 1 with n € N, then Ry(r,(z)) = 4n.
Hence Specp (N3 2) = (2N — 1) U4AN U {oo}. Again, this result coincides with
that of [Rom11, Section 3].
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6.2.3 Even rank at least 4

Let r = 2m for some m € N with m > 2, and let n € N be arbitrary. For the
polynomial
Pom.n(T) = 2™ — ™ (n— 1)2™ + 1

with roots A1, Ag,...,Aam, we will show that Ra(paman(z)) = n. This
polynomial was first considered in [Mij14] where it was also conjectured that
indeed Ra(p2m.n(z)) = n. In her thesis M. Mijle verified this conjecture for
m=2,3,...,9.

In the computations below, we will simply write p(z) instead of pay, n(z). The
first factor in the computation of Ra(p(z)) is p(1) = n (see example 6.1.6), so it
suffices to prove that

[Ta=xx)| =]Ja-xx) =1 (6.2)

i<j i#]

We note that [[, \; = 1 because p(x) has even degree and has constant term
equal to 1. Also, if A; is a root of p(x) then

N (n = DA 1= AL

SO
XEp() = A (n = DA = AP 41
= \mtl _ ym-t
=),
giving

POATY) = =A™ (1 - X2). (6.3)

(2

We want a polynomial whose roots include A;A;, so to this end we define

q(x) = 1:[;0 (j\c) :
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We then calculate

:H(m
= [ - xx) H(x—Af), (6.4)

i#]
where in the second-to-last line we used the noted fact that [, \; = 1. Consider
q(1) =TT = xx) JT@=2D). (6.5)
i#] i

For comparison, from (6.3) we obtain an alternate representation for ¢(1):

:Hp(,\—l
—H [=AT M1 = AD)]

—m—1

] e

= H(1 —\2), (6.6)

where we have again used the fact that [[, \; = 1. Since n € N and p(1) =n, 1

is not a root of p.

If —1 is not a root of p, then A\? # 1 for all i, so the factor [],(1 — A?) in both
(6.5) and (6.6) is non-zero. The desired identity (6.2) then follows.
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Now suppose that —1 is a root of p, then 0 = p(—1) = 2 + n(—1)™ and hence
n = 2(—1)™*L. For the derivative p’ of p we find that

P(=1) =2m(=1)*""" — (m+ (=)™ + m(n — 1)(-1)"
==2m+ (m+1)(=1)" " + m2(-1)"™ " = 1)(-1)" !
= (=1)m™*h (6.7)

Hence —1 is not a double root, so we can call this root \;. For x # 1 we can
divide both sides of (6.4) by z — 1 to get

M — H(m - )\i>\j) H(«T - )‘12)7

z-1 i#£] i>1
and hence ()
. q\xr
lim 1= H(l = AiAj) H(l — A7) (6.8)
i#j i>1
Alternatively,
q(z) _ p(—=) x
x—1 -1 Hp X )
i>1
so that using ’Hopital’s rule we find
o 4 _ S
tg 775 = o] o)
= (D[ =9
i>1
—m—1
o [Tl o=
i>1 i>1
=[Ia-x9, (6.9)

i>1
where in the second line we used identity (6.3) and in the last line we used both
(6.7) and the fact that

[[r=x'=xn=-1

i>1
By comparing (6.8) and (6.9) the desired identity (6.2) follows.

As a conclusion of this computation we find:

Theorem 6.2.1. Let m > 2 be an integer, then Specg(Naop, 2) s full.
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6.2.4 0Odd rank at least 5

Let r = 2m + 1 for some m € N with m > 2, and let n € N be arbitrary. For
the polynomial

Pomi1n(®) = 2T 4 (0 + 1)z 4 (1 — )™t
+(n—1z™ —nz™ ' -1,

with roots A1, Ag, ..., Agmt1, we will show that Ra(pam+1,n(2)) = n + c(m),
where

¢(m) = 2+ cos (m%) + /3 sin (m%)

0 ifm=4 (mod6),
_J1 ifm=3 (mod6)orm=5 (mod6),
)3 ifm=0 (mod6)orm=2 (mod6),
4 ifm=1 (mod6)

It then follows that R2(pam+1,n—c(m)(2)) = n. The proof uses similar techniques
as for the case where r is even. Again, during the computations, we will simply
write p(z) instead of pay41,n ().

As always, the first factor of Ra(p(z)) is p(1) = 1, so it suffices to prove that
H(l — AN\ =n+c(m). (6.10)
i<j

We first calculate some specific values of p(x):

p()= J[a-x) =1, (6.11)

p(-1) =-JJa+X)=(-1)"(4n—1)-2. (6.12)

i
We find that both 1 and —1 are not roots of p(z). Also, for any root \; we have

SN2 — (£ DA (1= ) AT 4 (0 — DA — AT 1
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SO
/\?m+1p()\i—1) _ _)\?m+1 _ n)\;_ww + (n _ 1)/\;_n+1
+ (A=A + (n+ DA 41
_ )\;_n+2 _i_)\;nq
= AP (14 X))
=A7THL A N) (e3T = N) (e73T =),
giving

PO = AT (AN (€57 = A) (€73 = X)L (6.13)

Again, we define a new polynomial ¢(z) as

q(x) == 1:[19 (f) :

and once again

g(x) = [T =22 [T (= = AD).
i£j i

Let us evaluate g(z) in = 1:

a)=JTa-2x) [T (-4

i#j i
=[[a-rJTa-2]a+x
i#j i i
= —p(—l)H(l—/\i/\j), (6.14)
i#j

where we used (6.11) and (6.12) in the last step.
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We evaluate ¢(x) in = 1 again, this time using (6.13):

o) = [[p7)

_ H)\i—nL—Q (1 + >\1) (6%1 _ >\z) (6757‘. - Al)

S |10 [ IR ) T

Comparing equations (6.14) and (6.15) now gives

H (1= X)) = |p (e37)

i

2

)

or by using that the product on the left-hand side is symmetric in the indices,
that

H (1 — /\1/\]) = ’p (6§l)‘ .

i<j
One may now evaluate ’p (e%i)’ to obtain
p (e%i)’ = ‘n + 2+ cos (mg) + V3 sin (mg) ‘ =n+c(m).

This proves the following theorem:

Theorem 6.2.2. Let m > 2 be an integer, then Specp(Nam41,2) s full.

6.3 Rank 2

We are dealing with a polynomial p(z) given by
p(z) = 2% + a1z + ao,

with a1 € Z and ag € {—1,1}. The polynomial p has two roots A, Ag, for
which Aj A2 = ap and A\ + Ay = —a;. The spectrum of N3 2 has already been
calculated in the section on nilpotency class 2.
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6.3.1 Nilpotency class 3

If the nilpotency class ¢ is 3, then R3(p(z)) is given by

Ra(p(x)) = |TT0 =) TTr = 2d) TT (= Aidiaw)

i i<j j<k
j<i o

Again, let us assume this Reidemeister number is finite. From the calculations
we made for Nj 2, we know that A\ A2 = agp = —1 and that the first two products
are a1 and 2 respectively. The third product becomes

[ =20 = (1= M) (1 = M) = (L+ M)+ A2) = p(=1) = an,
<

so all factors combined give R3(p(x)) = 2|a;|% , hence R3(p(z)) € 2N2.

Defining the polynomials g, := 2% +nz —1 with n € N, we find R3(g,(x)) = 2n?,
hence Specy(Na 3) = 2N? U {oo}. This result was also obtained, using another
approach, in [Rom11, Section 3].

6.4 Rank 3

We are dealing with a polynomial p(z) given by
p(z) = 2 + as2® + ayx + ag,

with a1,a2 € Z and ag € {—1,1}. The polynomial p has three roots A1, Aa, As,
for which

ap = —A1A2A3,
a1 = AMA2 + A A3 + Ao s,
as = —)\1 —)\2—)\3.

We have already computed the spectrum of N3 5 in the section on nilpotency
class 2.
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6.4.1 Nilpotency class 3

If the nilpotency class ¢ is 3, then R3(p(z)) is given by

Ry(p(x) = |J T =) T =) TT@ = Aixsa)

i 1<J <k
i<i -

From our calculations for N3 o, we already know the first two products. We can
split the third product in two symmetric polynomials in the A;:

TT = xixan) = (1= Adeda)? T (1 = A2N)).
i<k i#]
ISt

The first polynomial equals (1 + ag)?. If we assume that R3(p(z)) is finite, then
agp = —A1A2A3 must equal 1, and then this polynomial equals 4. Let us tackle
the second polynomial.

-2
[T -x) = [H Ak] II Ou=aiuh)
iy % i#jEkAi

= (D] e+ )

ik
= H (—a2 — A;)
J
= p(—az)?
= (1 —ajaz)*.
Putting everything together we find
Rs(p(z)) =4 ](2 +a; +ag)(ay —az)(l — a1a2)2’00
Substituting a = 1 4+ a; and b = 1 4+ a2, we may rewrite this as
Rs(p(x)) = 4|(a® = b*)(a + b — ab)?|o,

and in particular, if a # &b, then |a®>—b%| > |a|+|b|, hence R3(p(x)) > 4(|a|+b]).
This allows us to, in some sense, calculate the Reidemeister spectrum of N3 3.
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By calculating Rs(p(x)) for all pairs (a,b) with |a| < |b] < 250, we know that
the Reidemeister numbers less than 1000 are exactly 4, 12, 20, 32, 60, 64, 96,
108, 140, 192, 252, 300, 320, 324, 396, 480, 500, 572, 672, 700, 756, 780, 800,
896 and 980.

To give a general idea on what numbers can be in the spectrum, consider the

different values of ¢ and b mod 2:

e a,b=0mod 2. Then |a? —b?| is a multiple of 4 and a+b— ab is a multiple
of 2. Hence R3(p(x)) € 64N.

e a=0,b=1mod 2 or vice versa. Then both |a? — b?| and a + b — ab are
odd. Hence R3(p(x)) € 42N —1).

e a,b=1mod2. Then |a? — b?| is a multiple of 8 and a + b — ab is odd.
Hence R3(p(z)) € 32N.

Together with the calculated Reidemeister numbers mentioned earlier, we may
then state that Specp(V3,3) € 32N U 4(2N — 1) U {o0}.

6.4.2 Nilpotency class 4

If the nilpotency class ¢ is 4, we require a total order on Hy (the elements of
length 2 in the Hall basis). Let us use < to denote the lexicographic order on
N2 ie. (i,7) < (k,0) if and only if i < k or i = k and j < [. We then put a
total order on Hj by saying that [X;, X;] < [X, X;] if and only if (¢, 5) < (k,1).
The elements of H, are then given by

° [Xla [Xja [Xk;Xl]H with k& < l7 k S] < ia

° [[Xian]v [kaXlH with ¢ < Js k< lv (Zvj) < (kvl)

Thus R4(p(x)) is given by

Ru(p()) = Rs(p(@)) | [T A =2nxed) [ (=)

k<j<i 1<j
k<l k<l
(4,5)<(k,l) 00

Since the rank is 3, the two products at the end can be rewritten as the following
three products, based on the number of distinct roots in every factor.

[T =2 TT - A23) TT (1 —22xa0%
i i<i itk
i<k
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Because we are interested in finite Reidemeister numbers, we must assume that

ag = —A1A2A3 = 1. We start with the first product.

H(l — A\ = [H )\k] _ H (A = APA;Ak)
k

i#] itk
= (D2 JJOw+ D)
ik

= HO\L + >\12)

i

] e

-1

TTOw + 2%

ik

—1

3

i,k

= p(=1) 7" [ [ piv2e)p(=iv/Ax).

k
We now calculate what p(iv/Ag)p(—iv/Ag) is for any root Ay of f:
PV AIP(=iVAr) = XL+ (a5 — 201)A% + (o] — 2a2) M + 1

= (a3 — ag — 2a1)\; + (a3 — a3 — 2a2) M\

2
9 ai — a1 — 2as
= —ag —2a) g [ A+ 55— ).
(a5 — ag — 2a1) k( k+a§—a2—2a1)

Hence

a? —a, —2a
[10 =20 = (1703 = a2 =200 [ [ (Ak + )

11 —az — 2a1
i#£j 2

(a3 —ag — 2a1)3p (_a% —a, — 2a2)

as — a1 a3 —as — 2a;

= —a} — a} — 3atay — 3aja5 —a} — a5+ alad

3 3, .3, .3 2.2 2
+ bajag + Sayray + aj + a; + 10aja; — ajas

—aja3 — 7a3 — Ta3 — 13a;a;.

H(Z\/)\» = M) (=iv A = Ai)
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The second product is less troublesome:

3 )
T[(- 3238 — [H Ak] IT 02— 22
k=1

e
= (—1)*21;[@% -1)
= 1;[(1 — ) (=1 —Ap)
=p(1)p(-1)

= (a1 + a2 + 2)(az — a1).

Finally, for the third product, we have:

IT @=x2x0007 =]+ 2)?
J#iFk i
i<k

All products together give us that

Ry(p(z)) = 4|(a1 — a2)®(a1 + a2 + 2)*(1 — a1a2)?(a + - - - + 13a1az)|

or if we again substitute a = a; + 1 and b = as + 1, we get
Ry(p(z)) =4|(a—b)*(a® —=b*)*(a+b—ab)*(a® + -+ — 94ab)|OO .

One can show that every such Reidemeister number is divisible by 32. The 10
smallest Reidemeister numbers are
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6) 69984,

7) 139264,

(
(
(
(

9

)
)

8) 559872,
) 980000,
)

(10) 1138688.

6.4.3 Nilpotency class 5

If the nilpotency class ¢ is 5, then the elements of Hs are given by

o [ X4, [ Xy, [ Xk, [ X0, X]]) with L <m, 1 < k < j <4,
o [[Xi, X5), [ Xk, (X0, X J]) with 4 < j, L <m, I < E.

Thus Rs(p(x)) is given by

Rs(p(x)) = Ra(p(@)) | T (1 =2Nxddm) T (1= AdAedidm)

I<k<j<i 1<j
I<m I<m
<k

oo

Since the rank is 3, the two products at the end can be rewritten as the following
four products, based on the number of distinct roots in every factor.

[T =X [T = A0a22 TT @ =xaa0* TT (1= 22008
i#£] i#£] JF#iIFEk i#k#]
i<k 1<j

Because we are interested in finite Reidemeister numbers, we must assume that
ag = —A1A2A3 = —1. The first factor is once again the hardest to express in
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terms of a1 and as. We will work as follows:

3 -2
[T = ) = [H /\k] I Ox =)
k=1

i itk

= (D)2 ]JOw+ D)

itk

= lH()\z +27)

-1

H()\k: +27)

=- [H A] i)
e 20w (3 9/0) p (75 V/0%)
k
= @) [T p(=/20p (38 p (75 8/0)

For any root Ay, of p, the expression p(—/Ax)p (€37 ¢/Xp) p (€737 /Ai) equals
- )‘i + (ag —3aiaz + 3))\% + (—ai’ + 3aias — 3))% +1

= (a3 — 3a1az + az + 3)A; + (—ai + 3aras + ag — 3)\j, + 2

:A()\;H—BJ;/;/E) (AHB?A@),
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with
A:ag —3aas + as + 3,
B = —a? + 3a1a2 + a1 — 3,
D = —8a3 + 9a3a3 — 6ajas + 6aiay + 6ajas
— 8ag + af — 2a} + 643 + a3 — 6a; — 15.
Hence:

4 N2 43 B++VD B-+D
[T =X = Ip() 24 ];[ <)\k+2A> (AHM)

i#£j
A3 ( B+\/D> < B—\/D>
)p - pl|—

" (a2 + a2 —2a, — 2az + 2 2A 2A

= a] + ab +2a8 + 2aS — 4a3a? — 4a2al — Tajas — Tayal + a}
+ a5 + atay — Tajas — Tajay + Tat + Tas + 17a’as
+ 14a3a? + 14a2a3 — 10a3ay — 10a1a3 + 118 + 11a3
—19a%a3 — 22a%ay — 22a1a3 + 11a + 11a3 — ajas + 10ay

+ 10as + 4.
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The second product is still somewhat troublesome:

-2

[T =285 = [H )\k] IT 02 =X

i#] ijAkAi

D72 TTO% -

i#k

= H(Ai—m] TIO% =)

i ik

-1

=TI - 1)] [T/ =20 (v =)

= —p(1)~ [ p(VA)p(=v/N).
We now calculate what p(v/\;)p(—+v/A;) is for any root A of p:

FOVA)F(=VA) = =22 + (=2a1 4 a2)A? + (—a? 4 2a2)\; + 1

= (=2a1 + a3 + ax)\? + (—a? + a1 + 2a9)\; + 2

B+VD B—+VD
:A<)\i+2A> (Ai+2A>’

with
A= —2a1 + a3 + ax,
B = —a% + a1 + 2as,

D = a‘l1 — Qa? — 4a%a2 + a? + 4a1a9 + 16a1 — 4a§ — 8asg.
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Hence:

2\2 _ -1 B+vD B-VD
H(l - )‘§)‘7) - —p(l) ABI:[ <)\z + 2A> ()\i + 2A>

i#]

2 <_B+@>p<_3_@>

T tas 2l 24 24

= a} + a5 — 3atay — 3ara; + af + a3 + adad — 5ala,
— bayas + at + a3 + 10a3a3 + 3atas + 3aia3

+ 3a% + 3a§ — 13a1a0 — 2a1 — 2a9 + 4.

The third product is not too hard.

IT a =220 =TJa+x)

JF#IFEk (
i<k

=TG- 2)(=i—x)

= p(i)p(=1)
= lp(i)I”
=a? +al—2a; — 2ay + 2.

Finally, the fourth product is quite easy as well.

3 1
TT (- — [H Ak] IT Ov - 222232)
k=1

i£k#] i£kA]
i<j 1<J
=—J[w-D
k
= -p(1)
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All products together give us that
Rs(p(x)) = 4|(a1 — a2)®(a1 + a2 + 2)*(1 — aya2)?(a] + -+ - +2)*

(a7 + -+ 13aras)(a] + -+ 4)*(a] +--- +4)[ _,
or if we again substitute a = ay +1 and b = as + 1, we get
Rs(p(z)) = 4|(a+b)*(a® = b*)°(a+b—ab)*(a® +--- +8)*

(a® + -+ — 94ab)(a® + - - + 18ab)*(a” + --- + 18ab)’oo .

One can show that every such Reidemeister number is divisible by 2048. The
10 smallest Reidemeister numbers are

(1) 1280000,

(2) 631535616,

(3) 9885304832,

(4) 646400000000,

(5) 11433202941952,

(6) 2304141516914688,

(7) 23464505849675776,

(8) 84943913980852224,

(9) 173876382269440000,
) 973098408800000000.

6.5 Direct products of free nilpotent groups

This section builds greatly on results obtained by K. Godecharle, as part of her
Master’s thesis [God16]. The goal of this thesis was to determine which direct
products N, . x N,/ . of two free nilpotent groups have the R..-property.

The aim of this section is to generalise this to a general direct product N of
free nilpotent groups, and to obtain results for the Reidemeister spectrum as
well. This product N can be written as

m n;

N = HHNri,cw

i=1j=1
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where n; € N and (r;,¢;) # (15, ¢;j) if ¢ # j. Moreover, by combining the abelian
factors (Z" x Z* = Z"+*), we may assume that at most one factor is abelian.

First, let us set some notation. We define the maps

tij i Npjeg > Nz (1,...,1, Xz ,1,...0,1),

Jj-th factor Ny, ¢,

pi’j:N—)N:(xl,l,...,xiwj,...,xm,nm)|—> (1,...,1,%2'7]'71,...71).

Note that any automorphism ¢ € Aut(N) is completely determined by the
morphisms
(¢potiy): N, — N.

The following proposition is a direct consequence of combining [God16, Lemma
4.1.1], [God16, Lemma 4.2.1] and [God16, Lemma 4.3.2].

Proposition 6.5.1. Foranyi € {1,...,m}, there exists a permutation o; € Sy,
such that for every j € {1,...,n;}, we have that

im(gpo Li,j) CZigx - X% Zi,ai(j)fl X Ny, ¢, X Zi,oi(j)+1 X oo X Lo s
where
Zpy = 1EWrce) ifex <ciorei =1,
7 Pyci(NTk@k) if e > ¢ > 1.
The next proposition again follows from results by Godecharle, in particular the

proofs of [God16, Theorem 4.1.2], [God16, Theorem 4.3.3], [God16, Theorem
4.3.1) and [God16, Theorem 4.3.4].

Proposition 6.5.2. Let ¢ be an automorphism of a direct product N of free
nilpotent groups, and let o; be the permutations as defined in proposition 6.5.1.
Define ¢ as the morphism such that

Di,oi(j) © PO Lij = PO L.
Then ¢ is an automorphism of N and
@k = (P)k
forallk=1,... ¢, with c =max{cy,...,cn} the nilpotency class of N.
From the above and theorem 4.1.6, me way conclude that R(¢) = R(p). At the

same time, we may now decompose ¢ as a product. Let o;1,...,0;;, be the
cycles appearing in the disjoint cycle notation of ¢;, then

m 1
@ZHH%J,

i=1j=1
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with
Pij =05 © (Pij1 X Pije X X Pijso, ;)
where the ¢; ;. are automorphisms of IV, .,. Thus,
R(p) = [T I1 B(wi)-

i=1j=1

It then suffices to calculate Reidemeister numbers R(p; ;). Because a
Reidemeister number is invariant under conjugation by an automorphism,
we may assume that

oij=(#oi; 1 2 - Foi;—1),
SDZ"]' = Ji,j (¢] (/wl,j X ld X - X ld)7
with 9; ; € Aut(N,, .,). We will now show that
R(pij) = R(¥i,5)-
For any k =1,..., ¢, we have that (¢; ;)i is of the form

1

A

for some invertible matrix A with integral coefficients. Now,

1
R((i5)x) = |det(1 — R P
A
1 —1
= | det R oo
L
—A 1

Row operations do not change the determinant of a matrix. So add the bottom
row of block matrix to the second to last, then add the (new) second to last
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row to the third to last, and repeat until we add the new second row to the first
row. We then get

1-A
-A 1
R((pij)k) = |det [ . loo

—A 1
= |det(1 — 4)|o
= R((¥i5)r);
and hence R(p; ;) = R(; ;). We thus obtain that

m 1

R(p) = H H R(¢i ;).

i=1j=1
The following theorem now follows.

Theorem 6.5.3. Let N be the direct product of free nilpotent groups Ny, c,.
Then N has the Ro-property if and only if at least one of the factors N, ., has
the R -property.

Remark 6.5.4. In [God16, Section 4.2.1], it is claimed that the direct products
Na4 X Ny4 and N5 X Nys do not have the Ro-property; an explicit
automorphism ¢ with (supposedly) finite Reidemeister number is given.
However, there is a mistake in the calculation of the eigenvalues of ()4, which
falsely implies that R((y)4) < co and hence R(p) < 0.

Theorem 6.5.5. Consider a direct product N of identical free nilpotent groups
Ny, say

with ¢ > 1. Then the spectrum of N is given by

m

Specr(N) = [J{ [] By | Rj € Speca(Nre)

i=1 | j=1

Theorem 6.5.6. Consider a direct product N of free nilpotent groups given by

m n;

N = HHNri,cw

i=1j=1
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with (ri,¢;) # (r5,¢;) if i # j, and at most one factor Ny, ., is abelian. Then
the spectrum of N is given by

uz

Specg(N) = ﬁRi R; € Specp, HNm,Ci

i=1 j=1

Example 6.5.7. Let us consider some easy examples of Reidemeister spectra
of direct products of free nilpotent groups.

(1) Let N =[[;~, Noo for some m € N. Then the Reidemeister spectrum of
N is given by
Specr(N) = 2N U {oo}.
(2) Let N =[], Na 3 for some m > 2. Then the Reidemeister spectrum of
N is given by
Specg(N) = 2N? U 4N? U {o0}.
(3) Let N = N33 x N3 3. Then the Reidemeister spectrum of NV is given by

Specg(N) = 4N? U {co}.

(4) Let N = N34 x Z%. Then the Reidemeister spectrum of N is full.
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Almost-crystallographic
groups
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Chapter 7

Crystallographic groups with
diagonal holonomy %

In this chapter, we consider crystallographic groups with diagonal holonomy
F = 7Z,, i.e. the crystallographic groups which are isomorphic to a group

0

n . —1; 0
An/k/e = <Z ; O ; ( 0 ]ln—k> >7

€/2

with n € N, 1 <k < nand e € {0,1}. Note that A, /1 = Ay nj0, all other
choices of parameters give rise to non-isomorphic groups. We have already
encountered two such groups in example 3.3.2, namely A;/,0 and Ay /1,
the (orbifold) fundamental groups of the closed interval and the Klein bottle
respectively.

The following proposition gives us more insight in the structure of these groups.

Proposition 7.0.1. The group A := A,,/i/c has characteristic subgroups
¢ % ’YQ(A) = <€1, e 7ek>,
o Z(A) ={ekt1,---,6n).

In particular, if € =0, then
A2 Agjrpo X Z"F,

with both factors characteristic.

117
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7.1 The R.-property and Reidemeister spectrum

Most of the results in this section were published in [DKT19].

Just like for the finitely generated, torsion-free, nilpotent groups, let us start
by proving that any almost-crystallographic group has oo in its Reidemeister
spectrum, so that we may omit this calculation later.

Proposition 7.1.1. Let idp be the identity morphism on an almost-crystallo-

graphic group I'. Then R(idr) = oco.

Proof. The restriction of idr to the translation subgroup N is of course the
identity idy. In proposition 5.0.1 we have proven that R(idy) = oo, hence by
lemma 2.5.10(2) we find that R(idr) = oo as well. O

7.1.1 Non-Bieberbach groups

First, we will study the groups A, i/ that are not torsion-free, i.e. those
with € = 0. Using proposition 7.0.1, lemma 2.5.18 and the results obtained
in section 5.1, it suffices to calculate the Reidemeister spectra of the groups
Agyrjo = (ZF,(0,—1p)). Let us first determine the automorphism group of

Ak ko
Proposition 7.1.2. Let A := Ay /1 0. Then the map
® : ZF x GLi(Z) — Aut(A) : (d, D) = /2.

s an isomorphism.

Proof. First, let us confirm the map is well-defined, i.e.
(d/2,D)(x,+14)(d/2,D)"" € A
for any = € ZF, where D € GL,(Z) and d € Z¥. We have that
(d/2,D)(x,1x)(d/2, D)" = (D, 1),
(d/2,D)(z, —14)(d/2,D)"' = (Dx + d, —1},),

hence the map is indeed well-defined. Second, it is straightforward to see that it
is a group homomorphism. Finally, to prove that it is actually an isomorphism,
we will give a homomorphism ¥ that is both a left and right inverse of ®, i.e.

(I>o\II:idAut(A), ‘I’O‘I):idzkaLk(Z)-
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If o = {4,p) € Aut(A), then
(d, D)(x,1;)(d, D)~" = (Dz, 1),
(d, D)(x, —1y)(d, D)~" = (Dz + 2d, —1y),
hence we must have that D € GLy(Z) and 2d € Z*. Thus, the map

U 2 Aut(A) — Z% x GLi(Z) : €4,p) — (2d, D)

is both a left and right inverse to ®, which is therefore an isomorphism.

The following theorem gives us the Reidemeister spectrum of Ay /o-
Theorem 7.1.3. Let Ay x0 = (Z*, (0, —1)). Then
{oo} ifk=1,

Specg(Ak/k/0) = § 2NU {3,00} ifk =2,
N\ {1} U{ooc} ifk>3.

119

The proof of this theorem is far from straightforward. We will first introduce

some lemmas and intermediate results.

Lemma 7.1.4. Let B € Z™*" and b € Z". Define O(B,b) as the number
of solutions T over Zo of the linear system of equations Bx = b, where the
bar-notation stands for the element-wise projection to Zo. Then we have the

following:

e when det(B) is odd, O(B,b) =1 (so is also odd),
o when det(B) is even, O(B,b) =0,2,4,...,2" (so is also even).

Lemma 7.1.5. Define an equivalence relation on Z™, determined by a matriz

B € Z™*" and an element b € Z™, where
Ve,y€eZ":x~y < dz€Z":x—y=Bzorx+y+b= Bz.
The number of equivalence classes is then given by

E(B,b) = |det(B)|w2+ O(B.b).

Proof. 1t is obvious from the definition that

x~y <= yE€x+im(B)ory € —x—b+im(B).
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From this it follows easily that the equivalence class of x, denoted by [z]~,

equals
[]~ = (z + im(B)) U (—z — b+ im(B)). (7.1)

Moreover we have that either (z+im(B))N(—z—b+im(B)) = @ or z+im(B) =
—x — b+ im(B). From example 2.5.9 we know there are | det(B)|s cosets of
im(B).

In general, elements z and —z — b will not belong to the same coset of im(B)
and the union in (7.1) will be a disjoint union. Let N denote the number of
cosets « + im(B) such that x +1im(B) = —x — b+ im(B). Then these N cosets
form N equivalence classes for the relation ~, while the other | det(B)|ec — N
cosets come in pairs (x+im(B), —x —b+im(B)) and so determine the remaining
(Jdet(B)|s — N)/2 equivalence classes of ~. Therefore

E(B.b) = |det(B)2|oo—N _ | det(B)lc + N

N
+ 2

We now determine this number N. We have that z 4+ im(B) and —z —b+im(B)
are actually the same coset if and only if

dz2€Z":2x+b= DBz (7.2)

We have to count for how many cosets = + im(B) this equation holds. For it to
hold, it must definitely do so over Zs, i.e. Bz = b. So we have O(B, b) solutions
z over Zo. Next, we show that each solution z over Zs produces a unique coset
x + im(B) satisfying equation (7.2). Let z be a solution of Bz = b. Choose
any lift z € Z" of z, then Bz — b € 2Z", so there exists a unique = € Z" such
that Bz — b = 2z. Hence for this « we have that equation (7.2) holds and so
x4 im(B) = —x — b+ im(B). However, the z we found depends on the choice
of the lift z. Let 2z’ € Z™ be another element projecting down to z (so there
exists a ¢ € Z™ with z — 2/ = 2¢) and giving rise to 2’ satisfying 22’ = Bz’ + b.
Then

2(x —2')=Bz—b— (B2 —b) =2Bc = x—1' = Be
= z+im(B) = 2’ + im(B),

from which we see that the choice of the lift z is of no influence on the coset
x +im(B): while z and 2’ may be different, they are both representatives of
one and the same coset.

Hence every solution z gives rise to a unique coset with representative x
satisfying equation (7.2). Note that if det(B) # 0, each solution z produces a
different coset: suppose by contradiction that two different solutions z; and zs
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produce the same coset « + im(B). This means there exist 21, 20 € Z", with
21 # 29, such that 2z + b = Bz; = Bzs, but then B(z; — 22) = 0 and therefore
det(B) = 0, which we assumed was not the case. So the number N of cosets
x + im(B) satisfying equation (7.2) is exactly O(B,b) when det(B) # 0. So in
case det(B) # 0, we have that

_ | det(B)|oc + O(B, b)

E(B,b) = ; .

