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Abstract

We determine which non-crystallographic, almost-crystallographic groups of dimen-
sion 4 have the R∞-property. We then calculate the Reidemeister spectra of the 3-
dimensional almost-crystallographic groups and the 4-dimensional almost-Bieberbach
groups.

1 Introduction

Let G be any group and φ : G → G an endomorphism of this group. Define an equivalence
relation ∼φ on G given by

∀g, g′ ∈ G : g ∼φ g′ ⇐⇒ ∃h ∈ G : g = hg′φ(h)−1.

An equivalence class [g]φ is called a Reidemeister class of φ or φ-twisted conjugacy class.
The Reidemeister number R(φ) is the number of Reidemeister classes of φ and is therefore
always a positive integer or infinity. The Reidemeister spectrum of a group G is the set of
all Reidemeister numbers when considering all possible automorphisms of that group:

SpecR(G) := {R(φ) | φ ∈ Aut(G)}.

If SpecR(G) = {∞} we say that G has the R∞-property.
Reidemeister numbers originate in Nielsen fixed point theory, where they are defined as

the number of fixed point classes of a self-map of a topological space Jiang 1983, although
they also yield applications in algebraic geometry and representation theory Fel’shtyn and
Troitsky 2015.

It turns out that many (infinite) groups admit the R∞-property. This is also the case
for most almost-crystallographic groups, e.g. in Dekimpe and Penninckx 2011 it was shown
that 207 of the 219 3-dimensional crystallographic groups and 15 of the 17 families of 3-
dimensional (non-crystallographic) almost-crystallographic groups all have theR∞-property.
Furthermore, in Dekimpe et al. 2019a it was shown that 4692 of the 4783 4-dimensional
crystallographic groups admit the R∞ property. Moreover, the Reidemeister spectra of all
crystallographic groups of dimensions 1, 2 and 3 were calculated, as well as the spectra of
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the 4-dimensional Bieberbach groups. In this paper we extend these results by studying the
4-dimensional almost-crystallographic groups.

This paper is structured as follows. In the next two sections, we provide the necessary
preliminaries on Reidemeister numbers and almost-crystallographic groups. In section 4 we
determine which almost-crystallographic groups of dimension 4 possess the R∞-property.
Sections 5 and 6 are devoted to calculating the Reidemeister spectra of the 3-dimensional
almost-crystallographic groups and the 4-dimensional almost-Bieberbach groups respect-
ively. The final section summarises the obtained results.

2 Reidemeister numbers and spectra

In this section we introduce basic notions concerning the Reidemeister number. For a general
reference on Reidemeister numbers and their connection to fixed point theory, we refer the
reader to Jiang 1983.

The definitions of the Reidemeister number and Reidemeister spectrum were given in
the introduction. However, nothing was said on how we actually determine whether a group
has the R∞-property, and if not, how we calculate its Reidemeister spectrum. The following
lemma is an essential tool for the former.

Lemma 2.1 (see Fel’shtyn and Troitsky 2015, Section 2.2, Gonçalves and Wong 2009,
Lemma 1.1). Let N be a normal subgroup of a group G and φ ∈ Aut(G) with φ(N) = N .
We denote the restriction of φ to N by φ|N , and the induced automorphism on the quotient
G/N by φ′. We then get the following commutative diagram with exact rows:

1 N G G/N 1

1 N G G/N 1

φ|N φ φ′

We obtain the following properties:

(1) R(φ) ≥ R(φ′),

(2) if R(φ′) < ∞, R(φ|N ) = ∞ and |Fix(φ′)| < ∞, then R(φ) = ∞.

A direct consequence for characteristic subgroups is the following:

Corollary 2.2. Let N be a characteristic subgroup of G. If either

(1) the quotient G/N has the R∞-property, or

(2) N has finite index in G and has the R∞-property,

then G has the R∞-property as well.

3 Almost-crystallographic groups

Let G be a connected, simply connected, nilpotent Lie group with automorphism group
Aut(G). The affine group Aff(G) is the semi-direct product Aff(G) = G ⋊ Aut(G), where
multiplication is defined by (d1, D1)(d2, D2) = (d1D1(d2), D1D2). If C is a maximal compact
subgroup of Aut(G), then G⋊ C is a subgroup of Aff(G). A cocompact discrete subgroup
Γ of G ⋊ C is called an almost-crystallographic group modelled on the Lie group G. The
dimension of Γ is defined as the dimension of G.
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If Γ is torsion-free, then it is called an almost-Bieberbach group. If G = Rn, then it is
called a crystallographic group, or a Bieberbach group if it also torsion-free.

Crystallographic groups were historically studied first, and are well understood by the
three Bieberbach theorems. These theorems have since been generalised to almost-crystal-
lographic groups, which we will briefly discuss below. We refer to Szczepański 2012 and
Dekimpe 1996 for more information on the original and generalised theorems respectively.