If det(B) = 0, there are infinitely many cosets « + im(B), so there are infinitely
many pairs of disjoint cosets that together form one equivalence class, and at
most O(B, b) cosets that form an equivalence class on their own. Hence E(B,b)
is infinite and the formula above also holds in this case. O

Proposition 7.1.6. Let A = (Z",(0,—1,)) and ¢ = {4,py € Aut(A). Then
the Reidemeister number of ¢ is given by

R(p) = <#1F S [ det(1,, - AD)|OO> +O(,—D,2d).  (73)

AeF

Proof. The holonomy group of A is given by F' = {£+1,,} = Z(GL,(Z)). Let ¢ =
§(d,p) be an automorphism. Recall from proposition 7.1.2 that necessarily d €
(1Z)", whereas D can be any matrix in GL, (Z). Two elements (v, A,), (y, 4,) €
A are Reidemeister equivalent if and only if there exists an element (2, A,) € A
such that

(4, Ay) = (2, A2) (2, Ay)p(z, A)
= (2, A.)(z, A;)(d, D) (2, A.) "1 (d, D)™}
= (2 + Az + A, Ayd — AyDz — Ayd, A,A,DAZ' DY)
= (A + (1, — A, D)z — (L — A2)(Ayd), Ay).

Thus a necessary requirement for (z, A;) to be equivalent to (y, A,) is that
A, = Ay. So an element (z,1,,) and an element (y, —1,) can never be in the
same Reidemeister class, and in particular R(¢) > 2. Now for two elements
(z,A), (y, A) with the same holonomy part A, (z,A) ~ (y,A) if and only if
there exists some z € Z™ such that

x—y=(1,—AD)zor z +y+2Ad = (1, — AD)z,
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where the first case corresponds to A, = 1,, and the second case to A, = —1,,.
From the definition of E(B,b) in lemma 7.1.5, we obtain that

~|det(L, — D)o + O(1,, — D, 2d)

2
|det(1,, + D)|oc + O(1,, + D, —2d)
+ .
2
But over Zs, 1,, — D = 1,, + D and 2d = —2d, hence

o1, — D,2d) =0O(1, + D, —2d).
So we find the proposed formula:

_|det(1,, — D)|oo + |det(1, + D)|oo
- 2

R(p) +0(1,, — D,2d). O

Proof of theorem 7.1.3. We will use the formula from proposition 7.1.6. Also,
recall from lemma 7.1.4 that O(B,b) is odd (in fact, it then necessarily equals
1) if and only if det(B) is odd.

First, let us consider n = 1. Then either D =1 or D = —1, and det(1 — D) or
det(1 + D) vanishes respectively, hence R(p) = oo and thus Specy(A) = {oo}.

Next, we deal with the case n = 2. Since det(1y £ D) = 1 + tr(D) + det(D)
and det(D) = £1, we have that

det(1y + D) = tr(D) = O(1y — D,2d) (mod 2).

We now determine the value of R(¢p):

1. det(D) = —1. Then the formula becomes
R(gﬁ) = |t1‘(D)|oo + O(]lg - D, 2d)
Depending on the value of |tr(D)|, we have:

(a) |tr(D)] =0, then R(p) = oo,
(b) |tr(D)| > 1, then R(p) = |tr(D)| 4+ O(1y — D, 2d) € 2N.

2. det(D) = 1. Then the formula becomes

_2=t1(D)|oo + 12 + tr(D)]oo
a 2

Depending on the value of |tr(D)|, we have:

R(p)

+0(1y — D, 2d).



THE R..-PROPERTY AND REIDEMEISTER SPECTRUM 123

(a) |tr(D)] =0, then R(¢) =2+ O(1, — D, 2d) € 2N,

(b) |tr(D)| =1, then R(p) = 3,

() |te(D)] =2, then R(g) = oo,

(d) |tr(D)| > 3, then R(p) = |tr(D)| 4+ O(1y — D, 2d) € 2N.

So indeed Specg(A) C 2N U {3,00}. We now show that all these Reidemeister
numbers can actually be attained. To obtain an even Reidemeister number,
consider @, = §(4,p,,) With

- (¢ ) - (2).

with m € N, then |det(1y — Dy)|oo = |det(ly + Dpp)loo = 2|m| and O(1g —
Dy, 2d) = 0, and hence R(p,,) = 2|m|. Finally, to obtain Reidemeister number

3, consider ¢ = {(g,p) with
0 -1
o-(1 5)

then R(p) = 3. Hence Specr(A) = 2N U {3, 00}.

Finally, consider the case n > 3. As mentioned in the proof of proposition 7.1.6,
R(p) > 2. We show that every natural number greater than or equal to 2 can
be attained. Consider ¢, = §(o,p,,) With

0O -+ -+ .. 0 1
1 . : 0
D, = 0 )
0
: . . 0 m
O --- --- 0 1 m-—1

where m € N. Then det(1,, — D,,) = —2m + 1, det(1,, + D,,) = (=1)""1
and O(1,, — D,,,0) = 1, therefore R(p,,) = m + 1 and thus Specg(A) =
N\ {1} U {oo}. O

As we have now determined Specp(Z"~*) and Specg(Ak/k/0) for every k and n,
we quickly deduce Specp(Ay,/x/0) with the help of lemma 2.5.18. The spectra
can be found in table 7.1.
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n/k/e | Specgp(A)
1/1/0 {oo}

2/1/0 {oo}

2/2/0 ON U {3, 00}
3/1/0 {oo}

3/2/0 AN U {6, o0}
3/3/0 N\ {1} U{oo}
4/1/0 {oo}

4/2/0 2N U 3N U {o0}
4/3/0 2N\ {2} U {oo}
4/4/0 N\ {1} U {0}
n/1/0 {oo}

n/2/0 2N U3NU {0}
n/3/0 NA {1} U {oo}
n/n—2/0 | N\ {1} U {co}
n/n—1/0 | 2N\ {2} U {oo}
n/n/0 N {1} U {oo}

Table 7.1: Reidemeister spectra of the groups A, /1o

7.1.2 Bieberbach groups

Next, we consider the Bieberbach groups, i.e. exactly those groups A, /i e with
e=1land 1 <k <n-—1. We will start with the case k = 1.

Theorem 7.1.7. The groups A, /11 with n > 2 all have the R -property.
Proof. Let n > 2. From proposition 7.0.1 it follows that A, /1 /1/Z(Ap/1/1) =
Avj1/1 = Avj1jo. As shown in theorem 7.1.3, this (non-Bieberbach) quotient

group has the R.-property, so by corollary 2.5.12 A,, /1,1 has the R..-property
as well. 0

Before we can discuss the groups A, /1 with k > 1, we need the following
lemma.
Lemma 7.1.8. Let D € Z"*™. Then |det(1 — D)| + | det(1 + D)| € 2Np.

Proof. When projected element-wise to Zso, the matrices 1 — D and 1 + D
are identical, hence their determinants have the same parity. As the absolute
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values have no influence on this parity, the sum of the absolute values of the
determinants must be even. O

Theorem 7.1.9. The groups A, /1 with 2 <k <n—1 have Specg (A, /i/1) =
2N U {o0}.

Proof. For ease of notation, set A := A,, /1 and let ¢ = {4 p) € Aut(A). Due

to proposition 7.0.1, D must be of the form D = (%1 1:())2 ), where D; € GLg(Z)
and Dy € GL,,_¢(Z).

Setting d = (dy,da, ..., d,), one can calculate that

2d
0
( “Le 00y Qdko “L 0,
Mo '\ 1) 7 0 By
1/2 Dy | -
0
1/2
Thus, 2d; € Z for all i = 1,...,k and there must exist integers ag, ar+1,...,0n
such that Dy is of the following form:
* o0 ok 20p41
2ap42
Dy = : (7.4)
2an—1
* .- x 14 2a,

Since A, /11 is a Bieberbach group, we may apply theorem 4.2.6:

1 Dy 0 -Di 0
rio) =y (1= (5 5,))|_ o (- (5 5))|)
1
= 5 |det(]ln_k — D2)|OO (|det(]lk — D1)|Oo + \det(]lk + Dl)'oo) .
The last column of 1,,_; — D5 is (—2ak41, - . ., —2a,) and therefore | det(1,,—; —

Ds)|e € 2N U {o0}; from lemma 7.1.8 we know that the |det(1x — D1)|oo +
|det(1y + D1)|oo € 2N U {o0}. Combining this information, we obtain that
R(p) € 2N U {oo}.

We now construct a family of automorphisms ¢,, such that R(¢,,) = 2m with
m € N. Set ¢, = §(0,p,,) Where D;,1 and D,,2 are chosen as follows:
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e The matrix D,,1:

— If k = 2, take
0 1
— If k > 3, take
0 0 1
1 0
Dm1: 0
0
: . 0 m
0 -+ -+ 0 1 m-=1

In both cases | det(1y — Dp1)| + |det(1g + Din1)| = 2m.
e The matrix D,,»:

— If n—k =1, take D,,5 = —1.

— If n—k =2, take
1 2
D'm2— (1 1)

— If n—k > 3, take

0 0 1 0
1 0
0
Do =
0 0
: .1 -1 0
0 -+ -+ -+ 0 0 =1

In all three cases | det(1 — D,,2)| = 2.

We have now found a family of automorphisms ¢, such that R(p,,) = 2m for
every m € N. Hence Specy(A) = 2N U {co}. O



REIDEMEISTER ZETA FUNCTIONS 127

7.2 Reidemeister zeta functions

Since the rationality of Reidemeister zeta functions of (almost-)Bieberbach
groups is known (see theorem 4.2.8), we can restrict ourselves to non-Bieberbach
groups in this section. Most of the results presented in this section were published
in [DTV18].

As shown in proposition 7.0.1, a non-torsion-free crystallographic group with
diagonal holonomy Zj is of the form

Ansijo = Nyypo x 2",

with both factors characteristic. Because of example 2.6.7 and corollary 2.6.9,
it suffices to find the Reidemeister zeta functions of Ay /0.

Let ¢ = &4/2,p) be an automorphism of A := A, /9, where d € Z" and
D € GL,(Z). Let Aq,..., A\, be the eigenvalues of D. We may then write, using
proposition 7.1.6, that

6= (1= M) + ITH= (T4 M)l
2

_ H?:1 ‘1 — )‘i‘oo +H?:1 |1 +)‘i|oo +
N 2

R(p) = +0(1, — D,d)

O(1, — D, d).

Similarly, for any k£ € N we have

T = N T T 4 M| it S
R(g@k) _ Hz:l‘ z| +Hz:1| + z| +0 <1n_Dk, [ZDZ d).
=0

2

We will deal with both terms separately. For the first term, we have the following
lemma, which is very similar to what we did in example 2.6.7.

Lemma 7.2.1. Let \q,...,\, be the eigenvalues of some matriz D € GL,,(Z).
Then there exist non-negative integers a,b € Ny and complex numbers
W1y Mbas V1, .-,V Such that

H;L:1|1—/\§|+H?:1|1+)‘§|: k k

5 M1 T+ o o y

+...+,u§71/17...71/b

for each k € N.
Proof. We now consider 4 cases:

1. A; € Rand |\ < 1. Then |1 — AF[ =1% — \F and [1 4+ \F| = 1% + \F,
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2. A; € Rand A; < —1. Then |1 — M| = —(=1)% 4 (=\;)* and |1 + \F| =
1%+ A7,

3. A € Rand \; > 1. Then [1-AF| = —1F+AF and [1+2F| = (—1)F+(=X\)".

4. A\; € C\ R. Then its complex conjugate \; is an eigenvalue of D as well,
and - -
ITE MR £ NE =18 £ 08 £ 08 4 |\ 2R

Thus, we can expand both products []/—, |1 — A¥| and []}_, |1 + A¥| and obtain
a sum of terms of the form +AF AF ... )\fp = (i, Aig -+ A, )* (where p varies
between 0 and n). Note that all of these terms are, up to sign, k-th powers
of terms which themselves do not depend on k. These two products will have
exactly the same terms, though the sign of said terms may differ. If two
matching terms have the same sign, their sum will have a factor 2 that cancels
out with the 2 in the denominator; and if two matching terms have the opposite
sign, they cancel out each other. So the entire term is indeed a sum and/or
difference of k-th powers of fixed terms (not depending on k). O

With this lemma proven, it is now easy to show the rationality of the first term.

Lemma 7.2.2. Let \y,..., A\, be the eigenvalues of some matrix D € GL,,(Z).
The function

e’} n k n k k
Hi:1 |1_/\i|+H¢:1 11+ A] 2
eszf 2 k

s a rational function.

Proof. We invoke the previous lemma to obtain

2 T 11— AF[ 4TI, 1+ MY 2%
epoHz:1| z|;Hz:1| + z‘%

© L a b
Z(ZZ)
=1 i= i=

||

(\
Q
[M]8
w\l%r

3‘
M@
[M]8

w\‘

3‘
~

a b
= exp <— Z log(1 — p;2) + Z log(1 — VZZ)>
i=1

=1
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L, (- wz)
T, (1= piz)’

which is a rational function. O

The second term is far less straightforward. We first introduce a particular
family of sequences.

Definition 7.2.3. We define the sequence a’ = (a} )ken by

i
ay = .
0 otherwise.

{i if k = 0 mod i,
The theorem below is essentially what we need to prove the rationality for the
second term.

Theorem 7.2.4. Let D € GL,,(Z) and d € Z". Then there exist | € Ny and
c1,...,¢ € Ny such that

k-1
¢ <ﬂn - lz Di] d) = c1aj, + €20 + - +
i=0
for all k € N.

Before we really start with the proof of this theorem, let us note that we do not
need full information on the pair (d, D), but we only need to know their natural
projections modulo 2, namely the pair (J, D), see lemma 7.1.4. To avoid having
to write a bar above d and D each time we will assume from now onwards that
D € GL,(Zs) and d € Z}.

We will apply a change of base such that D has a more suitable form to work
with. With that in mind, we first need the following matrix decomposition.

Lemma 7.2.5. Let N be a nilpotent, upper-triangular k X k-matriz and D an
invertible | x l-matriz over a field F. For any k x [-matrix B, there exists a
(unique) k x l-matriz X such that

NX + XD = B. (7.5)

Proof. We prove this by induction on k. If k = 1, then N =0 and X = BD .
Now let k£ > 2 and suppose that the lemma holds for smaller values of k. Then
N, X and B can be seen as block matrices of the forms

N = M N ., X = , B= ,
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where Nj is a nilpotent, upper-triangular (k — 1) x (k — 1)-matrix, Ny is a
(k — 1) x 1-matrix, X; and By are (k — 1) x l-matrices and X5 and By are
1 x l-matrices. We can then split up (7.5) in the system of equations

N1 Xo + NoXo + X1D = By,
XoD = Bs.

The second equation gives us X2 = BoD ™!, and substituting this into the first
equation gives
N1 X, +X,D =By — NaByD™ .

By applying the induction hypothesis, we get a solution X;. Together with X,
we have the full solution X of (7.5). O
This decomposition allows us to put D in the required form.

Lemma 7.2.6. Let D be an n X n-matriz over a field F, then there exists an
invertible matriz P such that

. _( Dy 0
PDP _(0 D, )

where Dy is a unipotent, upper-triangular matriz, and Do does mot have
eigenvalue 1 (and hence 1 — Dy is invertible).

Proof. Consider the linear map
f:F" = F" . %— DZ.

It suffices to show that there exists a basis such that f has the required form
with respect to this basis. Suppose that D has eigenvalue 1, then take an
eigenvector corresponding to this eigenvalue and extend to a basis. With respect
to this basis, we have

We can then interpret D’ as a linear map F*~! — F”~! and proceed by induction

to obtain
D; | B
o~ (545,),

with D7 a unipotent upper-triangular k£ x k-matrix and Dy an [ X [-matrix with
no eigenvalue 1. Hence D1 — 1 is a nilpotent upper-triangular k x k-matrix and
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1; — D5 is an invertible [ x l-matrix. By lemma 7.2.5 there exists a k x [-matrix
X such that
(D1 —1)X + X(1; — Dg) = B,

which in turn gives

1, X\ (D;, B\ (1, X\ ' (D, 0
0 1 0 Dy 0 1 “\0 D)’
as required. O

From this point onwards, we will work with F = Zs. To any pair (d, D), with
d € Z% and D € GL,(Z3), we associate the sets V and Wy, defined as

(1 — D*)z = rzl Di] d} ,

=0

Vk—{erg

Wi={xeVi|ax¢V, Vie{l,2,...,k—1}}.

Let vy, = |Vi| = O (]ln — D¥, [Ei:ol Dl} d) and wy, = |Wg|. The Wy are
disjoint sets and their union is all of Z%. Hence, it is obvious that only for a
finite number of values of k we have that wy # 0, since their sum equals 2. To
prove theorem 7.2.4, we need to determine what the sequence v = (vi)ren is.
As we have split up D in a unipotent block D; and a block with no eigenvalue
1, Do, we will first restrict to these two blocks.

If D has no eigenvalue 1.

Let us first assume that D does not have eigenvalue 1, and therefore 1 — D is
invertible. Then there exists some dy such that (1 — D)dy = d, and hence we

can state
k—1 k—1
[Z Di] d= [Z Di] (1 — D)dy = (1 — D*)do,

i=0 i=0
so we are actually searching for solutions of the linear system given by

(1 — D*)(x — dy) = 0.

The “shift” by dy has no effect on the number of solutions of this system, so we
may assume without loss of generality that

Vk:{xGZ’2’|(]l—Dk)x:0}.

We will now formulate and prove some properties of these sets Vj, and W.
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Lemma 7.2.7. Let k <l. If x € Vi NV, then x € V|_k.

Proof. Let x € Vi N'V;. Then
0= (1- D"z
= (1 - D+ DF - DhHx
= (1 - D"z + DF(1 — D" )z
= DF(1 — D' F)a,
and because D is invertible we are left with (1 —D'~*)z = 0, hence x € V;_. O

Corollary 7.2.8. Let k <I. If x € V;; NV}, then

(—Z) HARS Wmod ks
(2) © € Vgea,ny-

Proof. The first property follows by repeatedly applying lemma 7.2.7. The
second property follows by repeatedly applying the first property. O

On the other hand, we also have

Lemma 7.2.9. If x € Vi, then x € Vi for all | € N.

Proof. All we have to do is split (1 — D*!) in suitable factors:
(1 — D"z = (1 + D* + ... + DU=VE) (1 — D)z = 0,

because (1 — D*)z = 0. O

In conclusion, we can state that Vj is exactly the disjoint union
Vi =| | Wa.
dlk

and hence we get

Vg = de = Z %(ad)ka

dlk dlk
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where we used that the k-th element in the sequence a? is d, since k is a multiple
of d. Now, since (a?);, = 0 when d does not divide k we have that

So we indeed seem to have a sum of sequences a?, but we still require the
coefficients of this sum to be integers.

Lemma 7.2.10. k divides wy, for any k € N.

Proof. We define an action of Z on W} by
Zx Wy —= Wy :(z,2) = z-x=Dx.
First, we verify that this action is well-defined. If € W}, then
(1 — D¥)D*xz = D*(1 — D*)z =0,

hence D?z € V. On the other hand, if for some [ < k we were to have that
D?x € Vj, then
0= (1 — D"D*x = D*(1 — D").

Because D is invertible, this would mean that (1 — D')x = 0, or in other words
x € V;. This is a contradiction since x € Wy. In fact, kZ acts trivially on Wy
since

(1 - DMz =0 < DFz=u,

so we can redefine the original action as an action of Z; on Wy, which is a free
action. Indeed, suppose that for some z € W;, we have that D'z = x, where {
is not a multiple of k. Then = € V; and therefore x € V) 104 - This obviously
contradicts that x € Wy,.

By the orbit-stabiliser theorem, we can now partition W}, into finitely many
orbits of length k, and thus k divides wy. O

Putting everything together now, we can conclude that the sequence v = (vg)gen
equals
0o w
v = —a
> g
k=1

which has integer coefficients since k divides wy. Recall that this is actually a
finite sum, since only finitely many of the wy are non-zero.
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If D is unipotent upper-triangular.

For the case where D is unipotent upper-triangular, we will have very similar
results as the previous case. The main difference here will be that we will end
up working mainly with powers of 2 as opposed to arbitrary k. Because we are
working over Zs, we have the following two statements:

Remark 7.2.11. If m is an odd positive integer, then for any integers
k1, ko, ..., km, we have that D*t + D2 4 ... 4 D*= is unipotent and upper-
triangular (and hence invertible).

Remalrk 7212. If D is a ulnipotent, upperl—triangular, n X n-matrix, then
D?"" =1, since 1,, — D*"" = (1,, — D)?*"" = 0. This means that Von = ZJ.

The next lemma makes clear why we only really need to care about powers of 2.

Lemma 7.2.13. Decompose k as k = 2"m with m odd. Then Vj, = Vor.

Proof. Let M = 1 + D? 4 D*?" + ... + D=1 which is invertible (see
remark 7.2.11). Then

1-DF=1-Dm
— (ﬂ +D2T 4 D2~2T Lt D(mfl)ZT)(ﬂ _ DQT)

:M(]I_DQT%

and

k—1 2"m—1 27 1
Zr]e- (5 P]e-w(5r]e
We then obtain

k—1 2m—1
(1 —D¥)z = [Z ] d < M(1—-D?) lz D1]
=0

2m—1
— (1-D)zx [Z D’]
and therefore V, = Var. O

We conclude that wy = 0 if k is not a power of 2. Now let ro be the smallest
power of 2 such that waro # 0, then there exists some dg such that

270 —1
(1 —D?**)dy = [Z DZ]
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Similarly to the other case, the number of elements voro = ware in Vorg = Warg
is equal to the number of solutions of the system

(1 —D*¥")(x —dy) = 0.
Lemma 7.2.14. 2" divides waro .
Proof. As we are working over Zy, we have that 1 — D?° = (1 — D)?"°. Since
D is unipotent upper-triangular, 1 — D is nilpotent upper-triangular, and hence

taking the 2"-th power gives a matrix where the bottom 7y rows are zero. Thus
wy, = |ker(1 — D?"”)| is a multiple of 2. O

We have already shown that if r = rg, we may work with the linear system
(1 — D?")(x — dy) = 0. This is, however, rather useless if we do not have this
for every r. For r > rg we have

2" —1
(1—D* )z = [Z Di] d

=0
) 270 —1
= (1+D*° 4+ D*?" ... 4 D7D l > Di] d
i=0

— (14 D*° +D*?° 4...4 D121 _ P24,
= (1 — D*)do.
So indeed we end up with the linear system
(1 - D*)(z —do) =0,

and again we may assume without loss of generality that dy = 0. Now that we
have this system for all r > r(, we also want to generalise lemma 7.2.14 to all
r>Tr.

Lemma 7.2.15. 2" divides war for all r > ry.

Proof. Analogously to lemma 7.2.10, we have an action of Zgor on War. Suppose
this action is not free. As subgroups of Zy- are generated by divisors of 27,
there then exist some € War and some 7’ < r such that D?" z = x, which
contradicts that x € Wa-. So 2" divides war. O
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The following steps are identical to the case where D has no eigenvalue 1, hence
we leave these to the reader and we can conclude that also in this case

ad Wi
v=3
wy

where % is an integer and the sum is in fact finite.

The general case
We now have all the necessary tools to prove theorem 7.2.4.

Proof of theorem 7.2.4. Earlier in this subsection we proved that, after a change
of basis, D is a block matrix of the form

_(Dy 0
= (% 5)

such that D; is unipotent upper-triangular and D- has no eigenvalue 1. We
may split the vector d in two pieces d; and dy matching the sizes of Dy and Do
respectively. So for any k, we have two linear systems of equations given by

(1 — DV, = |5} Dil dy,
(1 — D§)ag = | S5 Di| do.

The total number of solutions x is of course the number of pairs (z1,z2). In
the previous subsections we have shown that both “subsystems” give sequences
v = (v1,v2,03,...),

v = (v, vh, 05, ..,

that are linear combinations of the sequences a', say v = Y | _; cra® and
o' =Y, cjal. To solve the linear system as a whole, we are actually looking
for the sequence v - v' given by the component-wise multiplication of v and v’:

v-v = (v1v], vavh, V3V, ... ).
Using that a” - a! = ged(k, 1)a'™*) | we get
n m
v-v = (Z Ckak> (Z cﬁal> = chcf ged(k, l)alcm(k’l)7
k=1 1=1 k.l

and since cic) ged(k, 1) is a non-negative integer for all k& and [, this proves the
theorem. O
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Corollary 7.2.16. Let D € GL,,(Z) and d € Z". The function
o0 . k—1 i .
expg() <]1n - D7 LZ::‘)D ] d) T
s a rational function.

Proof. From theorem 7.2.4 we know that

k—1 l
0 (nn — D, [Z Di] d) = ciaj,
1=0 i=1

for certain cq,...,c;. Hence:

00 k—1
epoO (]ln — DF, [Z Di] d) % = expz [Z cla,‘c] %
k=1 i=0 i

E

Hexp —c;log(l — 2 )]

l
= H(l - Zz)icia
i=1
which is a rational function. O

With both terms taken care of, we can now state the following theorem:

Theorem 7.2.17. Let ¢ be an automorphism of the group A = (Z™, (0, —1,,))
such that R(yp) < oo. Then there exist a,b,l € No, p1,..., fa,v1,..., € C
and c1,...,c; € Ny such that

H?:l(l - Vz‘Z) .
T 0 - ) i1 2

The radius of convergence r of this function is given by

R, ((P) =

1
B maX{lv |/1'1|7"~7|/U'a|7|’/1|v~'~v|yb‘}
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if at least some c; # 0, otherwise it is given by
1

B max{':ul""'»“LaL |l/1‘a"'7|1/b|}.

Finally, we may then conclude that all Reidemeister zeta functions of non-
torsion-free crystallographic groups with diagonal holonomy Zs are rational.

Theorem 7.2.18. Let ¢ = 1 X @2 be an automorphism of a non-torsion-free
crystallographic group Ay, 0 = Mg /i 0 X 77k with diagonal holonomy Zs, such
that R(¢) < co. Then Ry(z) = Ry, (2) * Ry, (2), the convolution of R, (z) and
R, (%), is a rational function.

Combining this with theorem 4.2.8 gives finally gives us the following.

Corollary 7.2.19. Let ¢ be an automorphism of a crystallographic group with
diagonal holonomy Zy. If R,(z) exists, it is a rational function.

While we have now determined the rationality, we have not yet proven that
these Reidemeister zeta functions actually exist.

Theorem 7.2.20. Let A = A, )/ be a crystallographic group with diagonal
holonomy Zo. Then it admits Reidemeister zeta functions of automorphisms if
and only if k > 2 andn—k # 1.

Proof. Let ¢ = {4 p) be an automorphism, then D must necessarily be of the

form
(D1 0O
=% 5.):

with Dy € GLg(Z), Dy € GL,,_(Z). Moreover, if A is a Bieberbach group,
then Dy must be of the form (7.4) as well.

First, consider the case k = 1. Then by theorem 7.1.3 A has the R.-property,
and therefore does not admit Reidemeister zeta functions of automorphisms.

Second, consider the case n — k = 1. Then D5 is either 1 or —1, so either way
D3 equals 1. But then

det(1,, — D?) = det(1,,_; — D?)det(1 — D3) = 0,
hence R(p?) = oo and thus R,(z) does not exist.

Finally, assume that n —k # 1 and k > 2. Let My € GLo(Z) and M3 € GL3(Z)
be the matrices

0 1 2
MQ = <1 ?) 5 M3 = 1 0 0
1 01
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and note that all of their eigenvalues A satisfy |\| # 1. Depending on whether
k and n — k are even or odd, take D; and D5 as
M, M,

M, M,

Di = 3 or Dz =

. My
M, M
In the case n — k = 0, there is no D; and we simply have that D = D,. Let
A1, .., An be the eigenvalues of D, which will satisfy |A¥| # 1 for all k € N, and
thus

det(L, + D*) = [ 11 £ Af[ #0.
i=1
By theorem 4.2.5 we then find that R(p") < co. Next, we study the radius

of convergence. Let A4, be the eigenvalue with the largest modulus, which
definitely satisfies |Ajmaz| > 1. From proposition 2.5.14 we know that

R(¢*) < |det(L, — D)| + |det(L, + D)|

ol JIEERYES J IEEY
i=1 =1
H INfF 4 1)

2 (|Amaz|® +1)"

IN

<2 (2|)\ma:c|k)n
— 2n+1 |)\maw|nk
hence for k > 271 we have that

R((pk) < 2n+1|A77la$|nk

Thus, the radius of converge r satisfies
R(ok
r~! = limsup v ﬂ < | Amaz|™,s
k—o0 k

hence r > |Apaz| ™™ > 0 and therefore R, (2) exists. O
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We conclude this section with an example of a Reidemeister zeta function on
Aa /20

Example 7.2.21. Let I' = (Z? (0, —13)) and let F' € GLy(Z) be the matrix

11
F':<1 0)’

which is also known as the Fibonacci matriz, as its powers generate the Fibonacci

sequence:
n Fry1 o Fy
o=
<Fk Fy—1,

where F}, is the k-th Fibonacci number, i.e.

o Fry1=Fp+ F 1.

Consider the automorphism ¢ = {4/ ) for any d € Z2. One can calculate that

| det(Ly £ F¥)| = ¢ + (1 - ¢)" £ (1 + (-1)"),

J) = 4 if k=0mod 3,
|1 ifk=1,2mod 3.

with ¢ the golden ratio, and

k—1

YF

=0

6) (112 — F*,

Thus,

R,(2) = expz (;: )zk
k=1

ey 20 —¢])€’f +a +aj
k=1

_ 1

S (1-02)(1-(1-9¢)2)(1—2)(1 - 2°)

1
(1—2—22)1—2)(1—23)

which is indeed a rational function and has radius of convergence 1/¢.



Chapter 8

Generalised Hantzsche-Wendt
groups

This chapter is largely based on [DDP09] and extends the results of that paper.

8.1 Definitions and properties

Definition 8.1.1. A square n X n-matrix (aij)ij is called circulant if a;; =
ai+1 41 for all 1 < 4,5 < n, where the indices are taken modulo n when
necessary. In other words, the j + 1-th row of the matrix is the j-th row shifted
one position to the right.

Definition 8.1.2. Let 0 € §,, be a permutation and kq,...,k, € R. Define
mir - Min

My(k1, ..., ky) = : : ,
mn1 o Mpn
where

o kj ifi:O'(j)
m”_{ 0 else

The following proposition tells us what an automorphism of a GHW group must
look like.

141
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Proposition 8.1.3 (see [DDP09, Proposition 5.6]). Let " be a HW group in
standard form. Let ¢ = {4 py be an automorphism of I'. Then there exist
€1,...,€n € {—1,1} and a permutation o € S,, such that D = M, (ey,...,€p).

The proposition below is, in some sense, a converse to the previous proposition.

Proposition 8.1.4 (see [DDP09, Proposition 5.7]). Let T' be a HW group
in standard form with associated matric (a;j)i;. Let €1,..., €, € {—1,1} and
o € Sy such that a;; = as(3)(j) for all 1 < i,j < n. Then there exists an
automorphism ¢ = {4 py of I' with D = My (€1, ..., €,).

8.2 The Reidemeister spectra and zeta functions

The GHW groups that have the R..-property have been determined by Dekimpe,
De Rock and Penninckx in [DDP09].

Theorem 8.2.1 (see [DDP09, Theorem 5.9]). A non-orientable GHW group
has the Roo-property. A HW group does not have the Ro-property if and only
if it is isomorphic to a HW group in standard form whose associated matriz is
circulant.

An important part of the proof of this theorem can be summarised in the
following proposition.

Proposition 8.2.2. Let I be a HW group in standard form with associated
matriz A = (aij)i;. Let ¢ = §q,p) be an automorphism of I' with D =
My(e1,y ... €). If 0 is not a cycle of full length, then R(p) = co.

We will expand on theorem 8.2.1 by explicitly calculating the Reidemeister
spectrum for those HW groups that do not have the R..,-property. To do so,
we will need to slightly generalise the following lemma.

Lemma 8.2.3 (see [DDP09, Lemma 5.5]). Let o € S,, be the permutation
(12 ---n)andletky,... .k, € R. Then

det(1,, — My(k1,... . kn)) =1 —ky- k.
Corollary 8.2.4. The above lemma holds for any cycle o € S,, of full length.
Proof. Since all cycles of the same length are conjugate, there exists a

permutation 7 such that 77! o o o 7 is exactly the cycle (1 2 --- n). Let
P:=M.(1,...,1), then

P My (k1, .. k)P =M o ny(kr(1ys- - s krin))-
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The result then follows from applying lemma 8.2.3. 0
Theorem 8.2.5. Let I' be a HW group in standard form whose associated

matriz is circulant. Then its Reidemeister spectrum is {2,00}.

Proof. First, let us prove that any automorphism ¢ with finite Reidemeister
number must have R(p) = 2. Let ¢ = {4 py be an automorphism of T" with
finite Reidemeister number. By proposition 8.2.2, D = M, (e1,...,€,) with o a
cycle of full length.

Let A € F, which is a diagonal matrix with an even number of —1’s on its
diagonal. Then

AD = M,(€y,...,€,) with €jeh - €, = €1€2- - - €.
By corollary 8.2.4 we have that
det(l,, —AD) =1—¢€\ey---€, =1 — €169 - €p.

Theorem 4.2.5 then implies that, since R(¢) < oo, we must have €1eq -+ ¢, = —1
such that in turn

det(1,, —AD)=1—€1e5- €, = 2,

for every A € F. Applying the averaging formula (theorem 4.2.6) we find that
R(p) =2.

Conversely, we would like to show that I' must admit such automorphism.

Let 0 = (1 2 --- n), which satisfies a;; = a,(;)0(;) for all 1 < i,j < n.
By proposition 8.1.4, I then admits an automorphism ¢ = 4 py with D =
My(-1,1,...,1). O

We end this section with the following result on Reidemeister zeta functions.

Theorem 8.2.6. A GHW group does not admit Reidemeister zeta functions.

Proof. Tt suffices to prove that for any automorphism ¢ of a GHW group I, there
exists some k € N such that R(¢*) = co. By theorem 8.2.1, the only non-trivial
case is when I' is a HW group in standard form with circulant associated matrix.
As shown in theorem 8.2.5, the only automorphisms with finite Reidemeister
number are those of the form ¢ = {4 py with D = M, (€1, ..., €,), where o is a
cycle of full length and €j€e5--- €, = —1.

Now, consider 2" with n the dimension of I'. Since o is a cycle of length n,
D™ is a diagonal matrix whose diagonal entries are either —1 or 1, and thus
D?" = 1,. Since ¢*" = &(a,p2ny for some d' € R™, it is easy to check using
theorem 4.2.5 that R(p?") = oc. O
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8.3 Uniqueness of HW groups without the R..-
property

Miatello and Rossetti show in [MR99b] that for each odd dimension n > 1,
there exists a HW group I' in standard form with circulant associated matrix.
In [DDPO09], the authors conjecture that in every odd dimension n, this HW
group is unique (up to isomorphism), and they verified this conjecture for all
odd n < 21.

Conjecture 8.3.1 (see [DDP09, Conjecture 5.11]). In every odd dimension
n > 1, there is (up to isomorphism) a unique HW group that does not have the
R.-property, and its associated matrix (a;;);; satisfies

1/2 it j—i=0,1mod
alj—{ / HJ ! - OE T, (81)

0 otherwise.

A general idea of solving this conjecture is the following. Consider the set of
all circulant n x n-matrices whose entries are either 0 or 1/2. For every matrix
in this set, check using proposition 3.3.19 if it corresponds to a HW group I'.
If it does, the conjecture above implies that I' is isomorphic to the HW group
defined by (8.1).

The proposition below shows that we can more or less halve the number of
circulant matrices we need to check.

Proposition 8.3.2. Let I' be an n-dimensional HW group in standard form
with circulant associated matriz. Then T' is isomorphic to a HW group in
standard form with circulant associated matriz, for which every column has at
most "7“ non-zero entries.

Proof. The associated matrix (a;;);; of I' is completely determined by any of
its columns a;, and every column has the same number of non-zero entries.

If a; has at most 2L non-zero entries, there is nothing to prove. So assume

that a; has more than "7'"1 non-zero entries, and recall from proposition 3.3.19

that necessarily a;; = 1/2. Let d = (1/4,1/4,...,1/4) and consider the inner
automorphism ¢(g,_q,) : Aff(R") — Aff(R"). We have that
(dv 71%)(ai7 A7)(dv 71%)71 = ((]177 - AZ)d — Qg Ai)7
hence if we set a; := (1,, — A;)d — a; + e;, we find
1/2 ifi=j,
a;j: 1/2  if i # j,a;; =0,
0 le?é],auzl/Q
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In particular, each a} has less than ”TH non-zero entries. Then I' := ¢4, _q,)(T)

is a HW group in standard form with circulant associated matrix (a} j)ijv and is
isomorphic to T'. O

A circulant matrix is completely determined by its first column, hence
proposition 3.3.19 can be restated in terms of this first column. Using our
knowledge of HW groups and the proposition above, we can state the following
conjecture, which implies conjecture 8.3.1.

Conjecture 8.3.3. Let k € N and x € {0,1}?*!, and label the components
of z by xg,x1,...,295. Assume that 2o = 1 and #{i € {1,2,...,2k} | z; =1}
is odd and at most k. If for every I C {0,1,2,...,2k} with #I odd:

Jjel:#{iel|x,_;=1}is odd, (8.2)

where the index ¢ — j is taken modulo 2k + 1 when necessary, then exactly two
components are 1, i.e. there is a unique 7 € {1,...,2k} such that z; = 1.

We verified conjecture 8.3.3 for all £ < 13, which implies conjecture 8.3.1 holds
for all odd n < 27.

Remark 8.3.4. In the conjecture above, it is not necessary to check every set I:

o If #1 =1, then the condition always holds.

o If condition (8.2) holds for some set I, then it also holds for I + 1 :=
{i+1mod2k+1|iel}, I+2,.. ,I+2k

Remark 8.3.5. The converse of conjecture 8.3.3 is not true. Consider the tuple
z=(1,0,0,1,0,0,0,0,0) and the set I = {0,3,6}. We have that

VJEI#{Z€I|$Z_]:1}:2






Chapter 9
The R ,-property

The 1-, 2- and 3-dimensional almost-crystallographic groups that do not have
the Roo-property were determined by Dekimpe and Penninckx in [DP11, Section
4]. We extend these results to the 4-dimensional groups, and in the case of
crystallographic groups with finite outer automorphism group even up to the
6-dimensional groups.

9.1 Crystallographic groups

In this section, we determine which crystallographic groups have (or do not have)
the Ro.-property. We do this for all crystallographic groups up to dimension 4,
and for the crystallographic groups with finite outer automorphism group up to
dimension 6. The results obtained in this section were published in [DKT19).

Multiple classification systems for crystallographic groups exist (especially in
dimensions 2 and 3). An important part of these classifications are the concepts
of Q-classes and Z-classes.

Definition 9.1.1. Two n-dimensional crystallographic groups are said to belong
to the same Q-class (Z-class) if their holonomy groups are conjugate in GL,,(Q)

(GLn(Z)).

In particular, a Q-class consists of one or multiple Z-classes. After conjugation,
we may assume that every crystallographic group I' in a fixed Z-class has the
exact same holonomy group F' C GL,,(Z), which we will also call the holonomy
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group of the Z-class. We can use this to create canonical generating sets for
crystallographic groups.

Let F' be the holonomy group of a Z-class, and enumerate the elements of F' by
Ajq, ..., Ax. Now let T be any crystallographic group in the Z-class. For every
A;, pick the unique element a; € R™ with 0 < a; < 1 such that (a;, A;) € T.
We define

Fezt(r) = {(alvAl)a ceey (akv Ak)}v

hence I' = (Z", Fo..+(T")). In particular, the Z-class contains the crystallographic
group Z" x F', for which

Font(Z" x F) = {(0, A1), ..., (0, A)}.

This group is very useful for determining the R..-property of groups in the
Z-~class, as illustrated by the theorem below.

Theorem 9.1.2. Let F' be the holonomy group of an n-dimensional Z-class
of crystallographic groups. If Z™ x F has the Rs.-property, then so does every
other crystallographic group in the same Z-class.

Proof. Consider a crystallographic group I' belonging to the same Z-class as
Z" x F and let ¢ = {4, p)y € Aut(l'). Then D € Np = Nqr,, (z)(F) and thus
¢" = &0,p) is an automorphism of Z™ x F. Since Z" x F' has the R..-property
we find that R(¢’) = oo, and by theorem 4.2.5 we obtain

R(¢') =00 <= JA € F:det(l, — AD) =0 <= R(p) = oo,

hence I' has the R..-property as well. O

The converse is not necessarily true. For a crystallographic group I' with
holonomy group F', the projection

p: Aut(F) — Np: g(d,D) — D

does not have to be surjective. In other words, given a matrix D € N, there
may not exist a d € R™ such that the map {4 py : v+~ (d, D)v(d, D)~ !is an
automorphism of I'. We define Nt as the image of the projection p above, which
is therefore a subgroup of Np.

Algorithm 1 provides a method to check whether or not a matrix D € Np is
actually an element of Np. Moreover, if D € Np, it calculates an explicit d € Q"
such that {4 py € Aut(I'). The (more general) idea behind this algorithm is
described in [Lut13, Section 4.1].
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Algorithm 1 Determining if D € Np

1: function EXTENDSTOAUTOMORPHISM(D,T')

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

o < Permutation in Sy for which A, = DA; D!

1, — Aa(l)

1, — Ao’(?)
M + :

1, - Ad(k)

Day — ag(1)

Da2 — CLJ(Q)
m < .

Day, — aq (1)
P, Q, S + matrices such that PM@Q = S, the Smith normal form of M
t < Pm
r < rank(S)
if t,41,...,thx € Z then
forie{l,...,r} do
d; — _ti/Si,i
end for
forie{r+1,...,n} do
d; <0
end for
d <+ Qd'
return d
else
return fail
end if

20: end function

Theorem 9.1.3. Let I' be an n-dimensional crystallographic group with
holonomy group F. Given a matrix D € Ng, ExtendsToAutomorphism(D,T")
returns fail if D ¢ Nr, or returns a d € Q" such that {4 py € Aut(I") if
D € Nr.

Proof. The map F — F : A+ DAD™! is an automorphism of F since D € Np.
If Forr(T) = {(a1, A1), - . -, (ak, Ag) }, we can associate a permutation o € Syp
to this map such that A, ;) is the image of A;.
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If there exists a d € R"™ such that £y p)y € Aut(I'), then it must satisfy
(d, D)(a;, A;)(d, D)~ € T for every i = 1,..., k. Equivalently,

(d, D)(ai, A;)(d, D)~ €T
Aand (da D)(aiaAi)(dvD)il(aU(i);Aa(i))il ez"
<= Da; — Gy (i) T (]ln - Ag(i))d ez". (9.1)

Therefore, construct the matrices

1, — Ay Da; — as)
]]-n_Ac,'Z Da2_a02

M = ) @) e 2" m = ) ® ek,
Tn — Ao Day — a1

and calculate the matrices P € GL,(Z), S € Z™*" and Q € GL,(Z) such
that S is the Smith normal form of M and PMQ = S. With these matrices
known, calculate ¢ := Pm and define d’ := Q~'d, and observe that condition
(9.1) is equivalent to

t+Sd € 7", (9.2)

Let r be the rank of the matrix S and let s1, sa, . .., s, be the (non-zero) invariant
factors of S. Writing out the components of ¢t + Sd’, we find that condition
(9.2) means that t; + s;d, € Zfori=1,...,rand t; € Zfori=r+1,...,nk.

The latter condition does not depend on d. Thus, we verify if ¢, 1,...,tx €
Z. 1If this is not the case, the required d does not exist and the algorithm
returns “fail”. Otherwise, we set d; = —t;/s; for i = 1,...,r and d; = 0 for

i=r+1,...,n, and calculate d = Qd’, which will be an element of Q™. The
map §q,p): ' = Ty~ (d,D)v(d, D)1 is then an automorphism of . O

Remark 9.1.4. Tt is not necessary to use every (a;, A;) in Fepe(T') in algorithm 1.
If 41, ...,4, are indices such that A, ,..., A4;, is a generating set of the holonomy
group F', we can construct M, m as
1, — Ay Da;, — ag(,)
M = : cZ"*" m o= : S/
1, — Asi,) Da;, — agi,)

where r may be much smaller than k& = #F. This can significantly speed up
computations.

If a crystallographic group I" has finite outer automorphism group, or equivalently
N is finite, we can use algorithm 2 to determine whether I' has the R,-property
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Algorithm 2 Determining if a crystallographic group I' has the R..-property

1: function HASRINFINITYPROPERTY(I')

2 N + Ngu, @) (F)

3 if #Np = oo then

4: return fail > # Out(T") = o0
5: else

6 Nr + @ > Calculate Nr
7 for D € Nr do

8 if ExtendsToAutomorphism(D,T") # fail then

9: Nr «+ Nr U {D}
10: end if
11: end for
12: for D € Nr do > Find D with R(§4,p)) < oo
13: R, < false

14: for Ae F do

15: if det(1, — AD) =0 then

16: R + true

17: end if

18: end for

19: if R, = false then
20: return false
21: end if
22: end for
23: return true
24: end if

25: end function

or not. This is basically the algorithm from [DP11] combined with algorithm 1,
meaning no work has to be done by hand anymore.

However, in its presented form, algorithm 2 is not very efficient. Algorithm 3
is an extended version of algorithm 2 and takes an entire Z-class as input,
rather than a single crystallographic group. It outputs the list of groups in
this Z-class that do not have the R, -property. Running algorithm 3 for a
Z-class is significantly faster than running algorithm 2 separately for every
crystallographic group in this Z-class. Remark that further improvements to
this algorithm can be made, using the following facts:

o If for some D € N we have that det(1,, — AD) # 0 for all A € F, then
the same holds for any matrix in the same coset of Np/F as D. This also
follows from lemma 2.5.19(1).
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o If for some D € N we have that det(1,, — AD) # 0 for all A € F, then
the same holds for any matrix in the same conjugacy class of Nr as D.
This also follows from lemma 2.5.19(2).

o If for some D € Nr, there exists a d such that {4 py € Aut(T'), then the
same holds for any matrix in the same coset of Np/F as D. This follows
from taking the compositions of the form ¢, 4) © {4, p)-

Algorithm 3 Determining which crystallographic groups in a Z-class Z do not
have the R..-property

1: function HASRINFINITYPROPERTYZCLASS(Z)

2 Np + NGL,,L (2) (F)

3 if #Np = oo then

4 return fail > # Out(I") = o0
5: else

6 Dewo @ > Find D with R(§4,p)) < oo whenever d exists
7 for D € Nr do

8 Ry < false

9: for A€ F do

10: if det(1,, — AD) =0 then

11: Ry < true

12: end if

13: end for

14: if R, = false then

15: Doy + Deoo U{D}

16: end if

17: end for

18: e @ > Find I' without R..-property
19: for D e D do
20: forT' e Z do
21: if ExtendsToAutomorphism(D,I") # fail then
22: Feoo « Teoo U{T}
23: end if
24: end for
25: end for
26: return '

27: end if
28: end function

However, these algorithms fail when the outer automorphism group is infinite
(and hence N is infinite), in which case we can try two things:
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1. Show that all crystallographic groups in a Z-class with holonomy group F'
have the R..-property, by finding a characteristic subgroup N of Z" x F
such that (Z"™ x F)/N has the R.o-property. This relies on corollary 2.5.12
and theorem 9.1.2.

2. Show that a crystallographic group I" does not have the R..,-property, by
checking for random matrices D € Ng whether they belong to Nr (using
algorithm 1) and whether any automorphism with D as linear part can
have finite Reidemeister number (using theorem 4.2.5).

However, unlike the aforementioned algorithms, these are trial-and-error
methods that have to be done manually.

We have applied algorithm 3 for all crystallographic groups up to dimension
6. Up to dimension 4, we also applied the methods mentioned above for the
crystallographic groups with infinite outer automorphism group, and for every
Z-class we either found that all groups have the R..-property, or we found
an automorphism ¢ = {4 py with R(p) < oo for every group in the Z-class.
Therefore, we have completely determined which crystallographic groups up to
dimension 4 have the R.,-property.

To create a library of crystallographic groups and calculate the normalisers N,
we used CARAT [Car06]. Our algorithms were implemented in GAP [GAP18],
and we used the GAP-package carat [Carl8] to access the aforementioned
library.

For the crystallographic groups with finite outer automorphism group up to
dimension 6, the results of algorithm 3 can be found in tables B.1 to B.6. For
the groups with infinite outer automorphism group up to dimension 4, tables B.7
to B.9 provide pairs (d, D) for the groups that do not have the R..-property,
and tables B.10 and B.11 provide quotient groups of Z"™ x F' for the Z-classes
that do have the R..-property. We summarise these results in table 9.1.

In these tables, we identify the groups using 3 different classification systems.
Up to dimension 3, there is the classification system from the International
Tables for Crystallography [Arol16], where groups are identified by n/IT, with
n the dimension and IT the specific group. Up to dimension 4, there is the
notation from [Bro+78], where groups are identified by n/c/q/z/s, with n the
dimension, ¢ the crystal system, g the Q-class, z the Z-class and s the specific
group. In every dimension, there is the CARAT-notation [Car06], where groups
are identified by ¢-z-s, with ¢ the Q-class, z the Z-class and s the specific group.
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dim # groups (#O0ut(T') < o0) | no Ry (# Out(T') < o0)
1 2 (2) 1 (1)
2 17 (15) 2 (1)
3 219 (204) 12 (7)
4 4783 (4 388) 91 (45)
5 222 018 (204 768) ? (146)
6 | 28927 915 (26 975 265) ? (321)

Table 9.1: Crystallographic groups up to dimension 6 without the R..-property
9.2 Almost-crystallographic groups

In this section we determine which almost-crystallographic groups up to
dimension 4 do not have the R,.-property. We first give two propositions, which
restrict which almost-crystallographic groups and automorphisms respectively
can have finite Reidemeister numbers. The results obtained in this section were
published in [Ter19).

Proposition 9.2.1. Let T' be an almost-crystallographic group with translation
subgroup N of rank n > 3 and nilpotency class ¢ > 2 with Y/v.(N) = Z. If the
holonomy group F acts non-trivially on X/~.(N), then T' has the R, -property.

Proof. Let A € F arbitrary, ¢ = {4 p) € Aut(I')) and 2 € N such that
() = X/7.(N). Since A acts on x by 42 = x4 with e4 € {-1,1} and
p(z) = x¥ with v € {—1,1}, then (after a change of basis) A, and D, must
have the following forms:

€A k * v k *
A= , .=
0 =x * 0 =* *

1—vey = *
1,—AD,=| °
0 * *

Now let us look at specific A € F. First, let A be the neutral element of F',
which necessarily acts trivially on z. The above matrix then has upper left
entry 1 — v, hence det(1,, — D,) # 0 if and only if v = —1.
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Second, let A be an element of F' for which ¢4 = —1. Such element exists since
we assumed F acts non-trivially on Y/v.(N). Then the matrix 1,, — A, D, has
upper left entry 1+ v, and det(1,, — A.D,) # 0 if and only if v = 1.

As v cannot be —1 and 1 at the same time, we always have some A € F for
which det(1,, — A.D,) = 0, and by theorem 4.2.5 this means that R(p) = oo.
Since this holds for any automorphism, I' has the R,,-property. O

Proposition 9.2.2. Let ' be an almost-crystallographic group with translation
subgroup N of rank n > 3 and nilpotency class ¢ > 2, such that Y/~v.(N) = Z.

If the restriction of ¢ € Aut(T') to X/7.(N) is the identity, then R(p) = 0.

Proof. Let ¢ = 4,py € Aut(I') and € N such that (z) = Y/7.(N). If
() = z, then (after a change of basis) D, has the form

1 = *
D, = 0 ,
0 =x* *

and hence det(1,, — D) = 0. By theorem 4.2.5 this means that R(¢) =oco. O

9.2.1 Dimension 3

In this case the translation subgroup N is a finitely generated, torsion-free,
nilpotent group of rank 3 and nilpotency class at most 2. Nilpotency class 1 is
of course the crystallographic case, which was done in the previous section, so
let T' be an almost-crystallographic group whose translation subgroup N is a
nilpotent group of rank 3 and nilpotency class 2. This group N can be given
the following presentation:

<€1ae2763

Moreover, let G be the Lie group that T' is modelled on. By [Dek95, Theorem
4.1], there exists a faithful affine representation A : G x Aut(G) — Aff(R?) such
that its restriction to I' is again a faithful affine representation. In particular,

[63, 61} = ].

le2,e1] =1 [es,ea] = elf > .

1001 10 -4 0 1 200
lo 100 o1 0 1 o1 0 o0
Me =19 o 1 o M2=1g ¢ 1 o] M)=]g o 1 1
000 1 00 0 1 00 01
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where the value of I; is determined by the relation [es, es] = €.

Corollary 3.4.9 tells us that the subgroup (e;) = 3/~2(N) is characteristic and
the quotient IV := T'/{e;) is a 2-dimensional crystallographic group. Using
corollary 2.5.15, we know that if I has the R..-property, then so does I'. In
[DE02; Dek96] the almost-crystallographic groups were classified into families
based on which crystallographic group IV is. Since only three 2-dimensional
crystallographic groups do not have the R..-property (min.2-1.1-0, group.1-1.1-
0 and min.5-1.1-0) we need only consider the corresponding three families of
3-dimensional almost-crystallographic groups. We will name these three families
after the quotient group I".

Family min.2-1.1-0. This family consists of the finitely generated, torsion-free,
nilpotent groups of nilpotency class 2 and rank 3. We have already determined
in section 5.2.1 that these groups do not have the R.,-property.

Family min.5-1.1-0. Every group in this family has a presentation of the form

[ea,e1] =1 ae; = e
<617627637a [63761} - 1k a2 = 62263—05 -1 > )
[es,eo] = €] aes =ejPe; €5
ad = e’f“
and the faithful representation X is given by

ko —% + k3
0 —1
1 -1
0 0

AMa) =

oo~
— O owlF

Since the translation subgroup N and the isolator X/v2(N) = (e;) are
characteristic, any automorphism ¢ = f(d, p) must be of the form

dct

pler

n1 my Mo
€2 €37

p(e2

p(es €17€3 €3,

)
)
) ng ms my
)

n3 _mn4g ns

(o) = e]?ey*es”a’,

where

ma

M—(m1 23)€GL2(Z), ni €7, ec{-1,1}
4
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Then D, is of the form

D, = 0 mi1 ms
0 mo My

Let A € F, and let A’ be the projection of A to F’, the holonomy group of
IV :=T/(e1) (this is of course the crystallographic group min.5-1.1-0). Then

det(l3 — A, D) = (1 — det(M)) det(ly — A'M).

We may calculate that (using algorithm 1) that #Np» = 12, and Ny is exactly
the set of possible matrices M. Six of the matrices M in N/ have determinant
1, in which case det(15 — A.D,) =0 for all A € F. Thus, using theorem 4.2.5,
we can see that these automorphisms have infinite Reidemeister number. For
the other six matrices M, there always exists some A’ € F such that det(1s —
A'M) = 0. Again, using theorem 4.2.5, these automorphisms have infinite
Reidemeister number. This result was also obtained in [DP11, Theorem 4.4].

Family group.1-1.1-0. Every group in this family has a presentation of the

form
[e2,e1] =1 ae; = e
[es,e1] =1  aeg = ef2e;la
<61’62’63’a [es, ea] = e’fl oes = elfsegla > ’
a? = e’f“

and the faithful representation A is given by

1 ke ks %

=y 0 o

0 0 0 1
Define an automorphism ¢ = {4 py by
pler) = e,

plez) = ey T esed,

_ 8ki—ky—2ks 2 3
ples) = ey T Meges,

pla) = e Ma,
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then D, is of the form
-1 *x =x
D,=10 1 2
0 2 3

We can apply theorem 4.2.5 to show that R(¢) < oo and hence I' does not have
the Roo-property. This result was also obtained in [DP11, Theorem 4.4].

9.2.2 Dimension 4

In this case the translation subgroup N is a finitely generated, torsion-free,
nilpotent group of rank 4 and nilpotency class at most 3. Nilpotency class 1 is
of course the crystallographic case, which was done in the previous section.

Nilpotency class 2

Let T" be an almost-crystallographic group whose translation subgroup N is a
nilpotent group of rank 4 and nilpotency class 2. The group N can be given
the following presentation:

<el7 €2,€3,€4

Moreover, let G be the Lie group that I is modelled on. By [Dek95, Theorem
4.1], there exists a faithful affine representation \ : G x Aut(G) — Aff(R*) such
that its restriction to I' is again a faithful affine representation. In particular,

10001 1o -4 -2 o0
01000 01 0 o0 1
Mer)=1]0 0 1 0 0f, Me2)=1]0 0 1 0 of,
00010 00 0 1 0
0000 1 00 0 0 1
1 Lo -k oo 1 2L oo
01 0 0 0 01 0 00
Mes)=]0 0 1 0 1|, Xe)=|0 0 1 0 0],
000 1 0 00 0 1 1
000 0 1 00 0 01

where the values of 1, I, and I3 are determined by the relations [e3, e5] = elll,
[e4, e2] = €2 and [ey, e3] = €b2.
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Again, the subgroup (e;) = Y/72(V) is characteristic and the quotient I :=
I'/{e1) is a 3-dimensional crystallographic group. Just like the three-dimensional
case, we need only consider the families whose quotient IV does not have the Re.-
property. As calculated in the previous section, there are twelve such families.
These families can be split in smaller subfamilies, determined by the action of
F on X/v(N): every A € F acts on e; by 4e; = el with e4 € {-1,1}. By
proposition 9.2.1 we need only consider those subfamilies where F' acts trivially
on /72(N).

Remark 9.2.3. In the three-dimensional case, the action of F' on XY/7v2(N) was
always uniquely determined. If the crystallographic quotient group IV :=T'/{e1)
has holonomy group F’, then the action of A € F on ey is given by 4e; = efCt(A/),
with A’ the projection of A to F”.

In the classification of the 4-dimensional almost-crystallographic groups in
[Dek96], it turned out (using techniques from [Dek96, Section 5.4]) that for
an almost-crystallographic group belonging to one of the families min.10-1.1-0,
min.10-1.1-3, min.10-1.3-0, min.10-1.4-0 or min.10-1.4-1, F' acting trivially on
A/72(N) implies that the group is actually crystallographic. Therefore we may
omit these families and we are left with only 7 families to study.

Note that the presentations given below may vary from those in [DE02; Dek96].
Let 'y and A; denote a group and its faithful representation as given below,
and let I'; and Ay be the corresponding group and representation as given by
[Dek96] or [DE02]. Table B.12 contains a matrix § such that

A (T1) = 6Xo(T2)6 1,

hence A (T';) and A\2(T'2) are conjugate subgroups of Aff(R*) and therefore I'y
and I's are isomorphic.

Family min.6-1.1-0. This family consists of the finitely generated, torsion-free,
nilpotent groups of nilpotency class 2 and rank 4. We have already determined
in section 5.2.2 that these groups do not have the R.,-property.

Families min.7-1.1-0, min.7-1.1-1 and min.7-1.2-0. Every group in one of
these families has a presentation of the form

[e2,e1] =1 ae; = e

[es,e1] =1 aes = esq

les,e1] =1 ez =el2e;Vesa
<61,€2,63,€4,0[ [63762}:1 0&64_€]f eZla >7

[eq, 2] = 1 o? = e]f“e2

4, €3] = €F
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and the faithful representation X is given by

1 0 ky ky %
01 —v 0 &
Ma)=10 0 =1 0 0
00 0 -1 0
00 0 0 1

Family min.7-1.1-0 is given by u,v = 0, family min.7-1.1-1 by p = 1,v = 0 and
family min.7-1.2-0 by ¢ = 0, = 1. Define an automorphism ¢ = 4 py by

pler) =ert,
plez) = ey,
ples) = it P el eged,

o(a) = 61"“65”04,

then D, is of the form

-1 * *x x
0 -1 % =
D. = 0 0o 1 2
0 0o 2 3

We can apply theorem 4.2.5 to show that R(¢) < oo and hence T does not have
the R.-property.

Families min.13-1.1-0 and min.13-1.2-0. Every group in one of these families
has a presentation of the form

[e2,e1] =1 ae; = ejq

[es,e1] =1 aes = esq

[es,e1] =1 ae; = e]f es0
<€1,€2,63,64,a [63,62]:1 ae4_e]1€36/2631€41a >7

leg,e0) =1 o = el

[es, 3] = ek
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and the faithful representation A is given by

10 ky —% 4k %
01 0 1 0
AMe)y=10 0 0 -1 0
00 1 -1 0
00 0 0 1

Family min.13-1.1-0 is given by by p = 1 and family min.13-1.2-0 by p = 0.
Since the translation subgroup N, the centre Z(N) = {e1, ) and the isolator

V/72(N) = (e1) are characteristic, any automorphism ¢ = &4, py must be of
the form

0 €$Et(M)

el) = )

e2) = etel

14

(

(

(ex) = el el el e,
(

S

N4 N5 M3 14

p(es) = efey €3 7€y )

n n n, n
pla) =ej®ey ez e}’ al,

where

_ mq ms ) o
M = (m2 m4> € GLx(Z), n;€Z, e71e{-1,1}.

Then D, is of the form

det(M) * x  x

0 T % *
D. = 0 0 mp ms
0 0 mo My

Let A € F, and let A’ be the projection of A to F’, the holonomy group of
I'V:=T/Z(N) (this is the crystallographic group min.5-1.1-0). Then

det(Ly — A,D,) = (1 — det(M))(1 — 7) det(Ly — A'M).

Just like in section 9.2.1, family min.5-1.1-0, there are only 12 possible matrices
M, and for each of them either det(M) = 1 or there exists some A’ € F’ such
that det(1y — A’M) = 0. By theorem 4.2.5, these automorphisms have infinite
Reidemeister number.
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Family group.5-1.1-0. Every group in this family has a presentation of the

form
[e2,e1] =1 ae; = e
[es,e1] =1 ey =eley'a
les,er] =1 ez =eesla
€1,€2,€3,€4, [63762] :ellcl ae4_e]1€664 la )
[eg,e0) = V2 a2 = eb
[647 63} = elfs

1 ks ks ke %
0 -1 0 0 0
Ma)=10 0 -1 0 0
00 0 -1 0
00 0 0 1

Set k := ged(ky, ke, k3) and g == egs/kegh/keil/k, then the centre Z(N) of

the translation subgroup is generated by e; and g. Let ¢ : I' — I' be any
automorphism. Since (e;) and Z (V) are both characteristic in I", we have
that ¢(g) = g?" for some € € {—1,1} and m € Z. Consider the induced
automorphism ¢’ = g pry on I :=T'/(e1), the crystallographic group group.5-
1.1-0. Then

¢'(g(e1)) = D'(gle1)) = ¢(g){e1) = g°(er).

Depending on the value of €, D/, has either eigenvalue 1, in which case det(13 —
D.) =0, or eigenvalue —1, in which case det(13+ D) = 0. Since the holonomy
group of IV is {15, —13}, we obtain by theorem 4.2.5 that R(¢’) = oo and
by lemma 2.5.10 that therefore R(¢) = oco. Since this holds for an arbitrary
automorphism, I' has the R..-property.

Nilpotency class 3

In section 5.2.2, we have determined that the finitely generated, torsion-
free, nilpotent groups of nilpotency class 3 and rank 4 have the R..-
property. Applying corollary 2.5.12 then proves that every 4-dimensional
almost-crystallographic group with translation subgroup of nilpotency class 3
has the R..-property.
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Reidemeister spectra

10.1 Crystallographic groups

In this section, we will calculate the Reidemeister spectra of all crystallographic
groups of dimension at most 3 that do not have the R..-property, with partial
results up to dimension 6. The results obtained in this section were published
in [DKT19] and [DTV19)].

For crystallographic groups with finite outer automorphism group, we will
present algorithms that calculate the Reidemeister spectrum. For the remaining
groups, we will have to proceed by hand, which is feasible up to dimension 3.
For dimension 4, we limit ourselves to calculating the spectra of only a small
number of groups, mainly those where we have some extra tools to help us (for
example lemma 2.5.18 or theorem 4.2.6).

10.1.1 Finite outer automorphism group

To calculate the Reidemeister spectrum of a crystallographic group I" with
finite outer automorphism group, we need two main algorithms: a first one to
calculate the Reidemeister number of a given automorphism ¢ = {4 py, and a
second one to construct a set of representatives of Out(I').

163
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Calculating the Reidemeister number of an automorphism

We will start by explaining the approach to calculating Reidemeister numbers
in a more general setting. From proposition 2.5.13 and its proof, we obtain the
following theorem.

Theorem 10.1.1. Let G be a group with normal subgroup N <G, and let ¢ be
an endomorphism such that o(N) C N. Denote by ¢’ the induced endomorphism
on G/N. Then the set of Reidemeister classes of ¢ is given by

Re)= || Wyoi)R(yeln)),

[gN],r €R(e’)
where 14 s the following bijective map:

by Dy (W) = D7 ([9N]r) = Moy > [hgl-

The composite map (¢4 0 I,) in the above theorem is, in general, not injective.
We have that

(thg © 2g)([n1]uy01n ) = (g © 2g)([n2]151x)
Zg([nl]bg‘plN) = Zg([TLQ]Lng‘N)

Jh € G :ny = hna(iyp)(h)

Jh € G :n1g = hnage(h) ™

[ A

ni1g ~y, Nag.
Thus, if we have a group G with a normal subgroup N and an endomorphism

 as described in theorem 10.1.1, and we are able to do the following:

o calculating a set of representatives of the Reidemeister classes R(¢’) of

G/N,

o calculating a set of representatives of the Reidemeister classes R(tq¢|n)
of N,

o checking if two elements of G are ¢-twisted equivalent,

then we can use theorem 10.1.1 to calculate a set of representatives of the
Reidemeister classes R(p) of G.
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Let us now apply this to the setting of crystallographic groups. Let ¢ = {4 p)
be an automorphism of a crystallographic group I'. We will take N = Z", the
translation subgroup of I', and then G/N = F, the holonomy group. Since
F is finite, it is not hard to calculate the Reidemeister classes of the induced
automorphism ¢’ on this group. For example, algorithm 4 is a simple algorithm
to calculate a set of representatives.

Algorithm 4 Calculating representatives of () for a finite group G

1: function CALCULATEREPRESENTATIVESFINITEGROUP(G, )

2 R+—o

3 for g € G do

4: new <— true

5: for (¢’,h) € R x G do

6: if g =hg'o(h)~! then

7 new < false > g~y g for some ¢’ € R
8 end if

9 end for

10: if new = true then

11: R+ RU{g} > g represents a new Reidemeister class
12: end if

13: end for

14: return R

15: end function

To calculate a set representatives of the Reidemeister classes in Z", note that
we have shown in examples 2.5.8 and 2.5.9 that for any D € Z™"*"™,

R(D) = Z"/ im(L, — D).

Thus, it suffices to find a representative of every coset of im(1, — D) in Z".
This can be done with algorithm 5, as long as the determinant of 1,, — D is
non-zero. We prove the correctness of this algorithm in theorem 10.1.2.

Theorem 10.1.2. Let M € Z™*™ be a square matriz with non-zero determinant.
Then CalculateRepresentativesCosets(M) returns a set of representatives

of the cosets of im(M) in Z"™.

Proof. Let P,Q € GL,,(Z) such that PM@Q = S, with S the Smith normal form
of M. Since det(M) # 0, we have that S is a diagonal matrix with non-zero
entries on its diagonal, and we may assume that these entries are positive. We
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Algorithm 5 Calculating representatives of the cosets of im(M) in Z™

1: function CALCULATEREPRESENTATIVESCOSETS(M)

2 if det(M) =0 then

3 return fail

4 else

5: P,Q,S + matrices s.t. PMQ = S, the Smith normal form of M
6 C+ 11 {0,1,...,8;; — 1}

7 return {P~1z |z € C}

8 end if

9: end function

use this to determine when two cosets of im(M) are equivalent:
r+im(M)=y+im(M) < Fz€Z":z2—y=Mz
> € Z":Px—Py=PMQ(Q '2)
= 32 €Z":Pxr— Py=257
<= Pz +im(S) = Py + im(S)
<~ Vie{l,...,n}: (Pz); = (Py); mod S, ;.

Thus, the Cartesian product C defined by

C .= ﬁ{O,l,...,Si,i—l}
i=1

contains det(S) = det(M) elements of Z™ that each represent a different coset of
im(S) in Z". Thus, each element of the set P~1C := {P~1x | x € C} represents
a different coset of im(M) in Z™. O

Finally, algorithm 6 allows us to verify whether two elements of a crystallographic
group are Reidemeister equivalent with respect to a given automorphism. We
prove the correctness of this algorithm in theorem 10.1.3. Thus, combining
algorithms 4 to 6 we may construct algorithm 7, which takes as input a
crystallographic group I" and an automorphism ¢, and outputs the Reidemeister
number R(¢). Note that this algorithm actually calculates a complete set of
representatives of the Reidemeister classes R(yp).

Theorem 10.1.3. Let T be a crystallographic group, ¢ € Aut(T') and y1,v2 € T
Then AreReidemeisterEquivalent(L', o, v1, 72) returns true if and only if

Y1~ V2-
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Algorithm 6 Verifying if two elements 71,79 of a crystallographic group I' are
Reidemeister equivalent

1: function AREREIDEMEISTEREQUIVALENT(T, ¢, 71, 72)

2 d, D < vector d, matrix D such that {4 p) = ¢

3 for i € {1,2} do

4: x;, A; < vector x;, matrix A; such that (z;, 4;) = v

5: end for

6 for (b, B) € F(T') do

7 if Ay = BA;DB~'D~! then

8 if (]ln — AlD)_l (.’171 — Bxy — (BAQ — Al)d) —beZ" then
9: return true

10: end if

11: end if
12: end for
13: return false

14: end function

Proof. Define x; and A; by v = (2, 4;) € R” x GL,(Z) for i € {1,2}. We
have that

Vi ~p e = FEET 1y = 67200(6) "

<= 3(y,B) €T : (21, 41) = (y. B)(w2, A2)(d, D)(y, B) "' (d, D) ™"

Now let b € R™ such that (b, B) € F;(I') and set z =y — b € Z™. Splitting
up in its components, we may rephrase the above condition as that there exist
(b,B) € Fort(T) and z € Z™ such that

(a) Al = BAQDBilDil,
(b) 1 = Bxo + (BA2 — BAQ.DBilDil)d + (]ln — BAQDBil)(Z + b)

Suppose that condition (a) is true for some (b, B). Then we have left to verify
that

32 € Z": 11 = Bxy + (BAy — BA,DB D Y)d + (1,, — BA,DB™')(z +b)
< J2€Z":21=Baxs+ (BAzs— Ay1)d+ (1, — A1D)(z +b)
< 3z€Z":21—Bxy— (BAy — Ay1)d = (1, — A1D)(= +b)
— 3zeZ": (1, — A D) (2, — Bxo — (BAy — A))d) =z +b

< (1, — A;D) " (x; — Brg — (BAy — Ay)d) — b€ Z",
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and this last line is exactly what the algorithm verifies. O

Algorithm 7 Calculating R(yp) for an automorphism of a crystallographic
group I'

1: function REIDEMEISTERNUMBER (T, ¢)

2 R(¢')reps < CalculateRepresentativesFiniteGroup(F,¢’)
3 R(P) reps — O

4: D « matrix D such that {4 p)y = ¢

5: for A € R(¢')reps do

6 R(AD),eps < CalculateRepresentativesCosets(l,, — AD)
7 a « vector such that (a, A) € Fop+(T)

8 for z € R(AD),ps do

9: new <— true

10: 7 (x+a,A)

11: for v2 € R(Y)reps do

12: if AreReidemeisterEquivalent(T, ¢, 71, 72) = true then
13: new < false

14: end if

15: end for

16: if new = true then

17: ZR(So)a"eps — Ep‘(@)reps U {’71}

18: end if

19: end for

20: end for

21: return #R(Q)reps
22: end function

Constructing a set of representatives of Out(T)

While we can now calculate the Reidemeister number for a given automorphism
¢ = {(q,py With algorithm 7, we still require a set of representatives of Out(I")
to apply it to. The following theorem helps understand the structure of the
outer automorphism group.

Theorem 10.1.4 (see [Cha86, Theorem V.1.1]). Let T’ be a crystallographic
group with holonomy group F' C GL,(Z). Then the following diagram commutes
and all columns and rows are short exact sequences:
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1 1

1 Z(JF) Z(T) 1 1

1 Z(JF) z" Inn(T) F 1
% —— Aut’(T) —— Aut(I) Nr 1
1 —— HY(F,2") —— Out(l') —*— Np/F —— 1

We define Aut®(T") in the diagram above as the (abelian) group of automorphisms
@ of T that satisfy o|zn = 1,,.

We are, of course, particularly interested in the bottom row of this diagram.
Algorithm 1 lets us calculate Np (and by extension Nr/F'). Moreover, since
this algorithm returns a d such that &4 py € Aut(I') for a given D € N, we can
actually construct a (representative of a) preimage under the projection p for
any element of Np/F. Thus, we are left to calculate the first cohomology
group H'(F,Z"). This can be done using algorithm 8, which was also
described in [Lut13, Section 4.2]. We prove the correctness of this algorithm in
theorem 10.1.5.

Algorithm 8 Calculating representatives of H'(F,Z")

1: function CALCULATEREPRESENTATIVESCOHOMOLOGY (F)

]ln - Al
]ln - AQ
2: M + . DF:{Al,...,Ak}
]ln - Ak
P,Q, S < matrices such that PM@Q = S, the Smith normal form of M
r < rank(S)

r Sii— n
C+Ilizy {0’ %’ 372,,1".“’ Sl} X [Ti=r+1{0}
return {Qd’' | d' € C}

end function
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Theorem 10.1.5. Let F C GL,(Z) be the holonomy group of a crystallographic
group. Then CalculateRepresentativesCohomology(F') returns a set of
representatives of H(F,Z").

Proof. Let d € R™. We start by finding necessary and sufficient conditions on
d such that (4 1,) is an automorphism, i.e. {4 1,) € AutO(F). It must satisfy
(d,1,)(a;, A;)(d, 1,)"t €T for every i € {1,...,k}, or equivalently

(d,1,)(a;, 4;)(d, 1,)"" €T
— (dv]ln)(ai»Ai)(daﬂn)fl(aiaAi)fl cZ”
= (I, - Aj)deZ". (10.1)

Therefore, construct the matrix

1, — A
1, — As

M = ] c anxn7
1, — Ag

and calculate the matrices P € GL,(Z), S € Z™*" and Q € GL,(Z) such
that S is the Smith normal form of M and PMQ = S. Define d’' := Q~'d and
observe that condition (10.1) holding for every i € {1,...,k} is equivalent to

Sd' € 7", (10.2)
If we set r = rank(.S), then for the coordinates d; of d’ this means that d; € ﬁZ
for i € {1,...,r}. The other coordinates of d’ have no restrictions imposed on
them.

Now, suppose we have a d € R" such that d’ = Q~'d satisfies criterion (10.2).
We decompose d in three vectors:

& & — |dj ;) 0
e |- &) 0
d, 0 0 d,

For the first vector, which we will call d***¢, we must have that

1 2 Sii—1
d; — |d, e o, — :
i L zJ S {07 Si,i’ Siﬂ" ’ Si,i }
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The second vector, which we will call '™, is an element of Z", and the final

vector, which we will call d"¢™, satisfies

)

(A, 1) (ai, Ai)(d7™ 1) ™ = (g, Aj)

for all i € {1,...,k}. Thus, we may conclude that every &q1,) € AutO(F)
admits a unique decomposition

g(d711n) = g(dbase’]ln) o 5(dint7]ln) o g(drevn)]ln)
= {(qvase1,) 0 Loid,

where ¢ = {(gint 1, lies in the image of the map Z" — AutO(F) in the diagram
in theorem 10.1.4. Thus, we find that

Sii— .
Qd/| d;e{ovsiﬂsf,vle} for1<i<r
d; =0 forr+1<i<n

S

is a set of representatives of H'(F,Z"). O

Calculating the Reidemeister spectrum

Combining the algorithms from the previous sections, we may now construct
algorithm 9, which calculates the Reidemeister spectrum of a crystallographic
group I' with finite outer automorphism group. A GAP-implementation of
algorithm 9 produced the results found in tables B.1 to B.6. Note that we
have omitted the value oo from the Reidemeister spectra in these tables. The
Bieberbach groups are indicated by a star (*).

10.1.2 Infinite outer automorphism group

The Reidemeister spectra of crystallographic groups with infinite outer
automorphism groups have to be calculated by hand. For dimensions 1, 2
and 3, we do this for all groups; for dimension 4 we limit ourselves to a small
selection of groups, for example those where we can apply lemma 2.5.18 or
theorem 4.2.6.

Dimension 2

min.2-1.1-0. This group is isomorphic to Z?2, hence by theorem 5.1.2 we find
that Specy(T") = NU {oc}.
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Algorithm 9 Calculate the Reidemeister spectrum of a crystallographic group
I' with finite outer automorphism group

1: function CALCULATEREIDEMEISTERSPECTRUM(I")

2 Np < Naw,@)(F)

3 if #Np = oo then

4: return fail > # Out(T") = o0
5: else

6 H,cps < CalculateRepresentativesCohomology(F')

7 Outyeps +— @ > Calculate Out(T")
8 for [D] € Np/F do

9: d"**¢ + ExtendsToAutomorphism(D,T)
10: if d***¢ + fail then

11: Outmps — Outmps U {g(dbase_;'_d,D) | de Hreps}

12: end if

13: end for

14: Specy(T) «+ @ > Calculate Specy(T")
15: for ¢ € Outyeps do

16: Specy(T") < Specg(I") U ReidemeisterNumber(T', o)

17: end for

18: return Specy(T)

19: end if

20: end function

group.1-1.1-0. This group is isomorphic to (Z2,(0,—15)), hence by the-
orem 7.1.3 we find that Specy(I') = 2N U {3, 00}.

Dimension 3

min.6-1.1-0. This group is isomorphic to Z?*, hence by theorem 5.1.2 we find
that Specyp(I") = NU {oo}.

min.7-1.1-0. This group is isomorphic to the direct product of min.1-1.1-0
and group.1-1.1-0, where both factors are characteristic. Hence by lemma 2.5.18
we find that Specg(I') = 4N U {6, 00}. This group is also isomorphic to Ag 2/,
whose spectrum was calculated in table 7.1.

min.7-1.1-1.  This group is isomorphic to Az/z/1, hence by theorem 7.1.9 we
find that Specyr(I") = 2N U {o0}.
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min.7-1.2-0. This group is given by

1 -1 0
I =(Z%a) witha=(0,[{0 -1 0 |).
0 0 -1

We first calculate an explicit formula for the Reidemeister number of a given
automorphism.

Proposition 10.1.6. Let T' be the crystallographic group min.7-1.2-0 and
© = &@a,p) € Aut(I'). Then

R(p) = <#1F S [ det(1s - AD>|OC> +45(d),
A€EF

with & given by
1 4 7
5(d) ::{ if ds € Z,

0  otherwise ,

where ds3 is the third coordinate of d.

Proof. Let ¢ = £(4,py be an automorphism of I'. We can calculate that Z(I') =
(e1) and define IV :=T'/Z(T"), which is the crystallographic group group.1-1.1-0.
Then ¢ induces an automorphism ¢’ = {4 pry on I'V. One can verify, using that
D commutes with any element of the holonomy group, that we may assume D

and d are of the form
_[€ M1 Mm3 _ 0
D - (0 D/ ) 9 d - <d/) I

;_ [e+2my 2mg ,_ (d2
D( meo 1+2m4)’ d = ds )’
Here, ¢ € {—1,1}, my, ma,m3, my,ds € Z, and importantly, ds € %Z. For
A € F, let A’ be the projection to the holonomy group F’ of IV. We have that

where

|det(13 — AD)|oo = |1 — £|oo| det(la — A'D")| . (10.3)
Following theorem 4.2.5 and the first part of the proof of theorem 7.1.3, we

may conclude that R(p) = oo if and only if (at least) one of the following three
conditions is satisfied:

L[] 2’5‘:17
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e det(D') = —1 and tr(D’) = 0,
o det(D') =1 and |tr(D")]| = 2.

If this is the case, then the formula holds. We are left to verify the formula
when none of these conditions are satisfied.

Consider a Reidemeister class [z], of I' and recall that Z(I') = (e1). Then

z = ey " (wei")p(er )

and hence x ~ ze?* for all k € Z. So a Reidemeister class [2Z(T)], of I lifts
to at most 2 distinct Reidemeister classes of I': [z], and [ze1],.

The question that remains is: when is z ~, xe;? This is the case when there
exists some z € I' such that

r = zze;p(z) . (10.4)

Projecting this to I we find
2Z(T) = zzp(2) " Z(T). (10.5)
Set z = ((x1,%2,23)7,A;) and z = ((21,22,23)7,A;). If we assume that

A, = 13, then (10.5) is equivalent to

(1, — ALD') (22) =0.

3

But det(lo — AL, D") # 0, hence z2 = z3 = 0 and thus z = e]' € Z(T") for some
21 € 7. But then equation (10.4) reduces to e7*' ™' = 1, which is impossible.
Therefore, A, # 13, and then equation (10.5) is a special case of equation (7.2):

[Z(T)], is one of the cosets of 15 — A’ D" such that

2 (ij) 124 (Zj) =1y — A.D) (Z) , (10.6)

i.e. a coset that forms a Reidemeister class on its own, rather than pairing
up with another coset. The es- and eg-coordinates of (10.4) are equivalent to
equation (10.6). The ej-coordinate can be shown to be equivalent to zo = 221 +1,
under the assumption that (10.6) is satisfied. But since z; is an integer, we
need that zo € 27Z + 1.

Now, let’s look at the number of Reidemeister classes [xZ(I')],s such that (10.6)
holds. From the calculations we did for IV, we know that we must look at the
number of solutions O(1y — D', 2d’) of the system of equations over Zs given by

(o 8) () = (an)
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and we see that O(1y — D’,2d") = 2 O(ma, 2d3), since Z3 can be chosen freely.
We now have 4 cases:

1. my = 0,2d3 = 0. Then O(ms,2d3) = 2 with solutions z, = 0, 1; and
5(d) = 1.

2. my = 1,2d3 = 0. Then O(my,2d3) = 1 with solution z, = 0; and §(d) = 1.

3. mg = 0,2d3 = 1. Then O(mg,2d3) = 0; and §(d) = 0.

4. mg = 1,2d3 = 1. Then O(may,2d3) = 1 with solution z; = 1; and §(d) = 0.

Every solution Z; of the equation moZs = 2d3 represents 4 Reidemeister classes
[Z(T)],, since one takes all combinations of z3 € {0,1} and A], € {12, —12}.
Thus, we have respectively 8, 4, 0 and 4 Reidemeister classes [#Z(I")], satisfying
(10.5); of which respectively 4, 0, 0 and 4 satisfy zo € 2Z + 1. So the number of
lifts to Reidemeister classes of I is respectively 12, 8, 0 and 4. This number of
Reidemeister classes always equals

20(1y — D', 2d") + 45(d).
On the other hand, I'V has

|det(1y — D’)| + | det(1Ly + D)
2

— 01y, — D', 2d)

Reidemeister classes for which (10.5) does not hold, meaning each of these
classes lift to two distinct Reidemeister classes of I'. Combining all the classes
we obtain the formula

R(p) = |det(1y — D")| + | det(1z + D')| + 46(d), (10.7)
and using 1 — e = 2 in equation (10.3) we see this is exactly

R(p) = <#1F > [ det(ls — AD)|> + 46(d)

A€F

- <#1F > | det(1s — AD)|OO> +46(d),

A€EF

since none of the determinants are zero. Therefore, the proposed formula holds
in all cases. O

Theorem 10.1.7. Let T' be the crystallographic group min.7-1.2-0. Then
Specy(T") = 4N U {oo}.
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Proof. Let ¢ = {4,py be an automorphism of I with R(y) < oco. Consider
formula (10.7) and remark that tr(D’) € 2Z. Since

det(ly + D') = 1 £ tr(D") + det(D’),
we have that

4 if tr(D') =0,det(D’) =1,

det(ly — D')| + | det(1y + D)| =
\ (1o )+ (L )| 2|tr(D’)| otherwise ,

so in both cases R(¢) € 4N. Now consider the family of automorphisms
©m = §4,D,,) given by

-1 m m 0
D,=10 —-142m 2m|, d= 01,
0 1 1 1/2

where m € N. Since det(1y + D) = £2m and 6(d) = 0, we find that R(p,,) =
4m and hence Specy(I') = AN U {oc0}. O

group.5-1.1-0. This group is isomorphic to (Z3,(0,—13)), hence by the-
orem 7.1.3 we find that Specy(T') = N\ {1} U {oc0}.

Dimension 4

min.15-1.1-0. This group is isomorphic to Z*, hence by theorem 5.1.2 we find
that Specy(T") = N U {oc}.

min.17-1.1-0. This group is isomorphic to the direct product of min.1-1.1-0
and group.5-1.1-0, where both factors are characteristic. Hence by lemma 2.5.18
we find that Specy(T") = 2N\ {2} U {oo}. This group is also isomorphic to
Ay4/3/0, whose spectrum was calculated in table 7.1.

min.17-1.1-1.  This group is isomorphic to A4/3,1, hence by theorem 7.1.9 we
find that Specyr(T") = 2N U {oo}.

min.18-1.1-0. This group is isomorphic to the direct product of min.2-1.1-0
and group.5-1.1-0, where both factors are characteristic. Hence by lemma 2.5.18
we find that Specp(I') = 2N U 3N U {oo}. This group is also isomorphic to
Ay /2/0, whose spectrum was calculated in table 7.1.
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min.18-1.1-1. This group is isomorphic to A4/5,1, hence by theorem 7.1.9 we
find that Specyr(T") = 2N U {o0}.

min.18-1.2-1. This is a Bieberbach group given by

N /10 0 0

v o o1 =10
I'=(Z",a) with a = ( ol'lo 0o -1 o ).

0 0 0 0 -1

Theorem 10.1.8. Let I' be the crystallographic group min.18-1.2-1. Then
Specp(I') = 4N U {oo}.

Proof. Let ¢ = {(4,py be an automorphism of I'. Note that Z(T') = (e1, e2) and
Z" N {/72(T) = (eze,e4), and these are both characteristic subgroups of T'.
Taking into account that det(D) € {—1,1}, one can then calculate that D must
be of the form

2m1 +1 2m3 —ms 0
D= (Dl D2> . Mo 2myg+1 —my + ms my
0 Dj 0 0 2ms +1 2my ’
0 0 me 2mg + 1

with all m; € Z. Using the averaging formula from theorem 4.2.6, we find that

1
R(p) = §| det(12 — D1)|oo (| det(La — D3)|oo + | det(La + D3)|oo) -

Now, assuming that R(y) < oo, we have

—2m1 —2m3
€ 2N,
—mg  —2(my + m5)>

and, noting that tr(D3) € 2N, we find

det(]lg — Dl) = det <

4 if tr(Dg) = O,det(Dg) = 1,

det(1y — D3)| + | det(1y + D3)| =
| det(1o 3)| + [ det(L2 3)| {Qtr(D3)| otherwise,

hence | det(1y — D3)| + | det(12 4+ D3)| € 4N. Thus, putting everything together
we find that R(p) € 4N. Now consider the family of automorphisms ¢,, given
by

om(e1) = ey e, Omles) = ezezer’,
om(e2) = e1™ey M, Pm(a) = esa™,

om(es) =e; e ey ey,
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which have associated matrix

-1 2m -m 0

1 -2m+1 m-1 1
D = 0 0 -1 2 1’

0 0 1 -1

for every m € N. Then R(¢,

~

= 4m and hence Specy(I') = AN U {oc0}. O

group.26-1.1-0. This group is isomorphic to (Z*,(0,—14)), hence by the-
orem 7.1.3 we find that Specy(I') = N\ {1} U {o0}.

group.179-1.1-0. This group is isomorphic to the direct product of min.2-1.1-0
and min.5-1.1-0, where both factors are characteristic. Hence by lemma 2.5.18
we find that Specy(T") = AN U {o0}.

group.179-1.1-1. This is a Bieberbach group given by

3 1 00 O

) . /0 010 O
I =(Z* «a) with a = ( ol'lo o 0 -1 ).

0 0 01 -1

Theorem 10.1.9. Let I' be the crystallographic group group.179-1.1-1. Then
Specy(T") = 6N U {oc}.

Proof. Let ¢ = {(4,py be an automorphism of I'. Note that Z(I') = (e1, e2)

and Z" N {/72(T) = (es, eq), and these are both characteristic subgroups of
I'. Moreover, IV := T'/Z(T") is the crystallographic group min.5-1.1-0. Let
¢" = &, pry be the induced automorphism on I"". Because Nr- is finite, we can
calculate (for example with a computer) that

« Y |det(ly — A'D')|s € {6,00} for all D’ € Nr,
A’€F’

« if the above sum is finite, then D’A’D'~! = A’ for all A’ € F'.

If we assume that R(p) < oo, we must therefore have that DAD™! = A for all
A € F. One can then calculate that D must be of the form

3mi+1 mg 0 0

D— Dy 0Y) 3ms myg O 0
o 0 D/ o 0 0 ms Mmry
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with all m; € Z and D" € Ny.. Using the averaging formula from theorem 4.2.6,
we find that

1
R(p) = z|det(ly — D)l Y |det(ly — A'D')|s.
3 A’eF’

The first column of D; tells us that det(ls — D;) € 3N, and we already
established that the sum over F” must equal 6. Thus, we find that R(¢) € 6N.
Now consider the family of automorphisms ¢,, given by

om(e1) = ered™, Pm(es) =e; ',
Om(e2) = ered™ 1, om(a) = ey'eza,

om(es) = 6517

which have associated matrix

1 1 0 0
3m 3m—-1 0 0

D 0 0 -1 0 |’
0 0 0o -1

for every m € N. Then R(p,,) = 6m and hence Specy(I') = 6N U {cc}. O

group.179-1.2-1. This is a Bieberbach group given by

0 0

_ (74 . _ 0 1
I'=(Z", &) with a = ( 0 -1 ).

1

10
0 1
[0 0
0 0 -1

O O OoOwlE

Theorem 10.1.10. Let ' be the crystallographic group group.179-1.2-1. Then
Specy(I") = 6N U {oo}.

Proof. Let ¢ = {(4,p) be an automorphism of T'. Assume that R(y) < oo, then
by following the same reasoning as for group.179-1.1-1, one can calculate that
D must be of the form

3mi+1 3ms ms mg
D— Dy Dy _ ma mg Mg Mig
0 D 0 0 my mu |’
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with all m; € Z and D’ € Np/, where IV := I'/Z(T") is the crystallographic
group min.5-1.1-0. Again, we find that R(y) € 6N. Now consider the family of
automorphisms ,, given by

om(e1) = ere, om(es) = 64‘1,
Om(e2) = edmed™ !, om(a) = es3a,

om(e3) = 63_1’

which have associated matrix

1 3m 0 0
1 3m—-1 0 0

D = 0 0 -1 0 |’
0 0 0 -1

for every m € N. Then R(p,,) = 6m and hence Specy(T") = 6N U {oo}. O

group.182-1.1-0. This group is isomorphic to the direct product of group.5-1.1-
0 and min.5-1.1-0, where both factors are characteristic. Hence by lemma 2.5.18
we find that Specy(I") = 8N U {12, c0}.

10.1.3 Summary

Below, we present a table containing all crystallographic groups of dimension
at most 4 that do not have the R..-property. The table also contains the sizes
of the outer automorphism groups and the Reidemeister spectra. Note that we
have omitted the value {co} from the spectra, and have indicated Bieberbach
groups with a star (*).

CARAT BBNWZ IT #0ut(T) | Specy(T)
min.1-1.1-0* 1/1/1/1/1 | 1/1 |2 {2}
min.2-1.1-0* 2/1/1/1/1 | 2/1 | N
min.5-1.1-0 2/4/1/1/1 | 2/13 | 12 {4}
min.6-1.1-0* 3/1/1/1/1 | 3/1 | oo N
min.7-1.1-0 3/2/1/1/1 | 3/3 | AN U {6}
min.7-1.1-1* 3/2/1/1/2 | 3/4 | o N
min.7-1.2-0 3/2/1/2/1 | 3/5 | o AN
min.10-1.1-0 3/3/1/1/1 | 3/16 | 96 {2}
min.10-1.1-3* 3/3/1/1/2 | 3/19 | 96 {2}

Table 10.1: Crystallographic groups of dimension at most 4 that do not have
the Roo-property (we omit oo from the spectra)
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CARAT BBNWZ IT #0ut(T") | Specg(T)
min.10-1.3-0 3/3/1/3/1 | 3/22 | 48 2}
min.10-1.4-0 3/3/1/4/1 | 3/23 | 48 21
min.10-1.4-1 3/3/1/4/2 | 3/24 | 48 2}
min.13-1.1-0 3/5/1/2/1 | 3/143 | 24 (8}
min.13-1.2-0 3/5/1/1/1 | 3/146 | 4 {8}
min.15-1.1-0% | 4/1/1/1/1 0 N
min.17-1.1-0 4/2/2/1/1 %0 9N\ {2}
min17-1.1-1% | 4/2/2/1/2 %0 9N
min.17-1.2-0 4/2/2/2/1 ~

min.18-1.1-0 4/3/1/1/1 0 9N U 3N
min.18-1.1-1% | 4/3/1/1/2 0 2N
min.18-1.2-0 4/3/1/2/1 0

min.18-1.2-1% | 4/3/1/2/2 %0 AN
min.18-1.3-0 4/3/1/3/1 0

min.28-1.1-0 4/22/7/2/1 8 (12}
min.32-1.1-0 4/22/1/2/1 288 {4,16}
min.32-1.2-0 4/22/1/1/1 48 {16}
min.36-1.1-0 4/10/1/1/1 %

min.38-1.1-0 4/32/10/2/1 144 {6}
min.38-1.1-4 4/32/10/2/7 24 {6}
min.43-1.1-0 4/28/1/1/1 0

min.44-1.1-0 4/28/2/1/1 0

max.6-1.1-0 4/26/2/1/1 ~

max.6-1.1-1 4/26/2/1/2 ~

group.1-1.1-0 2/1/2/1/1 2/2 00 2N U {3}
group.5-1.1-0 3/1/2/1/1 3/2 00 N\ {1}
group.26-1.1-0 4/1/2/1/1 00 N\ {1}
group.28-1.1-0 4/3/2/1/1 00

group.28-1.1-1 4/3/2/1/2 00

group.28-1.1-2 4/3/2/1/3 00

group.28-1.2-0 4/3/2/2/1 00

group.28-1.2-1 4/3/2/2/2 00

group.28-1.2-2 4/3/2/2/3 00

group.28-1.3-0 4/3/2/3/1 (o)

group.37-1.1-0 | 4/21/2/2/1 12 (3}
group.40-1.1-0 4/22/2/2/1 16 {8}
group.44-1.1-0 4/22/5/4/1 16 {6}
group.44-3.1-0 4/22/5/3/1 144 {6}
group.52-1.1-0 | 4/5/1/2/1 192 (4
group.52-1.1-6% | 4/5/1/2/9 192 {4

181

Table 10.1: Crystallographic groups of dimension at most 4 that do not have
the Roo-property (we omit oo from the spectra)
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CARAT BBNWZ IT #0ut(T") | Specg(T)
group.52-1.3-0 4/5/1/9/1 96 {4}
group.52-1.6-0 | 4/5/1/13/1 48 4
group.52-1.7-0 4/5/1/5/1 96 {4}
group.52-1.7-1 4/5/1/5/2 96 {4}
group.52-1.12-0 | 4/5/1/7/1 96 {4}
group.52-1.12-3* | 4/5/1/7/4 96 {4}
group.52-1.13-0 | 4/5/1/1/1 12 (4
group.96-1.1-0 4/16/1/1/1 00

group.96-1.1-1 4/16/1/1/2 00

group.96-2.1-0 4/16/1/2/1 00

group.96-2.1-1 4/16/1/2/2 00

group.96-2.1-2 | 4/16/1/2/3 %0

group.96-3.1-0 | 4/16/1/3/1 0

group.78-1.1-0 | 4/32/4/2/1 48 (2,6}
group.78-1.1-2 4/32/4/2/3 48 {2,6}
group.78-1.1-4 4/32/4/2/6 24 {2,6}
group.80-1.1-0 | 4/5/2/2/1 768 (2,4}
group.80-1.1-5 | 4/5/2/2/16 256 (2,4}
group.80-1.1-18 | 4/5/2/2/18 128 (2,4}
group.80-1.40 | 4/5/2/9/1 192 {4}
group.80-1.4-2 4/5/2/9/3 64 {4}
group.80-1.6-0 4/5/2/6/1 64 {4}
group.80-1.6-2 | 4/5/2/6/3 64 {4}
group.80-1.80 | 4/5/2/5/1 384 {4}
group.80-1.8-2 | 4/5/2/5/5 128 (4
group.80-1.8-4 4/5/2/5/3 128 {2}
group.80-1.8-5 | 4/5/2/5/6 384 {2}
group.103-1.1-0 | 4/32/1/2/1 288 (2,6}
group.103-1.1-1 | 4/32/1/2/2 96 (2,6}
group.109-1.1-0 | 4/26/1/1/1 00
group.141-1.1-0 | 4/27/2/1/1 00
group.142-1.1-0 | 4/27/3/2/1 00
group.142-2.1-0 | 4/27/3/1/1 %0
group.143-1.1-0 | 4/27/4/1/1 %0
group.144-1.1-0 | 4/27/1/1/1 00
group.163-1.1-0 | 4/18/4/2/1 32 (4,8}
group.163-1.1-4 | 4/18/4/2/6 16 {4,8}
group.163-1.1-6 | 4/18/4/2/3 32 {4,8}
group.163-1.2-0 | 4/18/4/5/1 32 (4,8}
group.163-1.2-2 | 4/18/4/5/3 32 {4, 8}

Table 10.1: Crystallographic groups of dimension at most 4 that do not have
the Roo-property (we omit oo from the spectra)
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CARAT BBNWZ IT #0ut(T") | Specg(T)
group.163-1.2-6 | 4/18/4/5/6 32 (4,8}
group.163-1.2-7 | 4/18/4/5/5 32 (4,8}
group.169-1.1-0 | 4/18/1/2/1 64 (4,8}
group.169-1.1-2 | 4/18/1/2/3 64 (4,8}
group.169-1.2-0 | 4/18/1/3/1 64 (4,8
group.169-1.2-1 | 4/18/1/3/2 64 {4,8)
group.170-1.1-0 | 4/11/1/1/1 00

group.171-1.1-0 | 4/11/2/1/1 00

group.172-2.1-0 | 4/17/2/1/1 00

group.172-1.1-0 | 4/17/2/2/1 00

group.173-1.1-0 | 4/17/1/3/1 00

group.173-2.1-0 | 4/17/1/1/1 00

group.173-3.1-0 | 4/17/1/2/1 %0

group.179-1.1-0 | 4/8/1/2/1 00 4N
group.179-1.1-1* | 4/8/1/2/2 00 6N
group.179-1.2-0 | 4/8/1/1/1 00

group.179-1.2-1* | 4/8/1/1/2 00 6N
group.182-1.1-0 | 4/9/2/1/1 %0 8N U {12}

Table 10.1: Crystallographic groups of dimension at most 4 that do not have
the Ryo-property (we omit oo from the spectra)

10.2 Almost-crystallographic groups

In this section, we will calculate the Reidemeister spectra of the almost-
crystallographic groups of dimension at most 3 and of the almost-Bieberbach
groups of dimension at most 4. The results obtained in this section were
published in [DTV19] and [Ter19]. We will use the same presentations as in
section 9.2.1.

10.2.1 Dimension 3

Family min.2-1.1-0. This family consists of the finitely generated, torsion-
free, nilpotent groups of nilpotency class 2 and rank 3. We have already
determined in theorem 5.2.2 that these groups have Reidemeister spectrum
Specy(T') = 2N U {oo}.
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Family group.1-1.1-0. We first calculate an explicit formula for the Reide-
meister number of a given automorphism.

Proposition 10.2.1. Let I' be a 3-dimensional almost-crystallographic group
in the family group.1-1.1-0, and let o = {4, py € Aut(T'). Then

1
R(p) = <#F ; | det(13 — A*D*)oo> + 25,

where S € {0,1,2,3,4} depends on D, d, and the parameters k1, ko, ks and kqy
of T.

Proof. The formula holds trivially for automorphisms with infinite Reidemeister
number due to theorem 4.2.5. So let ¢ be an automorphism with finite
Reidemeister number R(y). Under the representation A, this automorphism
will correspond to a matrix § € Aff(R?) such that

(7)) = 0A(7)s 1.

for all v € I'. Note that ¢ induces an automorphism ¢’ = {(4/2,) on I :=
I'/{e1). Since we assumed that R(p) < oo, proposition 9.2.2 gives us that

det(M) _ 1
e =e .

pler) =
Thus, §, M and d must be of the form
-1 n1 ne 0
s= 0 | = () = (i)
0o o0 0 1

where all m; and d; are integers, m;m4 — mams = —1 and ny,n2 € R. Using a
computer, one can calculate the (unique) values of ny,ng and Iy, I, I3 such that

6)\(62)(5_1 = )\(el)ll)\(eg)"Ll)\(eg)mQ,
SA(e3)671 = Xep)2A(e2)™ Mes)™,

SA(@)6™ = A(e1) Mea) M Mes) 2\ ().
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From the obtained values of [1, I3 and I3, we get

-1

80(61) = 61 )
o %(m1m2+m1d2*m2d1)*k72(m1+1)*k73m2 mi_ms
ple2) = e; €y €37,
o %(m3m4+m3d2*m4d1)*k72m3*k73(m4+1) ms _ma
p(es) = e, ey e,

L gido—*24, - %34,k
_ 3 @1l2— 5 a1~ 5 d2—R4 _dy do
ola) = e eyles’a,

where all exponents must be integers. This places four conditions on the m;
and d;:

(a) k1(mims + mids — mady) — ka(mq + 1) — kgme = 0 mod 2,
(b) k1(msmy 4+ msda — mady) — kamg — ks(my + 1) = 0 mod 2,
(¢) kidida — kady — ksda = 0 mod 2,

(d) mimy — mams = —1.

We will determine R((p) in a very similar way to the proof of proposition 10.1.6.
Let [z], be a Reidemeister class of I', then for any k € Z,
z = (1 “JzeiFp(er ™),

therefore x ~,, ze?* for all k € Z. Consider the quotient group I = T'/(e1)
and let " = £(4/2,p) be the induced automorphism on this quotient. Since we
assumed that R(¢) < oo, we have that R(¢') < oo as well. A Reidemeister
class [z(e1)], of I will lift to at most 2 Reidemeister classes of I': [z], and
[ze1]e; so the number of lifts is either 2 (when @ %, xei) or 1 (when x ~, zey).
The latter happens if and only if

Jz €T :ze; = zxp(2) "L (10.8)

Projecting this to the quotient IV, we have

3z €T :x(ey) = zxp(2) He). (10.9)
Since e; is central in I' and = appears exactly once on each side of the equality
sign in (10.8), the e;-component of x does not matter. Set z = e3?e5*a* and

z = ejtes?e;?a. Let us first assume that ¢, = 0, then (10.9) is equivalent to

322,2’3 eZ: (12 — AIM) <22> =0,
3
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with A’ the holonomy part of z(e1). As R(¢’) < 0o, we must have z3 = z5 = 0.
But then z = e7', and (10.8) then becomes xe; = me?zl. As 2z is an integer, this
is impossible. So, let us assume that e, = 1. Writing out (10.8) component-wise,
we find that this condition is equivalent to the following;:

There exist z1, 29, 23 € Z such that:

0 2(22) = (1= -vean) (2) - (1),

3 z3

(ii) k12923 — kozg — kazs — kg + 1 = 227.

Condition (i) is independent of the e;-components, and hence can be interpreted
in terms of the quotient group I''. In the proof of lemma 7.1.5 it was shown that,
for a fixed value of €., the number of Reidemeister classes [x(e;)],s for which
a pair (2o, z3) satisfying (i) exists is exactly O(1ly — M, d), i.e. the number of
solutions (22, z3) € Z3 of the linear system of equations

B A
) (T =) (53> )
Note that the above equation is exactly condition (i) taken modulo 2.

Since €, can take two values (1 and —1), there are in total 20(1y — M, d)
Reidemeister classes [z(e1)],s satisfying condition (i). On the other hand, there
are | tr(M)| — O(1a — M, d) Reidemeister classes of IV for which condition (i)
does not hold.

Recall that the variable z; appears only in condition (ii). If we have a
Reidemeister class [x(e1)],s and a pair (zg,z3) for which (i) holds, then we
can find a z; € Z to make condition (ii) hold if and only if

(ii’) ];312223 — ];5252 — ];5353 — ]2‘4 + 1= (1
which is exactly condition (ii) taken modulo 2.

We partition the solutions of (i’) into those that do not satisfy condition (ii’)
and those that do. Let S be the number of the former and 7" the number of the
latter, then S+ T = O(12 — M, d). Of the 20(1y — M, d) Reidemeister classes
[z(e1)], satisfying condition (i), 25 lift to two distinct Reidemeister classes
[z], and [xe1],, and 27 lift to a single Reidemeister class [x],. All together, we
have

R(¢) = 2(|te(M)| — § — T) + 2(28) + 2T

=2|tr(M)| + 28S.
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If D is the matrix associated to the automorphism ¢, then D, is of the form

-1 = *
D,=1 0 m;y mg
0 mo My

For any A € F, let A’ = £1} be the corresponding matrix in F’. We then have
that
|det(13 — A.D,)| = 2| det(1ly — A’M)| = 2| tr(M)|,

therefore we indeed obtain the formula

1
R(p) = <#F ; |det(13 — A*D*)oo> + 285,

where 0 < S < O(1y — M,d) < 4. O

Theorem 10.2.2. Let T' be a 3-dimensional almost-crystallographic group in
the family group.1-1.1-0, with parameters ki, ko, k3, k4. Then the Reidemeister
spectrum of I is

4ANU {00}, if k1 = 0 and (ko, k3, ks) # (0,0,1),

N U {oo}, if ky = 0 and (ko, k3, kq) = (0,0,1),
4N—2U{OO}, foﬁ =1 and ];2];‘34—]764 =0,

ON +2U {oo}, if ki = 1 and koks + ks =1,
where the bar-notation stands for the projection to Zs.

Proof. From the proof of proposition 10.2.1, we get that R(¢) € 2N. Taking the
parity of tr(M) into account, we can further determine the possible Reidemeister
numbers:
R(y) 4N + 25 if tr(M) =0 mod 2,
AN +25 -2 if tr(M) =1 mod 2,
where
4 if tr(M) =0 mod 2,

S<O(ly—M,d) <
< Ol )_{1 if tr(M) =1 mod 2.

There is one special case, however. If M = 15 mod 2 all entries of 1o — M will be
multiples of 2; so |det(1y — M)| = |tr(M)| € 4N and therefore R(p) € 8N+ 2S.

For a fixed group I" in this family (i.e. a fixed tuple of parameters (k1, k2, k3, k4)),
an automorphism ¢ € Aut(T") is uniquely determined by the matrix M € GL2(Z)
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and the vector d € Z2. Our goal is to find out, for each group in the family (or
equivalently, for each tuple (k1, ko, k3, k4)), which M and d satisfy conditions
(a) - (d) and thus produce an automorphism.

Conditions (a) - (c) are actually conditions over Zg, and none of the parameters
k; appear in condition (d). Therefore, only the parity of the k; will play a
role, so we need to check 16 cases, each corresponding to an element of Zj.
Furthermore, a group with parameters (k1, ko, k3, k4) is isomorphic to the group
with parameters (—kq, ks, ko, k4), which allows us to omit the cases (0,1,0,0),
(0,1,0,1), (1,1,0,0) and (1,1,0,1), leaving only 12 cases. Rather than trying to
find all couples (M, d) (of which there are likely to be infinitely many), we can
start by finding all couples (M,d) € GLa(Zy) x Z2 satisfying conditions (a)-(c).

The function MAKELIST defined in algorithm 10 does exactly this. Moreover,
it assigns to every couple a set R, which is the set of possible Reidemeister
numbers the corresponding automorphisms can have. The results can be found
in tables B.13 to B.24. The Reidemeister spectrum of a group is a subset of (or
the entirety of) the union of all these sets R.

Next, for each quadruplet of parameters, we found a family of automorphisms
whose Reidemeister numbers produce the union of these sets R. These
automorphisms and their Reidemeister numbers, for all (ki, ka, k3, k4), can be
found in table 10.2. For the sake of brevity, we omitted oo from the spectra in
this table. Note that all almost-Bieberbach groups belonging to this family have
parameters with parities (0, 0,0, 1) and therefore have spectrum 2N U {co}. O

10.2.2 Dimension 4, almost-Bieberbach groups

We already determined in section 9.2.2 which families of four-dimensional
almost-crystallographic groups do not have the R..-property. In [Dek96] it is
determined which groups among these families are almost-Bieberbach groups.
We use the presentations from section 9.2.2.

Family min.6-1.1-0. Every group in this family is a finitely generated, torsion-
free, nilpotent group of rank 4 and nilpotency class 2. In theorem 5.2.3 it was
shown that the Reidemeister spectrum of such group is always 4N U {co}.

Family min.7-1.1-0. The almost-Bieberbach groups in this family are those
with parameters (ki, ko, k3, k4) = (2k,0,0,1) for some k € N, i.e. every almost-
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Algorithm 10 Determining automorphisms and Reidemeister spectra of 3-
dimensional almost-crystallographic groups in family group.1-1.1-0

1: function MAKELIST(kq, ko, k3, k4)

2 AutList + @

3 for M € GLy(Zy), d € 72 do

4 if conditions (a), (b), (¢) are met then
5: S0

6 for z € Z2 do

7 if Z satisfies (i’) but not (ii’) then
8
9

S+ S+1

: end if
10: end for
11: if tr(M) = 0 mod 2 then
12: if M =15 mod 2 then
13: R+ 8N+2S
14: else
15: R+ 4N+ 28§
16: end if
17: else
18: R+ 4N 425 -2
19: end if
20: AutList « AutList U {(M,d, R)}
21: end if
22: end for
23: return AutList

24: end function

Bieberbach group in this family has a presentation of the form

[e2,e1] =1 ae] = ejq
[es,e1] =1 aey = e
_ 1
€1,€2,€3,€4,Q [64761] =1 aes _eila )
[es,ea] =1 aey =e;
[e4,e2] = 1 o =e
[eq, €3] = €3
and the faithful representation X is given by
1o o o 1%
01 0 0 0
AMa)=10 0 -1 0 O
o0 o0 -1 0
0 0 O 0 1
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(k1, ko, ks, ks) M d | R(p) Specg(T)
(0707070) ((1]2171) <(1)) am 4N
(0,0,0,1) (?0) (9) | 2m 2N
(0707 170) (2171 2ml—1) ((1)) dm 4N
(0707 17 1) (2}n 2m71) (8) 4m 4N
(0,1,1,0) ((1)21171) (%) dm 4N
(Oalvlvl) ((1)2}n) (8) dm 4N
(1,0,0,0) (Qomy) | (9) | 4m—2 | 4N-2
(1,0,0,1) (Lmie) | (§) | 2m+2 | 2N+2
(1,0,1,0) (Yomoy) | (§) | 4m—2 | 4N-2
(1,0,1,1) (md) (1) | 2m+2 | 2N+2
(1,1,1,0) (90 () | 2m+2 | 2N+2
(1,1,1,1) (Qomy) | (8) ]| 4m—2|4N-2

Table 10.2: Automorphisms and Reidemeister spectra for all (k1, ko, k3, ka) (we
omit oo from the spectra)

Theorem 10.2.3. Let I' be a 4-dimensional almost-Bieberbach group in the
family min.7-1.1-0, with parameters 2k,0,0,1. Then the Reidemeister spectrum
of T is AN U {o0}.

Proof. Let ¢ be an automorphism with finite Reidemeister number R(y). Under
the representation ), this automorphism will correspond to a matrix § € Aff(R?)
such that

Ap(7)) = 6A(7)6 1.

for all v € I". Note that ¢ induces an automorphism ¢’ on I :=I'/{e1) and also
an automorphism " = &g/2,ar) on I'' :=I'/Z(T'), which is the crystallographic
group group.1-1.1-0. Since we assumed that R(y¢) < oo, proposition 9.2.2 gives
us that

d, —
<P(el) — 61et(]\/[) =e] 1'

Thus, §, M and d must be of the form

-1 nq U») ns 0

0o -1 0 0 0
0= 0 0 mi1 ms d1/2 , M = (ml mg) ; d= (§1> 5
0 0 my my do)2 MMz T4 2
o 0 o0 0 1

where all m; and d; are integers, mim4 — mams3 = —1 and ny,no € R. Using
a computer, one can calculate the (unique) values of n1,nq, ng and Iy, 1,13, 14
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such that
SA(e2)d™" = Aer)" Aea) ™1,
SA(e3)671 = Mer)2A(e3)™ Mey)™2,
SA(eqg)d™1 = Xep) B A(e3)™2 Meg)™,
SX(@)d™t = A(er) " Mes) P Meq) 2\ ().
From the obtained values of I1, I3, I3 and Iy, we get
pler) = e,

plez) = eres

k(m1m2+m1d2—mzd1)em1 mo

ples) = e; 3 €47
@(64) _ elf(m3m4+m3d2_m4dl)6?3@1”4,
p(a) = b e,
with m;, d;, | € Z and mimyg — moms = —1. Then D, is of the form
-1 % * *

0
0 0 mi Mms
O 0 meo my

Using theorem 4.2.6, we find that R(p) = 4|my + my| € 4N. Now, consider the
family of automorphisms ¢,, given by
pm(er) = e, pm(es) = efMesell!,

Pm(e2) =37, pm(a) =1l a,

Pm(es) = eu,

with m € N. Then R(¢,,) = 4m and hence Specy(I") = 4N U {oo}. O

Family min.7-1.1-1. The almost-Bieberbach groups in this family are (up
to isomorphism) those where either (ki, ko, ks, k4) = (£,0,0,0) with &k € N
or (k1,ka, ks, ka) = (2k,1,0,0) with k£ € N. In the former case, such almost-
Bieberbach group can be seen as an internal semidirect product Hy x Z, where
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Hj, = (e1,e3,e4) and Z = («). Similarly, in the latter case, such group is an
internal semidirect product Hayy X Z.

The almost-Bieberbach groups with parameters k,0,0,0 have a presentation of
the form

[e2,e1] =1 ey = e
[es,e1] =1 ey = esa
e oo en en [eg,e1] =1 aed—egla
15253, O [es,ea) =1 aeq=e€; a [’
[eq,e2) =1  a? = ey
lea,e3] =€

and the faithful representation A is given by

10 0 0 0
01 0 0 3
Ma)=10 0 -1 0 0
00 0 -10
00 0 0 1

Theorem 10.2.4. Let T' be a 4-dimensional almost-Bieberbach group in the
family min.7-1.1-1, with parameters k,0,0,0. Then the Reidemeister spectrum
of T' is AN U {o0}.

Proof. Let ¢ be an automorphism with finite Reidemeister number R(y). Under
the representation ), this automorphism will correspond to a matrix § € Aff(R*)
such that

(7)) = 0A(7)8 1.

for all v € T'. Note that ¢ induces an automorphism ¢’ on IV :=T"/{e1) and also
an automorphism " = §(g/2,ry) on I' :=T'/Z(T"), which is the crystallographic
group group.1-1.1-0. Since we assumed that R(p) < oo, proposition 9.2.2 gives
us that

pler) = i) = e,

Thus, §, M and d must be of the form

-1 ny N2 ns 0
0 -1 0 0 0 d
=10 0 mi my d/2 ,M<m1 m?’), d<d1>,
0 0 mo My d2/2 M2 T4 2
0 0 0 0 1
where all m; and d; are integers, mim4 — mam3 = —1 and ny,n, € R. Using

a computer, one can calculate the (unique) values of ny,ns, n3 and Iy, s, 13,14
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such that
SA(e2)6 ™" = Aer)" Aea) ™,
SA(e3)d™" = Aer)"* A(es) ™ Aea)™,
SA(ea)d ™ = Aer)" A(es) ™ Aea)™,
M)t = Ae) A (e2) "t (e3) D A(eq) 2 M ().
From the obtained values of I1, I3, I3 and l4, we get
pler) = e,

plez) = erey

E(mimatmida—madi) m, m
ples) = ef eg ey,
E
5 (mamatmade—madi) mg my
ples) = ef €374
s(kdida+l) 1 dy d
p(a) = ef ey e3'eg’a,

with my, dj, I € Z and mi;m4 — mams = —1, and of course all coefficients must
be integers as well. Then D, is of the form

0
0 0 mi ms
O 0 meo my

Using theorem 4.2.6, we find that R(p) = 4|my + my4| € 4N. Now, consider the
family of automorphisms ,,, given by

Pm(e1) =e1 ", pml(es) = e ezel,
Pm(e2) =37, pm(a) = e3 e a,

om(es) = e,

with m € N. Then R(¢,,) = 4m and hence Specy(T") = 4N U {oo}. O
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The almost-Bieberbach groups with parameters 2k, 1,0, 0 have a presentation

of the form
<el7 €2,€3,€64,

and the faithful representation A is given by

[ =1 ae; =ea

[ ]=1 aes = eaq

[es,e1] =1 oes = elegla

[ =1 aes=c;la ’
[ =1 oa?>=e

leaes] = ¢

2k
1

10 1 0 0
01 0 o 2
Ma)=10 0 -1 0 0
00 0 -10
00 0 0 1

Theorem 10.2.5. Let I' be a 4-dimensional almost-Bieberbach group in the
family min.7-1.1-1, with parameters 2k,1,0,0. Then the Reidemeister spectrum
of T' is 8N U {o0}.

Proof. Let ¢ be an automorphism with finite Reidemeister number R(y). Under
the representation ), this automorphism will correspond to a matrix § € Aff(R?)
such that

Ap(7)) = 6A(7)6 "

for all v € I". Note that ¢ induces an automorphism ¢’ on I :=I'/{e1) and also
an automorphism " = &g/2, ar) on I' :=I'/Z(T'), which is the crystallographic
group group.1-1.1-0. Since we assumed that R(¢) < oo, proposition 9.2.2 gives
us that

d _
()O(el) _ 6161}(]\/{) =¢] 1'

Thus, §, M and d must be of the form

-1 nq %) ns 0
0 -1 0 0 0
0= 0 0 mi1 Mms d1/2 , M = (ml mg) ; d= (§1> 3
0 0 my my do)2 M2 1 2
0 0 0 0 1
where all m; and d; are integers, mim4 — mams3 = —1 and ny,n2 € R. Using

a computer, one can calculate the (unique) values of ny,ng, ng and Iy, 1,13, 14
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such that
SA(e2)d7 = Aer) Aez) 7Y,
SA(e3)d7 1 = Ae1)'2 A (e3)™ A(es)™2,
SA(eq)d™ = Aer)® M(es) ™ Aeq)™,
SM)d™t = Aer) Mez) TP A (e3) Mea) 2N ().

From the obtained values of I, I3, I3 and l4, we get

pler) = e,

plez) = eley

E(mima+mide—maody)— 24
p(es) = e, ©oegtey”,
k(msma+msda—madi)— 52 o m
ples) = €; “egteyt,
dy—1
kdydo— 2=t _
pla)=re "7 e legle%%
with m;, dj, | € Z and mymy — mams = —1, and of course all coefficients must
be integers as well. This forces m; to be odd and mg, and because det(M) = —1

we then also require my4 to be odd. Thus, D, is of the form

-1 % * *

0 -1 * *

0 0 2mi—-1 2mj
0 0 mh 2mly +1

Using theorem 4.2.6, we find that R(y) = 8|m} + m/| € 8N. Now, consider the
family of automorphisms ¢,,, given by

em(er) =er, Pm(ed) = e e ey,
Pm(e2) =57, pm(a) =5 o,
pm(es) = "R ey,
with m € N. Then R(¢,,) = 8m and hence Specg(I') = 8N U {o0}. O

Family min.7-1.2-0. The almost-Bieberbach groups in this family are those
with parameters (ki, ks, k3, k4) = (k,0,0, 1) for some k € N, i.e. every almost-
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Bieberbach group in one of these families has a presentation of the form

[e2,e1] =1 e = e
[es,e1] =1 aex = esa
< [eg,e1] =1  aez = eglegla >
€1,€2,€3,€4, -1 )
[es,ea] =1  aeqg=e€;
[e4, 2] = 1 a? =e
[ea, €3] = ef
and the faithful representation A is given by
1o o o 1%
01 -1 0 O
Ma)=|0 0 -1 0 o0
00 0 -10
00 0 0 1

Theorem 10.2.6. Let I' be a 4-dimensional almost-Bieberbach group in the
family min.7-1.2-0, with parameters k,0,0,1. Then the Reidemeister spectrum
of T' is 8N U {o0}.

Proof. Let ¢ be an automorphism with finite Reidemeister number R(y). Under
the representation ), this automorphism will correspond to a matrix § € Aff(R?)
such that

Ap(7)) = 6A(7)6 1.

for all v € T'. Note that ¢ induces an automorphism ¢’ on IV :=T'/{e1) and also
an automorphism ¢ = §(q/2,ar) on I :=I'/Z(I"), which is the crystallographic
group group.1-1.1-0. Since we assumed that R(p) < oo, proposition 9.2.2 gives

us that

p(er) = ey .

Thus, §, M and d must be of the form

-1 mn No ng 0
0 -1 mq ms 0
0= 0 0 2m1 -1 2m3 d1 s
0 0 mo 2my +1 da/2
0 0 0 0 1
. 2m1 -1 2m3 o dl
M_< mo 2’/’)144—1)7 d_<d2)7
where all m; and d; are integers, det(M) = —1 and n1,n2,n3 € R. Using a

computer, one can calculate the (unique) values of ny,no,ng and Iy, 1z, 13,14
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such that
SA(e2)d ™t = Aler)t M(e2) 7,
SA(e3)d ™" = Aer)"Ae2)™ Aes)™™ ' A(ea) ™,
SA(ea)d ™" = Aer)" Ae2)™ Ales)™™2 Meq) ™4,
IMa)67t = Aer) A (e2)? Mes)? ¥ Meq) 2 A (a).
From the obtained values of Iy, Iy, ls and Iy, we get

Qp(el) = 6;17

—1 k(2 2 do—2mody — —do)—21
S0(62) =e; 161( mima+2myde—2mad; —ma—dsz)

)

_ ,my , —14+2my ma
ples) =ey'le; €4 7€1,

. k(2 d —2 d1—d
90(64) _ e;nsegmgei+2m4el( mama+mada+msz—2madi—di)

)

dy _2dy do kdida—1
4 €

pla) =er'ez™e «,

with my, ms, ms, my, di, do, | € Z and m; — my + 2mym4 — momsz = 0. Then
D, is of the form

-1 * * *

0 -1 * *
D* o 0 0 -1+ 2m1 2m3

0 0 mo 1+ 2my

Using theorem 4.2.6, we find that R(p) = 8|m + my| € 8N. Now, consider the
family of automorphisms ¢,,, given by

‘Pm(el) = 61_17 @m(€4) = ellcmeéne%me%
k(2m—1) — _
Pmlez) = ey P Vey, em(a) = erla,

om(es) = eglegm_le%

with m € N. Then R(¢,,) = 8m and hence Specy(T") = 8N U {oo}. O






Chapter 11

Reidemeister zeta functions

11.1 Existence

The goal of this section is to determine which almost-crystallographic groups
admit Reidemeister zeta functions of automorphisms. In order to do so, it is
helpful to have criteria for the (non-)existence of these functions. A first and
obvious criterion would be that a group with the R..-property does not admit
any Reidemeister zeta functions. Another criterion is the existence of a specific
characteristic subgroup:

Proposition 11.1.1. Let T' be an almost-crystallographic group with a
characteristic subgroup H = Z. Then I' does not admit any Reidemeister
zeta functions of automorphisms.

Proof. Let x € T such that H = (z). As H is normal and abelian, we must
have that H is a subgroup of the translation subgroup N of I'. Since N is
nilpotent and H is normal in N, we must have that the intersection H N Z(N)
is non-trivial.

So, there exists some k > 0 such that ¥ € Z(N). In fact, as N is torsion-
free, N/Z(N) is torsion-free as well and hence we have that x € Z(N), thus
H < Z(N). Let ¢ = {4,p) be an automorphism of I'. As z € Z(N), it then
follows that p(x) = D(z). Either p(z) = D(z) = x or p(x) = D(z) = 2z~ %; in
any case we have that D?(x) = .

Let G be the Lie group that I' is modelled on. Then there exists a non-zero
element X (corresponding to x € G) in the associated Lie algebra g with

199
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D?(X) = X and therefore det(1 — D?) = 0. So certainly R(p?) = oo and we
can conclude that the Reidemeister zeta function R, (z) does not exist. O

The next criterion deals with the size of the outer automorphism group.

Proposition 11.1.2. If a crystallographic group T' has finite outer automor-
phism group, then it has no Reidemeister zeta functions of automorphisms.

Proof. We know from theorem 3.3.8 that if Out(T") is finite, then Nr is finite
as well. Let ¢ = £ p) be an automorphism, then d € R" and D € Nr.
Since Nr is finite, there exists some k¥ € N such that D* = 1,,. But then
det(1,, — D¥) = 0, hence R(p") = oo and thus the Reidemeister zeta function
of ¢ does not exist. O

Similar to when we tried to determine the R..-property, it can be helpful to
look at quotients by characteristic subgroups.

Proposition 11.1.3. Let T' be an almost-crystallographic group. If T' has a
characteristic subgroup H such that T'/H does not admit Reidemeister zeta
functions of automorphisms, then I' does not admit them either.

Proof. Let ¢ € Aut(I'). Since H is characteristic, ¢ induces an automorphism
¢ on T'/H. But this quotient group does not admit Reidemeister zeta functions,
hence either R(¢'™*) = oo for some k € N, or the radius of convergence of Ry ()
is zero.

First, consider the case where R(¢'*) = oo for some k € N. Since ¢’* is the
automorphism of induced by ¢*, by lemma 2.5.10(1) we have that

R(¢*) = R(¢™) = o0,
and thus R(¢*) = oo, therefore R,(z) does not exist.

Second, consider the case where the radius of convergence ' of R,/ () is zero.
Let r be the radius of convergence of R, (z). Using lemma 2.5.10(1) once again,
we find that

1

k %
r~' = limsup \k/ Rt > lim sup 1/ Re™) =771 = oo,
k—o0 k k—s 00 k

and hence r = 0, therefore R, (z) does not exist.

In both cases the Reidemeister zeta function R, (z) does not exist, and since
this holds for an arbitrary automorphism ¢, I' does not admit Reidemeister
zeta functions of automorphisms. O
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In low dimensions, almost-crystallographic group admitting Reidemeister zeta
functions must be crystallographic.

Theorem 11.1.4. Let T' be a non-crystallographic, almost-crystallographic
group of dimension 3 or 4. Then T' does not admit any Reidemeister zeta
functions of automorphisms.

Proof. Let T' be a non-crystallographic, almost-crystallographic group of
dimension 3 or 4 and let IV be its translation subgroup, which has nilpotency
class ¢ > 2. As shown in section 5.2, the isolator Y/v.(V) is isomorphic to Z
and is characteristic in I'. By proposition 11.1.1, this means I does not admit
any Reidemeister zeta functions of automorphisms. O

We can even go a step further. In [Mal00] it is shown that if a finitely generated,
torsion-free, nilpotent group which is not abelian admits an automorphism ¢
with affine homotopy lift D for which D, has no roots of unity as eigenvalues,
then the dimension of this group must be at least 6. Moreover, explicit examples
of such automorphisms on groups of dimension 6 are provided. Thus, we
may conclude that Reidemeister zeta functions of automorphisms on non-
crystallographic almost-crystallographic groups exist only in dimension 6 and
higher.

Since we are only interested in dimension 4 and lower, we may limit ourselves to
crystallographic groups with infinite outer automorphism group. The following
theorem proves the existence of Reidemeister zeta functions of automorphisms
for many of these groups in dimension 4.

Theorem 11.1.5. Let ' be a crystallographic group of dimension 4 such that
every matriz A € F' is of the form

_ A1 *
=004,

with Ay, Ay € {—12,12}. Suppose that ¢ = q,py is an automorphism of I’

with D of the form
M x*
o= (4 )

where M € GLa(Z) has eigenvalues A\, u with |A| > 1, |u| < 1. Then the
Reidemeister zeta function R,(z) exists.

Proof. We have to prove two things: that R(¢*) < oo for all k € N, and that
the radius of convergence of R, (%) is non-zero.
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For the former, by theorem 4.2.5 we must prove that det(14 — AD¥) # 0 for all
A € F. We have that

B k
det(1, — AD®) = det (112 AM * )

0 1y — Ay MF
= det(ly — A; M")det(1y — Ay M*).

Since Aj, Ay € {—14,1,}, it suffices to prove that det(1, — M¥) # 0 and
det(1y + MF¥) # 0, or equivalently that M* does not have an eigenvalue equal
to 1 or —1. But the eigenvalues of M* are A* and p*, for which we know that
IAF| = |AF > 1 and |p*| = |u|* < 1. Therefore these determinants are indeed
non-zero.

Next, recall that the radius of convergence r of R,(2) is given by
R(oF
7~ = limsup { 7«0 ),
k— o0 k

hence it suffices to prove that this limit is finite. From proposition 2.5.14, we
know that

R(*) < ) | det(ly — AD)|.
A€EF

Note that
[det(Lz + M) = |1+ AF)(1 £ )|
=14+ N+ 4* + det(M)F|
< 4"
and thus we have for any A € F that
|det(14 — ADF)| = | det(1y — Ay M"¥)||det(1y — Ay M¥)|
< (4A")?
= 16|k
For k > 16 - #F, we will have that

R(e*) < 3 [ det(ls — ADY)
AeF

< #F - 16|\F

< kAP,
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and hence
% 2k
lim sup {/ LiC) < limsup \k/ AP =A%,
thus 7 > |A|72 > 0 and hence R, (z) exists. O

Below, we determine for certain (families of) crystallographic groups whether
or not they admit Reidemeister zeta functions of automorphisms.

min.2-1.1-0, min.6-1.1-0, min.15-1.1-0. These groups are all isomorphic to
Z™ for n € {2,3,4}. We have already shown that these admit Reidemeister zeta
functions in example 2.6.11.

min.18-1.1-0, min.18-1.1-1. These groups are given by

€ 1 0 0 0
i ol o1 0 0
I'=(Z",a) with a = ( ol:lo 0o 21 o ),

0/ \0 0 0 -1

where ¢ = 0 corresponds to min.18-1.1-0 and € = 1/2 to min.18-1.1-1. The
automorphism ¢ = g py with D given by

o~

0
0
1

OO N
~N s O O

0 2

satisfies the requirements of theorem 11.1.5, hence R, (z) exists.

min.18-1.2-0, min.18-1.2-1. These groups are given by

€ 1 0 0 0
i ol o1 =10
I'=(Z",a) with a = ( ol 1o o 21 o ),

0/ \0 0 0 -1

where € = 0 corresponds to min.18-1.2-0 and € = 1/2 to min.18-1.2-1. The
automorphism ¢ = o py with D given by

1 4 -2 0
2 7 =3 2
b= 00 1 4
00 2 7
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satisfies the requirements of theorem 11.1.5, hence R,,(z) exists.

min.18-1.3-0. This group is given by

10 -1 0
e o1 0 1
I'=(Z", «a) with a = (0, 00 -1 0 )

00 0 -1

The automorphism ¢ = & py with D given by

0

S o N
O O N =~
N = OO

0
4
7
satisfies the requirements of theorem 11.1.5, hence R, (z) exists.

group.1-1.1-0, group.5-1.1-0, group.26-1.1-0. These groups all have diag-
onal holonomy Zs. We have already shown that these admit Reidemeister zeta
functions in theorem 7.2.20.

group.28-1.1-0, group.28-1.1-1, group.28-1.1-2. These groups are given by

) 1 0 0 0

4 ol o1 0o o
I'=(Z* «a,p) with a = ( o lo o 21 o ),

0 0 0 0 -1

4] -1 0 0 0

0 0 -1 0 O
ﬂ*( € ) 0 O 1 0 )a

0 0 0 01

where §,e = 0 corresponds to group.28-1.1-0, § = 1/2,¢ = 0 to group.28-1.1-1
and J,e = 1/2 to group.28-1.1-2. The automorphism ¢ = {(y py with D given
by

S O N
O O N~
= OO
N i)

ot

satisfies the requirements of theorem 11.1.5, hence R, (z) exists.



EXISTENCE 205

group.28-1.2-0, group.28-1.2-1, group.28-1.2-2. These groups are given by

€ 1 0 0 0

o ol o1 -1 0
I'=(Z% «a,p) with a = ( ol 1o 0o 21 o ),

) 00 0 -1

€ -1 0 0 0

0 0 -1 1 0

) 0 0 0 1

where ¢, e = 0 corresponds to group.28-1.1-0, 6 = 1/2,¢ = 0 to group.28-1.1-1
and d,€ = 1/2 to group.28-1.1-2. The automorphism ¢ = {(y py with D given
by

1 4 -2 0
2 7 =3 2
D= 00 1 4
00 2 7

satisfies the requirements of theorem 11.1.5, hence R, (z) exists.

group.28-1.3-0. This group is given by

1 0 -1 O

s . lo1 0 -1
I'=(Z% a,p) with a = (0, 00 -1 0 ),

0O 0 0 -1

-1 0 1 0

0 -1 0 1

0 0O 0 1

The automorphism ¢ = & py with D given by

SO N
(= =REN N
N = OO
N~ O O

satisfies the requirements of theorem 11.1.5, hence R, (z) exists.
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group.179-1.1-0, group.179-1.1-1, group.179-1.2-0, group.179-1.2-1. If T
is any of these groups, then I'/Z(T") is the crystallographic group min.5-1.1-0.
This group has finite outer automorphism group and therefore does not admit
any Reidemeister zeta functions of automorphisms. By proposition 11.1.3, '
then does not admit any Reidemeister zeta functions of automorphisms either.

group.182-1.1-0. This group is the direct product I'; x I's, where I'y is the
group group.1-1.1-0 and I's is min.5-1.1-0. Since both factors are characteristic,
we have that I'/(I'; x 1) is min.5-1.1-0. By the same reasoning as for the
previous four groups, I' does not admit any Reidemeister zeta functions of
automorphisms.

We summarise these results in table 11.1 below. This table contains the results
mentioned above, as well as the groups that have rank 1 centre, which do not
admit Reidemeister zeta functions of automorphisms by proposition 11.1.3.

CARAT BBNWZ IT | rank(Z(I")) | admits R,(z)?
min.2-1.1-0* 2/1/1/1/1 | 2/1 | 2 yes
min.6-1.1-0* 3/1/1/1/1 | 3/1 |3 yes
min.7-1.1-0 3/2/1/1/1 |3/3 |1 no
min.7-1.1-1% 3/2/1/1/2 | 3/4 |1 no
min.7-1.2-0 3/2/1/2/1 | 3/5 | 1 no
min.15-1.1-0% | 4/1/1/1/1 4 yes
min.17-1.1-0 4/2/2/1/1 1 1o
min.17-1.1-1* 4/2/2/1/2 1 no
min.17-1.2-0 4/2/2/2/1 1 no
min.18-1.1-0 4/3/1/1/1 2 yes
min.18-1.1-1% | 4/3/1/1/2 2 ves
min.18-1.2-0 4/3/1/2/1 2 yes
min.18-1.2-1% | 4/3/1/2/2 2 yes
min.18-1.3-0 4/3/1/3/1 2 yes
min.36-1.1-0 4/10/1/1/1 0

min.43-1.1-0 4/28/1/1/1 0

min.44-1.1-0 4/28/2/1/1 0

max.6-1.1-0 4/26/2/1/1 0

max.6-1.1-1 4/26/2/1/2 0

group.1-1.1-0 2/1/2/1/1 |1 2/2 |0 yes
group.5-1.1-0 3/1/2/1/1 | 3/2 |0 yes
group.26-1.1-0 4/1/2/1/1 0 yes
group.28-1.1-0 | 4/3/2/1/1 0 yes
group.28-1.1-1 4/3/2/1/2 0 yes
group.28-1.1-2 4/3/2/1/3 0 yes

Table 11.1: Existence of Reidemeister zeta functions of automorphisms for
crystallographic groups of dimension at most 4 with infinite outer automorphism
group that do not have the R..-property
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CARAT BBNWZ IT | rank(Z(I")) | admits R,(z)?
group.28-1.2-0 4/3/2/2/1 0 yes
group.28-1.2-1 | 4/3/2/2/2 0 yes
group.28-1.2-2 4/3/2/2/3 0 yes
group.28-1.3-0 4/3/2/3/1 0 yes
group.96-1.1-0 | 4/16/1/1/1 0

group.96-1.1-1 4/16/1/1/2 0

group.96-2.1-0 | 4/16/1/2/1 0

group.96-2.1-1 4/16/1/2/2 0

group.96-2.1-2 4/16/1/2/3 0

group.96-3.1-0 4/16/1/3/1 0

group.109-1.1-0 | 4/26/1/1/1 0

group.141-1.1-0 | 4/27/2/1/1 0

group.142-1.1-0 | 4/27/3/2/1 0

group.142-2.1-0 | 4/27/3/1/1 0

group.143-1.1-0 | 4/27/4/1/1 0

group.144-1.1-0 | 4/27/1/1/1 0

group.170-1.1-0 | 4/11/1/1/1 0

group.171-1.1-0 | 4/11/2/1/1 0

group.172-2.1-0 | 4/17/2/1/1 0

group.172-1.1-0 | 4/17/2/2/1 0

group.173-1.1-0 | 4/17/1/3/1 0

group.173-2.1-0 | 4/17/1/1/1 0

group.173-3.1-0 | 4/17/1/2/1 0

group.179-1.1-0 | 4/8/1/2/1 2 no
group.179-1.1-1* | 4/8/1/2/2 2 no
group.179-1.2-0 | 4/8/1/1/1 2 no
group.179-1.2-1* | 4/8/1/1/2 2 no
group.182-1.1-0 | 4/9/2/1/1 0 no

Table 11.1: Existence of Reidemeister zeta functions of automorphisms for
crystallographic groups of dimension at most 4 with infinite outer automorphism
group that do not have the R..-property

11.2 Rationality

In the previous section, we only found very few almost-crystallographic
groups in dimensions 2 and 3 that admit Reidemeister zeta functions of
automorphisms. In fact, these groups were always Z", a crystallographic group
with diagonal holonomy Zs, or a Bieberbach group. We know from example 2.6.7,
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corollary 7.2.19 and theorem 4.2.8 that Reidemeister zeta functions on these
groups are rational. Thus, we may state the following result:

Theorem 11.2.1. A Reidemeister zeta function of an almost-crystallographic
group of dimension at most 3 is rational.
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Appendix A

Isogredience

In this chapter we will study isogredience numbers, which are closely related to
Reidemeister numbers, for almost-crystallographic groups. We refer to [FT15;
LL00] for more information on isogredience numbers.

A.1 Preliminaries

Isogredience numbers have a similar topological motivation as Reidemeister
numbers. Let X be a compact topological space that admits a universal cover
X. Alift f: X — X of a self-map f: X — X induces an endomorphism f, on
the group of covering transformations D(X) = 71 (X), namely

fovy=fi(v)of,

for all v € D(X). A different lift f’ will induce an endomorphism f/ that
differs from f, by an inner automorphism. Now consider the case where f is
a homeomorphism, then f, is actually an automorphism. The set of all these
induced automorphisms f,. then coincides with an element ® € Out(D(X)).

Recall that two lifts f; and f, are Reidemeister equivalent if they are conjugate
up to an element vy of D(X), i.e.

fi=ro0faory7h.

In terms of their induced automorphisms fi., fox, these lifts f; and fo being
conjugate up to an element of D(X) is equivalent to f1. and fa. being conjugate

211
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up to an inner automorphism:

fl* :L'yof2*o[/;1-

Thus, the equivalence relation on the lifts induces an equivalence relation on ¢ €
Out(D(X)). It is this equivalence relation, applied to almost-crystallographic
groups, we will study in this chapter.

A.1.1 Group-theoretic isogredience number

The basic definitions below are very reminiscent of those in section 2.5.1, where
we defined the (group-theoretic) Reidemeister number and related concepts.

Definition A.1.1. Let G be a group and ® € Out(G). Define an equivalence
relation ~ on ® by

Vo1, 00 € o)~y <= JcInn(G): @y =ropyor
The equivalence classes are called isogredience classes, and we will denote the
isogredience class of ¢ by [¢]e. The set of isogredience classes of @ is denoted by
S(®). The isogredience number S(P) is the cardinality of &(®) and is therefore
always a positive integer or infinity.

Definition A.1.2. The isogredience spectrum of a group G is the set
Specg(G) = {S(®) | ® € Out(G)}.

If Specg(G) = {oo} we say that G has the So-property, and if Specg(G) =
N U {oo} we say G has full isogredience spectrum.

While at first glance isogredience classes seem quite different to Reidemeister
classes, since they are classes of an element ® € Out(G) rather than classes
of G itself, they are very closely related. The following lemma shows that an
isogredience number can always be seen as a Reidemeister number.

Lemma A.1.3 (see [FT15, Lemma 3.3]). Let G be a group and let ¢ € Aut(G),
® € Out(G) such that ¢ € ®. Then S(P) = R(¢'), where ¢’ is the induced
automorphism by ¢ on G/Z(G).

Proof. For any i € ®, there exists some g € G such that ¥ = ¢4 0 ¢, where
Ly is the inner automorphism h +— ghg~'. This g is not unique, but defined
up to multiplication by a central element — this follows from the one-to-one
correspondence between Inn(G) and G/Z(G).
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Let 1, p2 € ®, then there exist g1, go € G such that ¢; = 14, 0 and g3 = 14,00.
Then

P1 ~ Pa = E|h€GZ(p1=LhOg020L;1
< JheG iy 0p=1p0150p00"
> FheG 1y 00 =lpgpn)-1°¢
< Jh € Gy = thgop(n)-1
<= 3hZ(G) € G/Z(G) : 1 Z(G) = hgap(h) ' Z(G)
= 01Z(G) ~p 922(G).
This means the map
&(2) = R(¢") : [tg 0 Pl = [92(G)]y
is a bijection, from which follows that S(®) = R(¢’). O
We may exploit this relation to deduce properties of the isogredience number.

For example, the following lemma is an isogredience analogue to property (1)
in lemma 2.5.10.

Lemma A.1.4. Let G be a group with characteristic subgroup N, let & €
Out(G) and @' the corresponding element of Out(G/N). Then the map

D:6(®) = &(P) : [1g 0 ¢lo = [tgn 0 ¢'lar

is surjective, and hence S(®) > S(P').

Proof. Consider the normal subgroup H given by
H={heG|VgeG:[h,g] €N}

This group has the following properties:

1

2) Z(G)<H«G,

(1)
(2)
(3) w(H) C H,
(4)

4) H/N = Z(G/N).
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By the third isomorphism theorem, we have that

G/Z(G) G G/N  GIN
H/Z(G) ~ H H/N  Z(G/N)

Let ¢z be the automorphism on G/Z(G) induced by ¢, and let ¢, be the
automorphism induced on (G/N)/Z(G/N). We can then apply lemma 2.5.10 to
the group G/Z(G) and the normal subgroup H/Z(G) to obtain the surjective
map p: R(pz) = R(p%). Combining this with the bijection from lemma A.1.3
gives us the desired surjective map. O

Of course, this means we can now formulate an isogredience analogue to
corollary 2.5.12.

Corollary A.1.5. Let N be a characteristic subgroup of G. If the quotient
G/N has the S -property, then so does G.

Proof. This follows directly from lemma A.1.4. O

Finally, using the above lemmas and corollary, we obtain the following relations
between the Reidemeister and isogredience numbers of a group and its quotient
by the centre.

Proposition A.1.6. Let G be a group and let ¢ € Aut(G), ® € Out(G) such
that o € ®. We then have that:

(1) R(p) = S(D),

(2) Specg(G) C Specg(G/Z(G)),

(3) if G has the S -property, then it also has the R -property,

(4) if G/Z(G) has the Roo-property, then G has Soo-property,

(5) if Z(G) =1, then R(p) = S(®) and Specr(G) = Specg(G).

A.2 The S, .-property

Since we are often dealing with a quotient G/Z(G), let us remark that in the
case of almost-crystallographic groups, such quotient is almost-crystallographic
as well.
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Theorem A.2.1 (see [IM96, Proposition 3.1]). Let I be an almost-crystal-
lographic group with translation subgroup N and holonomy group F. Then
I'/Z(T') is an almost-crystallographic group with translation subgroup N/Z(T)
and holonomy group F, unless T' = Z(T'), in which case the quotient is of course
trivial.

To determine which almost-crystallographic groups (do not) have the S-
property, we will heavily exploit the relationship with Reidemeister numbers
as given by lemma A.1.3 and proposition A.1.6. Since we already know
which almost-crystallographic groups I' have the R..-property, we can use this
information in the following way to determine whether I'" has the S..-property:

o I' does not have the R..-property. Then I' does not have the S,-property.
e [ has the R,.-property.

— Z(I') = 1. Then T has the So-property.
- Z(T) #1.
x ['/Z(T') has the Ryo-property. Then T' has the S.-property.
« I'/Z(T') does not have the R.-property. No information gained.

If no information is gained, we proceed similarly to how we determined which
groups have the R,.-property.

Let us also give the isogredience analogue to proposition 7.1.1.

Proposition A.2.2. Let idr be the identity morphism on an almost-crystal-
lographic group I, and let ® € Out(I") such that idpr € ®. IfT" is not abelian,
then S(®) = oo, otherwise S(P) = 1.

Proof. Let IV :=T'/Z(T), then idr induces idps on I, and hence S(®) = R(idy).
If T is not abelian, then R(idr/) = oo by proposition 7.1.1, otherwise I'/Z(T) is
trivial and then R(idp) = 1. O

A.2.1 Crystallographic groups

Just like for the R..-property, we can use an algorithm for the crystallographic
groups with finite outer automorphism group, and have to work by hand
otherwise. In the former case, we use algorithm 11, which is a slightly modified
version of algorithm 2.
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Algorithm 11 Determining if a crystallographic group I' has the S.,-property

1: function HASSINFINITYPROPERTY(I)
2 I+ T/Z(T)

3 NF%NGLH(Z)(F)

4: if #Np = oo then

5: return fail

6 else

7 Nri <~ @

8 for D € Nr do

9: if ExtendsToAutomorphism(D,T") # fail then
10: D’ + induced automorphism by D on Z"/Z(T")
11: Nr: + Npr U {D/}
12: end if
13: end for

14: for D' € Nt/ do

15: Se ¢ false

16: for A’ € F' do

17: if det(1 — A’D’) =0 then
18: Soo < true

19: end if
20: end for
21: if Sooc = false then
22: return false
23: end if
24: end for
25: return true
26: end if

27: end function

In the latter case, we will make use of the following theorem, which is the
isogredience analogue to theorem 9.1.2, and can easily be proven in a similar
way.

Theorem A.2.3. Let F be the holonomy group of an n-dimensional Z-class
of crystallographic groups. If Z™ x F has the Sy -property, then so does every
other crystallographic group in the same Z-class.

Thus, if the outer automorphism group is infinite (and hence N is infinite),
we can try two things:

1. Show that all crystallographic groups in a Z-class with holonomy group F
have the S..-property, by finding a characteristic subgroup NV of Z" x F
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such that (Z™ x F')/N has the So.-property. This relies on corollary A.1.5
and theorem A.2.3.

2. Show that a crystallographic group I' does not have the S..-property,
by checking for random matrices D € Np whether they belong to Np
(using algorithm 1) and whether any automorphism (4 p) induces an
automorphism on I'/Z(T") with finite Reidemeister number.

We have applied the above to all crystallographic groups up to dimension 4,
thereby determining the groups that do not have the S.-property. For the
groups with finite outer automorphism group, those without the S.-property
also did not have the R.-property (see tables B.1 to B.4), with a sole exception:
the 3-dimensional Bieberbach group min.13-1.1-1, which has the R..-property
but not the S,.-property. For the groups with infinite outer automorphism
group, all groups without the S..-property also did not have the R.,-property.
The same quotient groups and automorphisms as in tables B.7 to B.11 can be
used to obtain this result. We summarise these results in table A.1.

dim ‘ # groups ‘ no Sy

1 2 1
2 17 2
3 219 13
4 4783 91

Table A.1: Crystallographic groups up to dimension 4 without the S.-property

A.2.2 Almost-crystallographic groups

In this section we determine which non-crystallographic almost-crystallographic
groups of dimension 3 do not have the S.-property. We will use the same
presentations as in section 9.2.1.

If T is a 3-dimensional non-crystallographic almost-crystallographic group, then
the centre Z(T") either equals the isolator Y/v2(N) = (e1), or it is trivial. In the
former case, we only need to consider those families of almost-crystallographic
groups for which the quotient I'/(e1) is a crystallographic group that does not
have the R.-property, due to proposition A.1.6(4). In the latter case, we only
need to consider those families whose groups do not have the R.,-property
themselves, due to proposition A.1.6(5).

Thus, the only families we need to consider here are the same three families we
studied in section 9.2.1.
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Family min.2-1.1-0. 'We have already shown in section 5.2.1 that the groups
in this family do not have the R.,-property, hence they do not have the S..-
property either.

Family min.5-1.1-0. In this family, whether or not a group has the Su.-
property depends on the parameters k1, ko and k3.

Theorem A.2.4. Let ' be an almost-crystallographic group in family min.5-1.1-
0. Then T has the Soo-property if and only if k1 = 0 mod 6 and ko # ks mod 3.

Proof. We have determined in section 9.2.1 that an automorphism ¢ : I' - T°
must be of the form

pler) = i)

plez) = eltey"eg™,

_ . ng_m3 Mgy
p(es) = efey ey,

pla) = eyt eial,

where
o mq ms ) ) .
M = (mz m4> € GLy(Z), mn;,d; €Z, ee€{-1,1},

and note that the n; will depend on M, d;, d> and the parameters ky, ko, k3.
Let TV := T'/{ey), i.e. the crystallographic group min.5-1.1-0, and let F’ be
its holonomy group. Then ¢ induces an automorphism ¢’ = 4,57y on IV, If
® € Out(I") contains ¢, then by lemma A.1.3 and theorem 4.2.5 we have that

S(®) <o < R(¢') <o < det(la— A'M)#0 VA €F'.

Since Npv is finite, we can easily calculate those M € Nps that satisfy this
condition: they are given by

comen= (% D05}
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Using the same techniques we used to prove proposition 10.2.1, we determine

that an automorphism ¢ such that M = —15 must be of the form
ple1) = e,
o(es) = 61%(7k1(d1+d2+1)+4k2+2k3)82_17
oles) = el%(k1(2d1—d2—1)—2k2+2k3)6517

L (g (da+da) (dy +da-+1) 2k (2dy —da)— 2k (ds +d
pla) = ef M BFa At =G0 0 2 (b)) o oo

where all powers must be integers. Similarly, an automorphism with M = ( o1 )

must be of the form

<p(€1) = €1,

1

L(ky (2d1 —do—1)+ka+2ks) _1
ple2) =ef €3

1

*(—kl(d1—2d2—2)—2k2—k}3)
ples) = ef ezes,

3

ola) = e%(kl(d1+d2)(d1+d2+1)72k2(2d17d2)72k3(d1+d2))6g1egza

and an automorphism with M = (% *01) must be of the form

(—=k1(d1—2d2—2)+ka—k3)
€2€3,

2 (—ki(di+da+1)+ka+2ks) _1
ples) =ef €

L(ki(di4d2)(di+da+1)—2ks(2d1 —d2)—2ks (d1+d
QD(OZ) _ 616( 1(d1+dz2)(d1+d2+1)—2k2(2d1 —d2)—2k3(d1 + 2))63163204'

Let us now take M = —15 and fix an almost-crystallographic group with
parameters ki, k2, k3, ks. If an automorphism ¢ induces ¢’ = §4,_1,) on I,
then d; and dy must satisfy the following conditions:

(a) —k1(d1 +dg + 1) + 4k + 2k3 = 0 mod 3,
(b) k1 (2d1 —dy — 1) — 2ks + 2k3 = 0 mod 3,
(C) kl(dl + dg)(dl +ds + 1) - 2k2(2d1 — d2) — 2k3(d1 + dg) = 0 mod 6.
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If such pair di,ds exists, then I' does not have the S.-property. We use
algorithm 12 to verify the existence of such d; and dy. The result of this
algorithm is that I' admits an automorphism with M = —14 if and only if either
k1 =0 mod 6 and ky — k3 = 0 mod 3, or k1 #Z 0 mod 6. Repeating the above
steps for the other two choices of M, we obtain the exact same result. O

Algorithm 12 Determining whether an almost-crystallographic group in family
min.5-1.1-0 admits an automorphism with M = —1,

1: function ADMITSAUTOMORPHISM(k1, ko, k3, k4)
2 for (dl,dg) S Z% do

3 if conditions (a), (b), (¢) are met then
4: return true

5: end if

6 end for

7 return false

8: end function

Family group.1-1.1-0. We have already shown in section 9.2.1 that the groups
in this family do not have the R..-property, hence they do not have the S..-
property either.

A.3 The isogredience spectrum

In this section, we will determine the isogredience spectrum of the almost-
crystallographic groups up to dimension 3.

A.3.1 Crystallographic groups

The crystallographic groups up to dimension 3 that do not have the Seo-
property were determined in the previous section. We calculate their isogredience
spectrum below.

min.1-1.1-0, min.2-1.1-0, min.6-1.1-0. These are the groups I' = Z" with
n € {1,2,3}. For each of these groups we find that I'/Z(T) is trivial, so clearly
S(®) =1 for any ® € Out(T"), and thus these groups have isogredience spectrum

{1}.
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min.5-1.1-0. This group has trivial centre, hence its isogredience spectrum
equals its Reidemeister spectrum, which we already determined in section 10.1.1
to be {4, 00}

min.7-1.1-0, min.7-1.1-1.  These are the groups A = A3/5/. with € € {0,1} as
described in chapter 7. For any M € GL3(Z) and d’ € Z?, we can construct the
matrix D € GL3(Z) and vector d € (3Z)3 as

o= 5)a= ()

such that ¢ = {4, p)y € Aut(A). Then the automorphism induced by ¢ on
A/Z(A), i.e. the crystallographic group group.1-1.1-0, is ¢" = &4 /2,01y Because
the projection Aut(A) — Aut(A/Z(A)) is surjective, we have that

Specg(A) = Specr(A/Z(A)) = 2N U {3, 00}.

min.7-1.2-0. We use the presentation from section 10.1.2.

Theorem A.3.1. The group min.7-1.2-0 has isogredience spectrum 2N U {oc}.

Proof. This group I' has non-trivial centre, and the quotient IV :=T'/Z(T") is
the crystallographic group group.1-1.1-0. Let ¢ € Aut(T") and ® € Out(T") such
that ¢ € ®. As determined in proposition 10.1.6, ¢ induces an automorphism
¢" = &,pry on I, where

D — €+ 2my 2ms
- meo 1 + 2m4 ’

with e € {—1,1} and m; € Z. In particular, the trace of D’ is always even,
hence by a reasoning similar to that in the proof of theorem 7.1.3 we find that
S(®) = R(¢’) € 2N U oo. Now, take the family of automorphisms ¢,, on I" we
gave in the proof of theorem 10.1.7, take ®,,, € Out(T") such that ¢,, € ¥, and
let ¢!, be the induced automorphisms on I'V. One can then determine, like in
the proof of theorem 7.1.3, that

S(@m) = R(g,,) = 2m,
hence Specg(T") = 2N U {oo}. O

min.10-1.1-0, min.10-1.1-3, min.10-1.3-0, min.10-1.4-0, min.10-1.4-1. As
before, these groups have trivial centre, hence their isogredience spectrum equals
their Reidemeister spectrum, which we already determined in section 10.1.1 to
be {2, c0}.
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min.13-1.1-0, min.13-1.1-1, min.13-1.2-0. For each of these groups, I'/Z(T’)
is the group min.5-1.1-0, which has Reidemeister spectrum {4,00}. Since
these groups do not have the Sso-property and Specg(I') C Specy(I'/Z(T')) by
proposition A.1.6(2), their isogredience spectrum must be {4, co}.

group.1-1.1-0, group.5-1.1-0. These are the groups I' = (Z",—1,) with
n € {2,3}. For each of these groups we find that Z(T') is trivial, hence
their isogredience spectra equal their Reidemeister spectra. We determined in
theorem 7.1.3 that these spectra are 2NU{3, 00} and N\ {1} U{cc} respectively.

We summarise these results in table A.2 below. Unlike in the crystallographic
case, we do not omit the value {co} from the spectra, since it is no longer the
case that oo always belongs to the isogredience spectrum. We have indicated
Bieberbach groups with a star (*).

CARAT BBNWZ 1T Specg(T")
min.1-1.1-0% | 1/1/1/1/1 | 1/1 | {1}
min.2-1.1-0% | 2/1/1/1/1 | 2/1 | {1}
min5-1.1-0 | 2/4/1/1/1 | 2/13 | {4,00}
min.6-1.1-0% | 3/1/1/1/1 | 3/1 | {1}
min.7-1.1-0 | 3/2/1/1/1 | 3/3 | 2NU {3, 00}
min.7-1.1-1% | 3/2/1/1/2 | 3/4 | 2NU{3, 00}
min.7-1.2-0 | 3/2/1/2/1 | 3/5 | 2NU {oo}
min.10-1.1-0 | 3/3/1/1/1 | 3/16 | {2,00}
min.10-1.1-3*% | 3/3/1/1/2 | 3/19 | {2, 00}
min.10-1.3-0 | 3/3/1/3/1 | 3/22 | {2, 00}
min.10-1.4-0 | 3/3/1/4/1 | 3/23 | {200}
min.10-1.4-1 | 3/3/1/4/2 | 3/24 | {2, 00}
min.13-1.1-0 | 3/5/1/2/1 | 3/143 | {4,00}
min.13-1.1-1% | 3/5/1/2/2 | 3/144 | {4,00}
min.13-1.2-0 | 3/5/1/1/1 | 3/146 | {4, 00}
group.1-1.1-0 | 2/1/2/1/1 | 2/2 | 2NU {3, 00}
group.5-1.1-0 | 3/1/2/1/1 | 3/2 N\ {1} U{c}

Table A.2: Crystallographic groups of dimension at most 3 that do not have
the So.-property

A.3.2 Almost-crystallographic groups

We will use the same presentations as in section 9.2.1.
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Family min.2-1.1-0.

Theorem A.3.2. Let I' be a 3-dimensional almost-crystallographic group in
the family min.2-1.1-0. Then ' has full isogredience spectrum.

Proof. For any m € N, consider the automorphism ¢,, given by

om(er) =ert,  omle2) = ez, ©m(es) = ezez™,

and let ®,, € Out(T") be such that ¢,, € ®,,,. Then the matrix D,,, given by

0 1
D = <1 —m)’

is the induced automorphism on I'/Z(T') & Z2. Then S(®,,) = R(D,)
| det(1s — D,,)| = m, and thus Specg(T") = NU {o0}.

ol

Family min.5-1.1-0. In the previous subsection, we determined which groups
I" in this family do not have the S.-property. Since the Reidemeister spectrum
of I'/Z(T"), i.e. the crystallographic group min.5-1.1-0, is {4,000}, then by
lemma A.1.3 we have that Specg(I') = {4,00} if T' does not have the S..-
property.

Family group.1-1.1-0.

Theorem A.3.3. Let I' be a 3-dimensional almost-crystallographic group in
the family group.1-1.1-0, with parameters ki, ks, ks, ky. Then the isogredience
spectrum of T is

e 2N +2U {00}, if k1 =0 and (kz,k3) # (0,0),
e 2N U {3,00}, if ky = 1 or (ka, k3) = (0,0),

where the bar-notation stands for the projection to Zs.

Proof. Let ¢ : I' = I be an automorphism. Similar to what we did in the proof
of proposition 10.2.1, we can calculate what ¢ must be like. If it maps e; to its
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inverse, then

—1

90(81> =€
o %(m1m2+m1d2*m2d1)*k72(m1+1)*k73m2 mi_ms
plea) = ¢ €y €37,
_ %(m3m4+m;;d27m4d1)7k727n37k73(m4+1) ms _my
ples) = ¢ €y €3

Mdydy—52dy—53dy—k
_ sdidz— 5 di——5d2—Kka dy do
p(a) = ¢ €y €37,

where all exponents must be integers. This places four conditions on the m;

and d;:

1(m1m2 +midy — mgdl) - k‘2<m1 + 1) — kzmo =0 mod 2,

(a) k
(b) k1(mamy4 + mads — mydy) — kamz — k3(mg +1) =0 mod 2,
(c) k

)

(d mimgqg — Mg = —1.

1d1d2 — k‘gdl — k‘3d2 =0 mod 2,

If it maps e; to itself, it must be of the form

p(e1) = e1,

k1 (m k3 k3
_ s(mimatmade—madi)— % (mi1—1)—m2 mqy mo
ple2) = e; €y €37,

k k k
71(m3m4+m3d2—m4d1)—727713—73("14—1)em36m4
2 3

ples) = e

)

Maidy—t2di 524
_ 3 M= 5 a1— 5 d2 dy do
pla) =¢; €9 €3

Q,

where all exponents must be integers. This too places four conditions on the
m; and d;:

(a) k1(mima + mide — mady) — ka(mq — 1) — ksma =0 mod 2,
(b) ki(msmyg + mady —mady) — komsz — k3(my —1) =0 mod 2,
(¢) kidydy — kady — ksdz =0 mod 2,

)

(d mimg — MoMms — 1.
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=) = ()
mo My dQ

then the automorphism on the quotient I'/Z(I") induced by ¢ is ¢" = (a/2,m)-
Using lemma A.1.3, theorem 7.1.3 and taking the parity of tr(M) and the value
of det(M) into account, we can further determine the possible isogredience
numbers:

We set

1. det(M) = —1. Then the formula becomes
S(®) = [tr(M)]oo + O(12 = M, d).
Depending on the value of | tr(M)]|, we have:

(a) |tr(M)| =0 mod 2, then S(®) € 2N + O(15 — M, d),
(b) |tr(M)] =1 mod 2, then S(®) € 2N.

2. det(M) = 1. Then the formula becomes

2= tr(M)|oo + 12 4 tr(M) ]
o 2

Depending on the value of | tr(M)|, we have:

5(®)

+O0(1, — M, 2d).

(a) |tr(M)| =0 mod 2, then S(®) € 2N+ O(1y — M, d),
(b) [ te(M)] = 1 mod 2, then S(®) € 2N + 2 U {3}.

There is one special case, however. If M = 15 mod 2 all entries of 1o — M
will be multiples of 2; so |det(1y — M)| = | tr(M)| € 4N and therefore S(P) €
AN+ O(1y — M, d).

We will determine the isogredience spectrum in function of the parameters,
similar to how we determined the Reidemeister spectrum in theorem 10.2.2. To
this end, we will be using the function MAKELIST2 defined in algorithm 13, which
is an isogredience analogue of the function MAKELIST defined in algorithm 10.
The results can be found in tables B.13 to B.24. The isogredience spectrum of
a group is a subset of (or the entirety of) the union of all these sets S.

Next, for each quadruplet of parameters, we found a family of automorphisms
whose isogredience numbers produce the union of these sets S. These
automorphisms and their isogredience numbers, for all (k1, ks, k3, k4), can be
found in table A.3. For the sake of brevity, we omit co from the spectra in this
table. Note that all almost-Bieberbach groups belonging to this family have
parameters with parities (0,0,0, 1) and therefore have isogredience spectrum
2N U {3, 00}. O
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Algorithm 13 Determining automorphisms and isogredience spectra of 3-
dimensional almost-crystallographic groups in family group.1-1.1-0

1: function MAKELIST2(1€1, ko, k3, k4)

2 AutList + @

3 for M € GLy(Zs), d € Z3 do

4: if conditions (a), (b), (c) are met then
5: O+0
6

7
8

9

for z € Z3 do
if Mz =d then

O+~ 0+1

: end if
10: end for
11: for det € {—1,1} do
12: if tr(M) =0 mod 2 then
13: if M =15 mod 2 then
14: S+ 4N+ O
15: else
16: S+ 2N+0
17: end if
18: else
19: if det = —1 then
20: S+ 2N
21: else
22: S+ 2N+2U{3}
23: end if
24: end if
25: AutList « AutList U {(M, d, det, S)}
26: end for
27: end if
28: end for
29: return AutList

30: end function
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(/;1, ]762, ];33, ];4) M d S((I)) SpecS (F)
(07 Ov 070) (? 2771171) (8) 2m 2NU {3}
0oon | (o |3 )

0,0,0,1 O o1 9) | 2m 2N U {3
(%1) | (@)]3

(0,0,1,0) (omom1) | (§) | 2m+2 | 2N+2

(0,0,1,1) (2mom_1) | (§) | 2m+2 | 2N+2

(071a170) ((1)21n) (%) 2m+2 2N+2

(0,1,1,1) (9,1 (3) | 2m+2 | 2N+2

(1,0,0,0) (%20,733) (g) 2m 2N U {3}
g (1) |3

(1703071) (?2771171) ((1)) 2m QNU{S}
(%) [ (D)3

(1,0,1,0) (Vo) | () | 2m 2N U {3}
(%1) | )3

(1’07171> ((1)21711—1) ((1)) 2m 2NU{3}
(%1) | )]3

(1’1’170) (?Zmlfl) (8) 2m 2NU{3}
(%1) [ (5)]3

L0 | (Ral) | )| 2m | 2NU@)
(%1) [ ]3
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Table A.3: Automorphisms and isogredience spectra for all (ki, k2, k3, ks) (we
omit co from the spectra)






Appendix B

Tables

This chapter only contains tables, usually presenting the output of some
algorithm. Since many of these tables are long enough to span multiple pages,
they were put here as an appendix to improve the readability of this thesis.

B.1 Crystallographic groups with finite outer auto-
morphism group

The tables below contain the Reidemeister spectra of the crystallographic groups
of dimensions 1 to 6 with finite outer automorphism group. These results were
obtained using algorithms 3 and 9.

CARAT | BBNWZ | IT | #Out(T') | Specg(T)
min.1-1.1-0% | 1/1/1/1/1 | 1/1 | 2 | {2}

Table B.1: Reidemeister spectra of the 1-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R.-property)
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CARAT | BBNWZ | IT | #Out(I') | Specgy(T)

min.5-1.1-0 | 2/4/1/1/1 | 2/13 | 12

| {4}

TABLES

Table B.2: Reidemeister spectra of the 2-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R.-property)

CARAT BBNWZ | IT #0ut(T) | Specy(T)
min.10-1.1-0 | 3/3/1/1/1 | 3/16 | 96 {2}
min.10-1.1-3* | 3/3/1/1/2 | 3/19 | 96 {2}
min.10-1.3-0 | 3/3/1/3/1 | 3/22 | 48 {2}
min.10-1.4-0 | 3/3/1/4/1 | 3/23 | 48 {2}
min.10-1.4-1 | 3/3/1/4/2 | 3/24 | 48 {2}
min.13-1.1-0 | 3/5/1/2/1 | 3/143 | 24 {8}
min.13-1.2-0 | 3/5/1/1/1 | 3/146 | 4 {8}

Table B.3: Reidemeister spectra of the 3-dimensional crystallographic groups
with finite outer automorphism group (we omit co from the spectra, as well as
the groups that have the Roo-property)

CARAT BBNWZ #Out(I") | Specg(T)
min.28-1.1-0 1/22/7/2/1 | 8 (12}
min.32-1.1-0 4/22/1/2/1 | 288 {4,16}
min.32-1.2-0 4/22/1/1/1 | 48 (16}
min.38-1.1-0 4/32/10/2/1 | 144 {6}
min.38-1.1-4 4/32/10/2/7 | 24 {6}
group.37-1.1-0 | 4/21/2/2/1 | 12 (31
group.40-1.1-0 4/22/2/2/1 | 16 {8}
group.44-1.1-0 4/22/5/4/1 | 16 {6}
group.44-3.1-0 | 4/22/5/3/1 | 144 (6}
group.52-1.1-0 | 4/5/1/2/1 | 192 {4}
group.52-1.1-6* | 4/5/1/2/9 | 192 {4}
group.52-1.3-0 4/5/1/9/1 96 {4}
group.52-1.6-0 | 4/5/1/13/1 | 48 {4}
group.52-1.7-0 4/5/1/5/1 96 {4}
group.52-1.7-1 4/5/1/5/2 96 {4}
group.52-1.12-0 | 4/5/1/7/1 96 {4}
group.52-1.12-3* | 4/5/1/7/4 96 {4}
group.52-1.13-0 | 4/5/1/1/1 | 12 {4}
group.78-1.1-0 | 4/32/4/2/1 | 48 (2,6}

Table B.4: Reidemeister spectra of the 4-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R.-property)
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CARAT BBNWZ # Out(T") | Specg(T)
group.78-1.1-2 | 4/32/4/2/3 | 48 (2,6}
group.78-1.1-4 | 4/32/4/2/6 | 24 (2,6}
group.80-1.1-0 | 4/5/2/2/1 | 768 2,4}
group.80-1.1-5 | 4/5/2/2/16 | 256 (2,4}
group.80-1.1-18 | 4/5/2/2/18 | 128 (2,4}
group.80-1.4-0 4/5/2/9/1 192 {4}
group.80-1.42 | 4/5/2/9/3 | 64 (4
group.80-1.6-0 | 4/5/2/6/1 | 64 {4
group.80-1.6-2 4/5/2/6/3 64 {4}
group.80-1.8-0 4/5/2/5/1 384 {4}
group.80-1.8-2 4/5/2/5/5 128 {4}
group.80-1.8-4 | 4/5/2/5/3 | 128 2}
group.80-1.8-5 4/5/2/5/6 384 {2}
group.103-1.1-0 | 4/32/1/2/1 | 288 (2,6}
group.103-1.1-1 | 4/32/1/2/2 | 96 (2,6}
group.163-1.1-0 | 4/18/4/2/1 | 32 {4,8)
group.163-1.1-4 | 4/18/4/2/6 | 16 (4,8}
group.163-1.1-6 | 4/18/4/2/3 | 32 {4,8)
group.163-1.2-0 | 4/18/4/5/1 | 32 {4,8)
group.163-1.2-2 | 4/18/4/5/3 | 32 {4,8}
group.163-1.2-6 | 4/18/4/5/6 | 32 {4,8}
group.163-1.2-7 | 4/18/4/5/5 | 32 {4,8}
group.169-1.1-0 | 4/18/1/2/1 | 64 {4,8)
group.169-1.1-2 | 4/18/1/2/3 | 64 {4,8)
group.169-1.2-0 | 4/18/1/3/1 | 64 {4,8)
group.169-1.2-1 | 4/18/1/3/2 | 64 {4,8)
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Table B.4: Reidemeister spectra of the 4-dimensional crystallographic groups
with finite outer automorphism group (we omit co from the spectra, as well as
the groups that have the R.-property)

CARAT #Out(T") | Specg(T)
min.75-1.1-0 64 {8,16}
min.75-1.1-7 64 {8}
min.75-1.1-11 32 (8,16}
min.75-1.1-17 32 {8}
min.75-1.1-21 64 (81
min.75-1.1-24 64 (8,16}
min.75-1.1-28* 32 (8}
min.75-1.1-31* 32 (8,16}

Table B.5: Reidemeister spectra of the 5-dimensional crystallographic groups
with finite outer automorphism group (we omit co from the spectra, as well as
the groups that have the R..-property)
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CARAT # Out(T") | Specy(T)
min.75-1.1-33 64 {8,16}
min.75-1.1-35 64 (8}
min.75-1.1-36 64 {8}
min.75-1.1-37 64 (8,16}
min.75-1.3-0 64 {8,16}
min.75-1.3-2 64 {8}
min.75-1.3-14 64 (81
min.75-1.3-15 64 (8,16}
min.75-1.3-25 64 (8,16
min.75-1.3-27 64 {8}
min.75-1.3-31 64 {8}
min.75-1.3-32 64 (8,16}
min.75-1.3-36 64 (8,16
min.75-1.3-38 64 {8}
min.75-1.3-43 64 (8}
min.75-1.3-44 64 (8,16}
min.75-1.3-47 64 {8,16}
min.75-1.3-49 64 (8}
min.75-1.3-50 64 {8}
min.75-1.3-51 64 (8,16}
min.75-1.4-0 32 (8,16}
min.75-1.4-1 32 (8,16}
min.75-1.4-6 32 (8,16
min.75-1.4-7 32 (8,16
min.75-1.4-12 16 {4}
min.75-1.4-14* 16 {4
min.75-1.5-0 32 (8,16}
min.75-1.5-5 16 {8,16}
min.75-1.5-7 32 4
min.75-1.5-10% 16 0!
min.75-1.5-12 32 (8,16}
min.75-1.5-13 32 {4}
min.119-1.1-0 1536 {4,8}
min.119-1.1-3 512 (4,8
min.119-1.1-10 512 (4,8
min.119-1.1-11 512 (4,8
min.119-1.1-90 256 (4,8}
min.119-1.1-113 | 256 (4,8}
min.119-1.7-0 384 {8}
min.119-1.7-2 128 (81

Table B.5: Reidemeister spectra of the 5-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R,-property)
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CARAT # Out(T") | Specy(T)
min.119-1.7-7 128 {8}
min.119-1.7-10 128 (8)
min.119-1.8-0 192 {8}
min.119-1.8-1 64 {8}
min.119-1.8-5 32 {4}
min.119-1.13-0 128 {8}
min.119-1.13-1 128 (8)
min.119-1.13-9 128 (8)
min.119-1.13-10 | 128 (8}
min.119-1.21-0 64 (8}
min.119-1.21-2 64 {4}
min.119-1.21-4 64 (8)
min.119-1.21-5 64 {4
min.119-1.25-0 768 {8}
min.119-1.25-2 256 (8}
min.119-1.25-6 256 {4}
min.119-1.25-13 | 256 {8}
min.119-1.25-16% | 256 0!
min.119-1.25-22 | 768 (4}
min.119-1.25-24 256 {8}
min.119-1.25-25% | 256 {4}
min.119-1.29-0 128 (8}
min.119-1.29-5 128 (8)
min.119-1.29-8 128 0!
min.119-1.29-9* 128 0!
min.119-1.30-0 768 (4,8}
min.119-1.30-2 256 {4,8}
min.119-1.30-17% | 128 (4,8)
group.255-1.1-0 128 (8,16}
group.255-1.1-2 128 {8,16}
group.255-1.1-3 64 {8,16}
group.255-1.1-5 64 {8,16}
group.255-1.1-10 128 {8}
group.255-1.1-12% | 128 (8}
group.255-1.3-0 128 {8,16}
group.255-1.3-1 128 {8,16}
group.255-1.3-2 64 {8,16}
group.255-1.3-3 64 {8,16}
group.255-1.3-9 128 (8
group.255-1.3-10 128 {8}

Table B.5: Reidemeister spectra of the 5-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R,-property)
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CARAT # Out(T") | Specy(T)
group.255-1.4-0 64 {8,16}
group.255-1.4-3% | 32 {4}
group.255-1.4-4 64 {8,16}
group.255-1.5-0 64 {8,16}
group.255-1.5-2 64 {4}
group.255-1.5-4 64 {8,16}
group.255-1.5-5% | 64 {4
group.316-1.1-0 1152 {8}
group.316-1.1-3 1152 {8}
group.316-1.3-0 576 {8}
group.316-1.4-0 576 {8}
group.316-1.4-1 576 {8}
group.355-1.1-0 7680 {2}
group.355-1.1-331 | 640 {2}
group.355-1.1-356* | 320 {2}
group.355-1.1-359 | 1280 {2}
group.355-1.5-0 960 {2}
group.355-1.5-3 160 {2}
group.355-1.16-0 3840 {2}
group.355-1.16-25 | 320 {2}
group.355-1.16-33 | 640 {2}
group.355-1.16-34 | 160 {2}
group.461-1.1-0 24 {6}
group.461-1.1-3* 12 {6}
group.461-1.1-4 12 {6}
group.461-1.1-5% 24 {6}
group.485-1.1-0 32 {12}
group.485-1.1-5 32 {8}
group.485-3.1-0 288 (12}
group.485-3.1-1 288 {8}
group.488-1.1-0 32 {16}
group.488-1.1-3* 8 {8}
group.488-1.1-4* 8 {16}
group.488-1.1-5 32 {8}
group.528-1.1-0 16 {24}
group.528-1.1-1 16 {16}
group.528-1.1-2 16 {12}
group.528-1.1-3 16 {12}
group.587-1.1-0 576 (8,32
group.587-1.1-2* 144 {8}

Table B.5: Reidemeister spectra of the 5-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R,-property)
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CARAT # Out(T") | Specy(T)
group.587-1.2-0 48 {32}
group.587-1.3-0 96 {32}
group.587-1.4-0 16 {32}
group.587-1.5-0 48 {32}
group.756-1.1-0 96 {4,12}
group.756-1.1-10 96 {4,12}
group.756-1.1-18 | 48 (4,12}
group.756-1.1-26* | 96 {4,8}
group.756-1.1-29% | 96 {4,8}
group.756-1.1-31* | 48 {4,8}
group.794-1.1-0 288 {12}
group.794-1.1-15 48 {8}
group.794-1.1-39 | 48 {12}
group.794-1.1-41 48 {8}
group.794-1.1-46 24 {8}
group.861-2.1-0 576 {4,12}
group.861-2.1-1 192 (4,12}
group.861-2.1-2 192 {8}
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Table B.5: Reidemeister spectra of the 5-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R,-property)

CARAT #Out(T') | Specy(T)
min.331-1.1-0 288 (8,9, 24}
min.331-1.1-1 24 (8}
min.331-1.1-3 48 (8)
min.331-2.1-0 72 (9,24}
min.331-3.1-0 864 (8,9,24)
min.331-3.1-1 72 {8}
min.331-3.1-3 144 (8}
min.332-1.1-0 36 (10,16}
min.332-2.1-0 36 (10,16}
min.332-3.1-0 36 (10,16}
group.1701-1.1-0 24 {16}
group.1701-1.1-1 12 {16}
group.1701-2.1-0 8 {16}
group.1701-2.1-1 4 {16}
group.1768-2.1-0 48 {16}
group.1768-2.1-1 4 {16}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit co from the spectra, as well as
the groups that have the R..-property)
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CARAT # Out(T") | Specy(T)
group.1768-2.1-3 8 {16}
group.1768-3.1-0 144 {16}
group.1768-3.1-1 12 {16}
group.1768-3.1-3 24 {16}
group.1800-1.1-0 24 {32}
group.1800-2.1-0 24 {32}
group.1800-3.1-0 24 (32}
group.1807-1.1-0 4 {16}
group.1807-2.1-0 4 {16}
group.1807-3.1-0 28 {16}
group.2637-1.1-0 96 {4}
group.2648-1.1-0 96 {48}
group.2649-2.1-0 48 {4}
group.2655-2.1-0 96 {4}
group.2655-2.3-0 72 {4}
group.2655-2.4-0 216 {4}
group.2655-4.1-0 2592 {4}
group.2669-1.1-0 216 {3,6,9}
group.2669-1.3-0 24 {6}
group.2669-1.4-0 24 {6}
group.2684-1.1-0 144 {10,16}
group.2684-1.1-1 72 {10,16}
group.2689-1.1-0 144 {9}
group.2689-1.3-0 36 {9}
group.2689-1.4-0 36 {9}
group.2775-1.1-0 108 {9}
oroup.2778-1.1-0 10368 {4,16,64)
group.2778-1.1-6 864 {16}
group.2778-1.2-0 576 {64}
group.2778-1.3-0 288 {4,64}
group.2778-1.4-0 864 {4,64}
group.2781-1.1-0 144 {12}
group.2781-1.1-1 72 {12}
group.2793-1.1-0 72 {3,6,9}
group.2832-1.1-0 24 {4}
group.2854-1.1-0 192 {32}
group.2854-1.1-2 48 {32}
group.2859-1.1-0 1728 {24}
group.2859-3.1-0 192 {24}
group.2872-1.1-0 36 {9}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R,-property)
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CARAT # Out(T") | Specy(T)
aroup.2907-1.1-0 7776 (3,5,6,8,9,21, 24}
group.2907-1.1-1 1296 {5,8}
group.2907-1.1-3 972 {3,9}
group.2907-1.2-0 432 {21,24}
group.2907-1.3-0 648 {3,6,9,21,24}
group.2907-1.3-2 324 {3}
oroup.2907-1.4-0 648 (3,6,9,21, 24}
group.2907-1.4-1 324 {3}
group.2907-1.5-0 72 {6,24}
group.3112-1.1-0 2304 {16}
group.3112-1.1-8 2304 {16}
group.3112-1.5-0 1152 {16}
group.3112-1.6-0 576 {16}
group.3112-1.7-0 384 {16}
group.3112-1.7-6 384 {16}
group.3112-1.12-0 1152 {16}
group.3112-1.12-1 1152 {16}
group.3112-1.16-0 192 {16}
group.3112-1.17-0 96 {16}
group.3112-1.18-0 1152 {16}
group.3112-1.18-7 1152 {16}
group.3112-1.22-0 192 {16}
group.3112-1.22-1 192 {16}
group.3112-1.24-0 144 {16}
group.3112-1.25-0 192 {16}
group.3112-1.25-3 192 {16}
group.3112-1.26-0 24 {16}
group.3128-1.1-0 9216 {8,16}
group.3128-1.1-15 3072 (8,16}
group.3128-1.1-18 1536 {8,16}
group.3128-1.4-0 2304 {16}
group.3128-1.4-2 768 {16}
group.3128-1.6-0 768 (16}
group.3128-1.6-2 768 {16}
group.3128-1.8-0 4608 {16}
group.3128-1.8-2 1536 {8}
group.3128-1.8-4 1536 {16}
group.3128-1.8-5 4608 {8}
group.3618-1.1-0 192 {4}
group.3618-1.1-20 192 {4}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R,-property)
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CARAT # Out(T") | Specy(T)
group.3618-1.1-96 96 (4
group.3618-1.1-99 96 {4}
group.3618-1.1-102 192 {4}
group.3618-1.1-103 192 {4}
group.3618-1.3-0 96 {2,4}
group.3618-1.3-21 96 {2,4}
group.3618-1.4-0 96 {4}
group.3618-1.4-5 48 {4}
group.3618-1.4-6 96 {4}
group.3618-1.4-8 48 {4}
group.3618-1.4-10 96 {4}
group.3618-1.4-11 96 {4}
group.3624-1.1-0 384 {2,4}
group.3624-1.1-3 384 {2,4}
group.3624-1.3-0 192 {2,4}
group.3624-1.4-0 192 {2,4}
group.3624-1.4-1 192 (2,4}
group.3624-1.4-2 96 (4}
group.3624-1.5-0 48 {4}
group.3624-1.5-1 48 {4}
group.3640-1.1-0 768 {4}
group.3640-1.1-7 768 {4}
group.3640-1.1-9 192 {2}
group.3640-1.1-10 192 {2}
group.3640-1.3-0 384 {2,4}
group.3640-1.3-3 384 {2,4}
group.3640-1.4-0 384 {4}
group.3640-1.4-4 384 {4}
group.3657-2.1-0 384 {4}
group.3657-2.1-9 384 {4}
group.3657-2.1-10 48 {4}
group.3657-2.3-0 192 {2,4}
group.3657-2.3-3 24 {2,4}
group.3657-2.3-4 192 (2,4}
group.3657-2.4-0 192 {4}
group.3657-2.4-3 192 {4}
group.3657-2.4-4 96 {4}
group.3893-1.1-0 192 {2}
group.3893-1.1-5 192 {2}
group.3893-1.3-0 384 {2}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R,-property)
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CARAT # Out(T") | Specy(T)
group.3893-4.1-0 48 {2}
group.3893-4.1-5 48 (2)
group.3893-4.2-0 96 {2}
group.3893-4.2-9 96 {2}
group.3893-6.1-0 768 {2}
group.3921-1.1-0 96 {2,4}
group.3921-1.1-31 48 (2,4}
group.3921-1.1-33 96 {2,4}
group.3921-1.3-0 96 {2,4}
group.3921-1.3-5 96 {2,4}
group.3921-4.1-0 24 {4}
group.3921-4.1-12 24 (4
group.3921-4.2-0 48 {4}
group.3921-4.2-10 48 {2}
group.3921-4.2-16 48 {4}
group.3921-4.2-18 48 {2}
group.3921-6.1-0 96 {2,4}
group.3921-6.1-2 96 (2,4}
group.5162-1.1-0 3456 {8,24}
group.5162-1.1-1 1152 {8,24}
group.5186-1.1-0 768 {16, 32}
group.5186-1.1-2 768 {16, 32}
group.5186-1.2-0 768 {16, 32}
group.5186-1.2-1 768 {16, 32}
group.5320-1.1-0 576 {8,24}
group.5320-1.1-3 288 {8,24}
oroup.5320-1.1-5 576 (8,24}
group.5471-1.1-0 1728 {24}
group.5471-1.1-5 288 {24}
group.5557-1.1-0 384 {16, 32}
group.5557-1.1-4 384 {16, 32}
group.5557-1.1-5 192 {16, 32}
group.5557-1.2-0 384 {16, 32}
group.5557-1.2-2 384 (16,32}
group.5557-1.2-4 384 {16, 32}
group.5557-1.2-5 384 {16, 32}
group.6559-1.1-0 18432 {2,4}
group.6559-1.1-614 9216 {4}
group.6559-1.1-1158 1536 {4}
group.6559-1.1-1399 | 1536 {4}
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CARAT # Out(T") | Specy(T)
group.6559-1.1-3436 | 1536 (4}
group.6559-1.1-3862 | 1536 {4}
group.6559-1.1-3882 | 1536 (2,4}
group.6559-1.1-3931 3072 {2,4}
group.6559-1.1-3975 | 768 {4}
group.6559-1.1-4089 | 1536 {4}
group.6559-1.1-4112 18432 {2,4}
group.6559-1.1-4170 | 1536 (2,4}
group.6559-1.1-4171 3072 {2,4}
group.6559-1.5-0 4608 {4}
group.6559-1.5-10 768 {4}
group.6559-1.5-34 768 0!
group.6559-1.5-35 4608 {4}
group.6559-1.9-0 2304 {2,4}
group.6559-1.9-9 384 {2,4}
group.6559-1.11-0 4608 {4}
group.6559-1.11-43 | 4608 {4}
group.6559-1.11-133 | 768 {4}
group.6559-1.11-151 | 768 {4}
group.6559-1.11-357 | 768 {4}
group.6559-1.11-370 | 768 {4}
group.6559-1.11-397 | 4608 {4}
group.6559-1.11-406 | 4608 {4}
group.6559-1.11-408 | 768 {4}
group.6559-1.11-409 | 768 {4}
group.6559-1.11-473 | 768 {4}
group.6559-1.11-477 | 768 {4}
group.6559-1.11-571 768 {4}
group.6559-1.11-574 | 768 {4}
group.6559-1.11-590 | 768 {4}
group.6559-1.11-591 | 768 {4}
group.6559-1.11-598 384 {4}
group.6559-1.11-599 | 384 {4}
group.6559-1.11-614 384 {4}
group.6559-1.11-615 384 {4}
group.6559-1.35-0 4608 {2,4}
group.6559-1.38-0 192 {2,4}
group.6559-1.38-1 96 {4}
group.6559-1.38-3 192 (2,4}
group.6559-1.49-0 2304 {4}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R,-property)
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CARAT # Out(T") | Specy(T)
group.6559-1.49-8 2304 {4}
group.6559-1.49-10 | 384 {4}
group.6559-1.49-12 384 {4}
group.6559-1.50-0 2304 {4}
group.6559-1.50-6 2304 {4}
group.6559-1.50-10 384 {4}
group.6559-1.50-13 384 {4}
group.6559-1.66-0 384 {2,4}
group.6559-1.66-7 192 {4}
group.6559-1.66-12 384 {2,4}
group.6559-1.71-0 192 {4}
group.6559-1.71-10 192 {4}
group.6559-1.71-16 192 {4}
group.6559-1.71-19 192 {4}
group.6559-1.81-0 4608 {2,4}
group.6559-1.81-1 2304 {4}
group.6559-1.81-6 384 {4}
group.6559-1.81-7 384 {4}
group.6559-1.81-8 384 {4}
group.6559-1.81-9 384 {4}
group.6559-1.81-10 4608 {2,4}
group.6559-1.81-29 192 {4}
group.6559-1.81-30 384 {2,4}
oroup.6559-1.81-33 | 768 (2,4}
group.6559-1.81-34 384 {4}
group.6559-1.81-36 384 {2,4}
group.6559-1.81-37 | 768 (2,4}
group.6559-1.84-0 768 (2,4}
group.6559-1.84-45 | 384 {4}
group.6559-1.84-95 768 {2,4}
group.6559-1.85-0 9216 {2,4}
group.6559-1.85-91 | 4608 {4}
group.6559-1.85-116 | 768 {4}
group.6559-1.85-152 | 768 0!
group.6559-1.85-213 | 768 {2,4}
group.6559-1.85-221 | 384 {4}
group.6559-1.85-248 | 768 {4}
group.6559-1.85-257 1536 {2,4}
group.6559-1.85-285 768 {4}
oroup.6559-1.85-320 | 768 (2,4}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
the groups that have the R,-property)
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CARAT # Out(T") | Specy(T)
group.6559-1.85-321 | 1536 (2,4}
group.6559-1.85-322 | 768 (4
group.6559-1.85-323 | 9216 (2,4}
group.6559-1.86-0 576 {4}
group.6559-1.86-2 96 {4}
group.6560-1.1-0 15360 {4}
group.6560-1.1-636 | 1280 {4}
group.6560-1.1-1281 2560 {4}
group.6560-1.1-3917 | 640 {4}
group.6560-1.5-0 1920 {4}
group.6560-1.5-15 320 {4}
group.6560-1.10-0 960 0!
group.6560-1.10-11 | 160 (4}
group.6560-1.64-0 7680 {4}
group.6560-1.64-191 | 320 {4}
group.6560-1.64-301 | 640 {4
group.6560-1.64-351 | 1280 {4}
group.6560-1.75-0 7680 {4}
group.6560-1.75-339 | 640 {4}
group.6560-1.75-340 1280 {4}
group.6560-1.75-359 | 320 {4}
group.6560-1.76-0 240 {4}
group.6560-1.76-3 40 {4}
group.6566-1.1-0 92160 (2,4}
group.6566-1.1-346 9216 {2,4}
group.6566-1.1-2784 | 3072 {2,4}
group.6566-1.1-4088 | 6144 {2,4}
group.6566-1.1-20822 | 2304 (2,4}
group.6566-1.1-21314 | 768 (2,4}
group.6566-1.1-24319 | 768 {2,4}
group.6566-1.1-25098 | 1536 {2,4}
group.6566-1.1-25110 | 768 (2,4}
group.6566-1.1-25111 | 768 {2,4}
group.6566-1.6-0 5760 {2,4}
group.6566-1.6-3 576 {2,4}
group.6566-1.6-12 384 {2,4}
group.6566-1.6-13 96 {2,4}
group.6566-1.15-0 576 (2,4}
group.6566-1.15-9 576 (2,4}
group.6566-1.17-0 384 {4}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit oo from the spectra, as well as
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CARAT # Out(T") | Specy(T)
group.6566-1.17-4 384 {4}
group.6566-1.24-0 768 {4}
group.6566-1.24-24 768 {4}
group.6566-1.24-34 192 {2}
group.6566-1.24-35 192 {2}
group.6566-1.33-0 2304 {4}
group.6566-1.33-146 | 384 {4}
group.6566-1.33-152 192 {4}
group.6566-1.33-154 | 384 {4}
group.6566-1.33-315 | 192 {4}
group.6566-1.33-323 | 2304 (4
group.6566-1.35-0 1536 (2,4}
group.6566-1.35-92 384 {2,4}
group.6566-1.35-201 192 {2,4}
group.6566-1.36-0 46080 {4}
group.6566-1.36-24 4608 {2}
group.6566-1.36-284 | 1536 (4
group.6566-1.36-780 768 {2}
group.6566-1.36-815 3072 {4}
group.6566-1.36-860 | 384 {2}
group.6566-1.36-910 384 {4}
group.6566-1.36-922 | 384 {2}
group.6566-1.36-924 | 768 0!
group.6566-1.36-925 | 2304 (2,4}
group.6566-1.36-927 7680 {2}

Table B.6: Reidemeister spectra of the 6-dimensional crystallographic groups
with finite outer automorphism group (we omit co from the spectra, as well as
the groups that have the R,-property)

B.2 Crystallographic groups with infinite outer au-
tomorphism group

The tables below contain (Z-classes of) crystallographic groups with infinite
outer automorphism group. The R..-property for these groups was studied in
section 9.1.
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B.2.1 Groups that do not have the R, -property

The tables below contain the crystallographic groups with infinite outer
automorphism group of dimensions 2 to 4 that do not have the R..-property.
For each group, we also list an automorphism with finite Reidemeister number.

CARAT | BBNWZ | IT |d | D
min.2-1.1-0% | 2/1/1/1/1 | 11 | () | (1)
group.1-1.1-0 | 2/1/2/1/1 | 2/2 | (3) | ()

Table B.7: 2-dimensional crystallographic groups with infinite outer automor-

phism group that do not have the R.,-property

CARAT BBNWZ |IT |d | D
min.6-1.1-0% | 3/1/1/1/1 | 3/1 (§) (%‘?é)
min7-1.1:0 | 3/2/1/1/1 | 3/3 | (§) | (277 9))
min.7-1.1-1% | 3/2/1/1/2 | 3/4 (§) (%5 ) _81)
min.7-1.2-0 | 3/2/1/2/1 | 3/5 (§) (‘%1 H _37)
group.5-1.1-0 | 3/1/2/1/1 | 3/2 (§) (:2? %1 f})

Table B.8: 3-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R.-property

CARAT BBNWZ d D
0 3001
min.15-1.1-0% 4/1/1/1/1 (8) (}) 09879
0 0 010
0 —2-1-10
min.17-1.1-0 4/2/2/1/1 (8) (% 39 8)
0 0O 0 0 -1
0 —2-1-10
min.17-1.1-1% 4/2/2/1/2 (8) (% o 0 8)
0 0O 0 0 -1
0 -10 —1-1
min.17-1.2-0 4/2/2/2/1 (8) (‘01 L5590 )
0 0O -1 0 -1
0 —-2—-1 0 O
min.18-1.1-0 4/3/1/1/1 (8) (}) 5 9, °1>
0 0 O 1 1

Table B.9: 4-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R, -property
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Table B.9: 4-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R.-property
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CARAT BBNWZ d D
0 —1-2-1-1
group.28-1.3-0 4/3/2/3/1 (8) (% bo 5)
0 0 —-1-1-1
0 -5—-20 O
group.96-1.1-0 4/16/1/1/1 (g) (3 5o _°2>
0 0O 0 2 5
1/2 -3-20 0
group.96-1.1-1 4/16/1/1/2 0 (}) 59 5’)
1/2 0 0 —2-3
0 —41 0 —-12 —12
group.96-2.1-0 4/16/1/2/1 (8) ( T el >
0 12 —-12 0 7
0 -7 0 -2 -2
group.96-2.1-1 4/16/1/2/2 <8) ( 9 2z )
0 2 -2 0 1
—41 0 —-12 —12
group.96-2.1-2 4/16/1/2/3 ( TR e >
1/2 12 —-12 0 7
0 —4-10 4
group.96-3.1-0 | 4/16/1/3/1 (8) (‘01 5 ‘f)
0 -2 0 1 2
0 —41 29 —-29 0
group.109-1.1-0 | 4/26/1/1/1 <8) (_239 o % _§3>
0 0 —29 —29 —41
0 -30 2 2
group.141-1.1-0 | 4/27/2/1/1 (8) (é LY 03)
0 -1 2 -1 2
0 -3 0 2 2
group.142-1.1-0 | 4/27/3/2/1 (§) ( 3 N _°3>
-1 2 -1 2
0 -5 -5 —2 -3
group.142-2.1-0 | 4/27/3/1/1 (§) ( 0 2N )
-3 -5 0 -2
0 -30 2 2
group.143-1.1-0 | 4/27/4/1/1 (8) (%, L _°3>
0 -1 2 -1 2
-3 0 2 2
roup.144-1.1-0 | 4/27/1/1/1 0 LN
group 8 31 32 01 33
0 -2 0 -1 0
group.170-1.1-0 | 4/11/1/1/1 (8) (12 e 5)
0 1 -1 1 -1
0 -2 -1-1-1
group.171-1.1-0 | 4/11/2/1/1 (g) (3, 79 _11>
0 1 0 1 1
0 -3 -4 -4 -2
group.172-1.1-0 | 4/17/2/2/1 (8) (4 ; 3})
0 -2 2 1 4

Table B.9: 4-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R..-property
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CARAT BBNWZ d D
0 -3 -2-10
group.172-2.1-0 | 4/17/2/1/1 (8) (g 2 (1’(1,)
0 0 1 00
0 —13 -2 —14 -8
group.173-1.1-0 | 4/17/1/3/1 (g) (12% —g” 18% ;216)
0 —r3 —-2-10
group.173-2.1-0 | 4/17/1/1/1 (8) (g 9 ij)
0 2 0 1 -1
0 —4 1 —45
group.173-3.1-0 | 4/17/1/2/1 (8) (8 03 8)
0 -1 0 —-11
0 -10 0 0
group.179-1.1-0 | 4/8/1/2/1 (8) (8 o % 01)
0 0 0 1 1
0 -10 0 0
group.179-1.1-1*% | 4/8/1/2/2 (8) (8 oY g)
0 0 0 -3 -2
0 -5 -3 -3 3
group.179-1.2-0 | 4/8/1/1/1 (8) (i 0 éj)
0 —-1-1-10
1/3 -2-3-3 3
group.179-1.2-1% | 4/8/1/1/2 s (i ; §_§>
é -1 -2-21
0 -10 0 0
group.182-1.1-0 | 4/9/2/1/1 (8) (8 o % °1>
0 0 0 1 1

Table B.9: 4-dimensional crystallographic groups with infinite outer automor-
phism group that do not have the R..-property

B.2.2 Groups that have the R, -property

The tables below contain the Z-classes of crystallographic groups with infinite
outer automorphism group of dimensions 3 and 4 that have the R,,-property.
For each group Z" x F', we also list a characteristic subgroup N such that the
quotient has the R..-property.
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CARAT | BBNWZ | IT | N | (Z x F)/N
min8-1.1 | 3/2/2/1 | 3/6, 3/7 72 max.1-1.1-0
min8-1.2 | 3/2/2/2 | 3/8,3/9 72 max.1-1.1-0
group.6-1.1 | 3/2/3/1 | 3/10, 3/11, 3/13, 3/14 | Z*? x Z | max.1-1.1-0
group.6-1.2 | 3/2/3/2 | 3/12, 3/15 72 x Zy | max.1-1.1-0

TABLES

Table B.10: 3-dimensional Z-classes of crystallographic groups with infinite
outer automorphism group that have the R..-property

Table B.11:

CARAT BBNWZ | N (Z* x F)/N

min.16-1.1 | 4/2/1/1 | 73 max.1-1.1-0

min.16-1.2 | 4/2/1/2 | 73 max.1-1.1-0

min.19-1.1 4/4/3/1 | 7* group.2-1.1-0
min.19-1.2 4/4/3/3 | 7* group.2-1.1-0
min.19-1.3 4/4/3)2 | 7* group.2-1.2-0
min.19-1.4 4/4/3/6 | 7> group.2-1.1-0
min.19-1.5 4/4/3/4 | 72 group.2-1.2-0
min.19-1.6 4/4/3/5 | Z* group.2-1.1-0
min.20-1.1 4/4/1/1 | 72 group.2-1.1-0
min.20-1.2 4/4/1/3 | 72 group.2-1.1-0
min.20-1.3 | 4/4/1/2 | 72 group.2-1.2-0
min.20-1.4 4/4/1/6 | Z* group.2-1.2-0
min.20-1.5 4/4/1/4 | 72 group.2-1.1-0
min.20-1.6 4/4/1)5 | Z* group.2-1.1-0
min.21-1.1 4/4/2/1 | Z group.6-1.1-0
min.21-1.2 4/4/2/4 | Z group.6-1.1-0
min.21-1.3 4/4/2/3 | Z group.6-1.2-0
min.21-1.4 4/4/2/2 | Z group.6-1.1-0
min.21-1.5 4/4/2/7 | Z group.6-1.1-0
min.21-1.6 4/4/2/5 | Z group.6-1.2-0
min.21-1.7 4/4/2/6 | Z group.6-1.2-0
min.26-1.1 4/4/4/1 | Z? x Zy | group.2-1.1-0
min.26-1.2 4/4/4/3 | Z* x Zy | group.2-1.1-0
min.26-1.3 4/4/4)2 | Z* x Zy | group.2-1.2-0
min.26-1.4 4/4/4/6 | Z* x Zy | group.2-1.1-0
min.26-1.5 4/4/4/4 | Z* X Zy | group.2-1.2-0
min.26-1.6 | 4/4/4/5 | 72 x Zs | group.2-1.1-0
mind2-1.1 | 4/7/1/1 | 72 min.4-1.1-0

mind2-1.2 | 4/7/1/2 | 72 min.4-1.1-0

min.48-1.1 4/9/4/1 | Z? max.3-1.1-0

min.49-1.1 4/8/3/2 | 7* group.4-2.1-0

4-dimensional Z-classes of crystallographic groups with infinite
outer automorphism group that have the R..-property
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CARAT BBNWZ | N (Z* x F)/N

min.49-2.1 4/8/3/3 | Z* group.4-1.1-0
min.49-2.2 4/8/3/1 | 7* group.4-1.1-0
min.50-1.1 4/8/4/2 | 7> group.4-2.1-0
min.50-1.2 4/8/4/1 | 7* group.4-1.1-0
min.50-2.1 4/8/4/3 | 7* group.4-1.1-0

group.27-1.1 | 4/2/3/1 | Z3 x Zy | max.1-1.1-0
group.27-1.2 | 4/2/3/2 | Z3 x Zs | max.1-1.1-0
group.107-1.1 | 4/7/7/1 | Z? x Zy | max.2-1.1-0
group.107-1.2 | 4/7/7/2 | Z? x Zy | max.2-1.1-0
group.117-1.1 | 4/7/2/1 | Z? min.4-1.1-0
group.117-1.2 | 4/7/2/2 | Z? min.4-1.1-0
group.136-1.1 | 4/7/3/1 | Z? x Z | min.4-1.1-0
group.136-1.2 | 4/7/3/2 | Z? x Zy | min.4-1.1-0

group.145-1.1 | 4/7/5/1 | Z? max.2-1.1-0
group.145-1.2 | 4/7/5/2 | Z* max.2-1.1-0
group.146-1.1 | 4/7/6/1 | Z? max.2-1.1-0
group.146-1.2 | 4/7/6/2 | Z? max.2-1.1-0
group.147-1.1 | 4/7/4/1 | 72 max.2-1.1-0
group.147-1.2 | 4/7/4/3 | Z? max.2-1.1-0
group.147-2.1 | 4/7/4/2 | Z? max.2-1.1-0
group.147-2.2 | 4/7/4/4 | Z* max.2-1.1-0
group.174-1.1 | 4/8/5/3 | Z? max.3-1.1-0
group.174-1.2 | 4/8/5/1 | 72 max.3-1.1-0
group.174-2.1 | 4/8/5/2 | Z? max.3-1.1-0
group.175-1.1 | 4/9/3/1 | Z* group.3-1.1-0
group.176-1.1 | 4/9/5/1 | Z* max.3-1.1-0

group.177-1.1 | 4/9/6/1 | Z* x Zy | group.4-2.1-0
group.177-2.1 | 4/9/6/2 | Z* x Zo | group.4-1.1-0
group.178-1.1 | 4/9/7/1 | Z? x Zy | max.3-1.1-0

group.180-1.1 | 4/8/2/2 | Z? group.3-1.1-0
group.180-1.2 | 4/8/2/1 | Z? group.3-1.1-0
group.181-1.1 | 4/9/1/1 | Z? group.3-1.1-0

Table B.11: 4-dimensional Z-classes of crystallographic groups with infinite
outer automorphism group that have the R..-property
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B.3 Almost-crystallographic groups

The tables below contain information on the almost-crystallographic groups of
which we determined the R.-property and/or the Reidemeister spectrum.

B.3.1 Conjugacy matrices

The table below contains conjugacy matrices to go from the presentations
mentioned in this thesis to those given in [Dek96] and [DE02].

Family )
10888
min.6-1.1-0 00100
00010
00001
45088
min.7-1.1-0 01000
00010
00001
18088
min.7-1.1-1 01000
00010
00001
10988
min.7-1.2-0 01100
00010
00001
1 — 5 tho+2ks —ka+ks 00
. 1
min.13-1.1-0 8 1 (1) 88
0 -1 0 10
0 0 0 01
45998
min.13-1.2-0 01000
00100
00001
10988
group.5-1.1-0 00100
00010
00001

Table B.12: Conjugacy matrices between representations of 4-dimensional
almost-crystallographic groups

B.3.2 Automorphisms of family group.1-1.1-0

The tables below contain the output of algorithms 10 and 13.
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ALMOST-CRYSTALLOGRAPHIC GROUPS

~ ~ ~ ~
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[a I @aN] (A I @aN] [a\] (AN} [a\] AN <f <f AN AN AN AN [aN I @aN]| AN AN
+ + ++ + + + +++ ++ 4+ + + + + +
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A AN AN AN AN AN AN NN AN AN AN AN AN AN NFT I A A A F F F AN A AN AN AN AN AN AN AN NN NN ANANAN
<f <f 0 <A <t <f <t
+ + + +  + + +
2% 3% 3% 8%38%23%28%8%3%223%28%383%23%8%8%3%3%28%3%3% 3%
Ml R — — R — — — — R — — Ao — — — — R — —
/|\_1 — — — — — — — — — — — — — — — — — — —
5
[ P NI T T A At A M A P
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Table B.13: Output of MAKELIST(0, 0,0,0) and MAKEL1sT2(0, 0, 0, 0)
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—~ — ~ —
o o o o
— — — —
D ) D )
o~ o~ o™ o~
+ + + +
VAl A A A A A A
NN NN
x5 8% 8% 2% 8
Ml Al — —
(_1 i — Al
=
5]
<
ES] [ AN

P 1 e N

—HOHOHO—HO—HO—O—O—=O
bbb b b b R Een e R R R R R R |
N N N N N N N

Table B.13: Output of MAKELIST(0, 0,0,0) and MAKEL1sT2(0, 0, 0, 0)

~ ~ ~ ~
o™ (A [ap) [ap)
— — — —
D D D D
AN AN [a\ENaN| (A} [a\] (@] AN <fF <t AN AN AN A
+ + ++ + + A+t + + 4+ +
SNNNNNNNNNNNNNNNNNNNNNNNNNNNN
AN AN AN AN AN NN AN NN NN AN NN ANAT AT A A I F I F AN NN AN AN
(&N [aN] [aN] (&N}
| | | |
2% 8% 234 8% 8% 3%23%8%3%23%28%8%23%23% 3%
Ml — — — — — — — — — — — — —
(71 — — — — — — — — — — — — —
ks
IS | Socoemonioliolinlitototnoniolalnlitotacnonlalalilitatas sy

R N N N N N N N N W N P S N N N

L N R N N L N N N i N N T N N T e N N
—HO—HO—HO—O—O—O—O—O—~dArd4rdrdArdAA A A4~ —1O0O—O0O—~0—"0O—~O—~O—O—O—O—O—O—O
OHO—HO—HOHO—HO—HO—HO—O—O—~O—~O—~O0O—~O0O—~O0—~O0—~—~O—~O—O—~O~O—~O—O O —
e e e e e e e e e e e e e e e e e e e e e e e e e e e

Table B.14: Output of MAKELIST(0, 0,0, 1) and MAKEL1sT2(0, 0,0, 1)
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ALMOST-CRYSTALLOGRAPHIC GROUPS

~ ~ ~ ~

(A o™ [ap) (ap)

— — — —

D D D D
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A A A A A A A A A A A A A A A A A A A

522222222222222222222
[aN] [aN (&N} [aN]
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2% 3% 3% 8%3%3%48%238%3%3% %
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5
s | Sololnlntatatnoniolalnlitatasaonlalalill
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Table B.14: Output of MAKELIST(0, 0,0, 1) and MAKEL1sT2(0, 0,0, 1)

<H <# AN AN AN
+ + + + + +
Z. 7 Z 7 Z Z Z
NFFFFANAAN
<t <t
+ +
x|% 3% 8% 8% 8
17A1._|A_|A¢|A1A1__|A

P R N N N T N
OO0 O0O—HO—HOOOOO—HOHO
— N N e

e e N N N N N
O—HO—O—~O A~
—HO—HO—HO—HO—O—O—O—O
— N N e

Table B.15: Output of MAKEL1ST(0,0, 1,0) and MAKEL1sT2(0, 0, 1,0)
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M d | det(M)| R S
(591 (9) -1 8N+4 | 4N+4
(69) | (8) 1 00 AN + 4
(69 [ ()| -1 |8N 4N
(69) | () 1 00 4N
(EH 1Y) -1 4N 2N 4 2
(o1) | () 1 00 2N +2
(EH | () -1 AN+4 | 2N+2
(61) | (3) 1 00 2N + 2

TABLES

Table B.16: Output of MAKEL1ST(0,0,1,1) and MAKEL1sT2(0,0,1,1)

M d | det(M) | R S
OO 1 -1 AN+ 4 | 2N+ 2
(Y6) | (3) 1 00 2N +2
OO 1 hH -1 4N 2N +2
(Yo) | (1) 1 00 2N +2
(1% -1 8N+4 | 4N+ 4
(69) | (9) 1 00 AN +4
(09) | (1) -1 | 8N 4N
(69) | (1) 1 00 4N

Table B.17: Output of MAKEL1sT(0, 1, 1,0) and MAKEL1sT2(0, 1,1, 0)

M d | det(M) | R S
CEOREES -1 4N 2N + 2
(Y0) | () 1 00 2N+2
CEOREE -1 AN+4 | 2N+2
(Y0) | (1) 1 00 2N +2
(91 -1 SN+4 | 4N+4
(69) ] () 1 00 AN + 4
(69) [ (1) | -1 |8N 4N
(69) | (1) 1 00 4N

Table B.18: Output of MAKEL1sT(0,1,1,1) and MAKEL1sT2(0, 1,1, 1)
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M d | det(M) | R S

OB 1(9) —1 AN +2 | 2N +2
(Y6) | (8) 1 | oo 2N +2
(T1) ] (1) -1 4N—2 | 2N

(P1) ] (1) 1 00 2N +2U{3}
(FN 1 () ~1 8N +6 | 4N+ 4
(o1) | (8) 1 00 AN +4
(FOy 1 (9) —1 AN +2 | 2N +2
(i) | (D) 1 |oo 2N +2
$H 1 -1 AN+2 | 2N+ 2
(61) | (5) 1 00 2N +2
(1) | (3) | -1 |4N=2 2N

(16) 1 () 1 00 2N+2U{3}

Table B.19: Output of MAKEL1ST(1,0,0,0) and MAKEL1sT2(1,0,0,0)

M d | det(M)| R S
1) -1 AN+2 | 2N +2
(96) | (9) 1 00 2N +2
(D[ () -1 | 4N 2N

(D) [ (%) 1 00 2N+2U {3}
(3?) (8) -1 8N+2 | 4N+ 4
()| @) 1 00 AN +4
CEINNES) -1 AN+ 2 | 2N +2
GGy 1 00 2N +2
$H 1 -1 AN+2 | 2N +2
(61) | (3) 1 00 2N +2
(1o) ] ()| -1 |4N 2N

(10) | (5) 1 00 2N+2U {3}

Table B.20: Output of MAKELIST(1,0,0,1) and MAKEL1sT2(1,0,0,1)
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M d | det(M) | R S

OH 1 -1 AN+2 | 2N +2
(96) | (1) 1 00 2N + 2
P11 G)| -1 |4N-2 2N

()| (o) 1 e 2N +2U {3}
(N 1 (H) -1 SN+6 | AN+4
(69) | (8) 1 00 AN +4
(T 1 (9) -1 AN+2 | 2N +2
(19) ] (9) 1 00 2N + 2
$H 1 -1 AN+2 | 2N+ 2
(01) | (5) 1 00 2N +2
(1o) | (1) | -1 |4N—2 2N

(1o) ] (1) 1 00 2N+2U {3}

TABLES

Table B.21: Output of MAKEL1ST(1,0, 1,0) and MAKEL1sT2(1,0,1,0)

M d | det(M)| R S
CEIRNED -1 AN+2 | 2N +2
(99) ] (D) 1 00 2N +2
(9] )| -1 |4N 2N

(21| (o) 1 00 2N+2U {3}
CIOREES -1 8N+2 | AN +4
()| @) 1 00 AN +4
A1 -1 AN+2 | 2N+ 2
()| @) 1 00 2N +2
$H 1 -1 AN+2 | 2N+ 2
(61) | (3) 1 00 2N +2
(o) | (1) | -1 |4N 2N

(1o) | (1) 1 00 2N +2U {3}

Table B.22: Output of MAKELIST(1,0,1,1) and MAKEL1sT2(1,0,1,1)
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M d | det(M) | R S

OB 1(9) —1 AN +2 | 2N +2
(Y6) | (8) 1 | oo 2N +2
(T1)] ()] -1 |4N 2N

(11) ] (8) 1 00 2N +2U{3}
(N 1(H) ~1 SN +2 | 4N +4
(o1) | (8) 1 00 AN +4
(T 1 (9) —1 AN +2 | 2N +2
(19) ] (8) 1 |oo 2N +2
$H 1 -1 AN+2 | 2N+ 2
(61) | (8) 1 00 2N +2
(1) | (§) ] -1 |4N 2N

(16) 1 () 1 00 2N+2U{3}

Table B.23: Output of MAKEL1sT(1,1,1,0) and MAKEL1sT2(1,1,1,0)

M d | det(M)| R S
1) -1 AN+2 | 2N +2
(96) | (9) 1 00 2N +2
9] @] -1 |4N-2|2N

(1) | (8) 1 00 2N+2U {3}
(A9 1 (9) -1 8N+6 | AN+4
()| @) 1 00 AN +4
A1 -1 AN+ 2 | 2N +2
()| @) 1 00 2N +2
$H 1 -1 AN+2 | 2N +2
(61) | (8) 1 00 2N +2
(18) | ()| -1 |4N—-2|2N

(10) | (8) 1 00 2N+2U {3}

Table B.24: Output of MAKEL1sT(1,1,1,1) and MAKEL1sT2(1,1,1,1)
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