The generalised first Bieberbach theorem says that if Γ ⊆ Aff(G) is an n-dimensional
almost-crystallographic group, then its translation subgroup N := Γ∩G is a uniform lattice
of G and is of finite index in Γ. Moreover, N is the unique maximal nilpotent normal
subgroup of Γ, and is therefore characteristic in Γ. The quotient group F := Γ/N is a finite
group called the holonomy group of Γ. In fact F = {A ∈ Aut(G) | ∃a ∈ G : (a,A) ∈ Γ}.
If Γ is crystallographic (G = Rn), we may assume that N = Zn and F is a subgroup of
GLn(Z).

The generalised second Bieberbach theorem tells us more about automorphisms of al-
most-crystallographic groups.

Theorem 3.1 (generalised second Bieberbach theorem). Let φ : Γ → Γ be an automorphism
of an almost-crystallographic group Γ ⊆ Aff(G) with holonomy group F . Then there exists
a (d,D) ∈ Aff(G) such that φ(γ) = (d,D) ◦ γ ◦ (d,D)−1 for all γ ∈ Γ. To shorten notation,
we will write φ = ξ(d,D).

An automorphism Φ : G → G of a Lie group G induces an automorphism Φ∗ : g → g
of the associated Lie algebra g. We will henceforth always denote an induced automorph-
isms on a Lie algebra with a star (∗) subscript, for example A∗ is the Lie algebra auto-
morphism induced by some A ∈ F where F ⊆ Aut(G) is the holonomy group of an
almost-crystallographic group. In particular, an automorphism φ = ξ(d,D) of an almost-
crystallographic group has an associated matrix D∗.

The generalised third Bieberbach theorem is less straightforward to generalise. Unlike
for crystallographic groups, it is not true that there are only finitely many n-dimensional
almost-crystallographic groups for a given dimension n. However, we can state that for a
given finitely generated torsion-free nilpotent group N , there are (up to isomorphism) only
finitely many almost-crystallographic groups Γ such that the translation subgroup of Γ is
isomorphic to N .

In Dekimpe 1996, Section 2.5, this generalisation is proved using the concept of an
isolator, which shall prove useful to us as well.

Definition 3.2. Let G be a group with subgroup H. The isolator of H in G is defined as

G
√
H := {g ∈ G | gk ∈ H for some k ≥ 1}.

Although much can be said about isolators, for the purposes of this paper we only care
about a very specific result.

Lemma 3.3 (see Dekimpe 1996, Lemma 2.4.2). Let Γ be an almost-crystallographic group
with translation subgroup N of nilpotency class c. Then the isolator N

√
γc(N) ≤ Z(N)

is a characteristic subgroup of Γ. Moreover, the quotient group Γ/ N
√

γc(N) is an almost-

crystallographic group whose translation subgroup N/ N
√

γc(N) has nilpotency class c− 1. If
c = 2, then this quotient is a crystallographic group.

We will now give the most important results for Reidemeister theory applied to almost-
crystallographic groups. A first result allows us to easily determine whether an almost-
crystallographic group admits the R∞-property or not.
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Theorem 3.4 (see Dekimpe and Penninckx 2011, Corollary 3.10). Let Γ be an n-dimension-
al almost-crystallographic group with holonomy group F ⊆ Aut(G) and φ = ξ(d,D) ∈ Aut(Γ)
(where we use the notation of theorem 3.1). Then

R(φ) = ∞
⇐⇒ ∃A ∈ F such that det(1n −A∗D∗) = 0

⇐⇒ ∃A ∈ F such that A∗D∗ has eigenvalue 1.

The second result only holds for almost-Bieberbach groups, and allows for an easy com-
putation of the Reidemeister number of an automorphism.

Theorem 3.5 (averaging formula, see Ha et al. 2012, Theorem 6.11 and Lee and Lee 2009,
Theorem 4.3). Let Γ be an n-dimensional almost-Bieberbach group with holonomy group
F ⊆ Aut(G), and φ = ξ(d,D) ∈ Aut(Γ) with R(φ) < ∞. Then

R(φ) =
1

#F

∑
A∈F

|det(1n −A∗D∗)|.

In general, this formula does not hold for automorphisms of almost-crystallographic
groups, examples can be found in Dekimpe et al. 2019a and later in this paper. Therefore,
the calculation of the Reidemeister spectra usually requires a deeper understanding of how
the Reidemeister classes are formed in a specific group.

4 The R∞-property for 4-dimensional almost-crystallo-
graphic groups

Every almost-crystallographic group of dimension 1 or 2 is crystallographic. In Dekimpe
and Penninckx 2011 it was determined which 3-dimensional almost-crystallographic groups
admit the R∞-property. We extend these results to dimension 4. In this case the translation
subgroup N is a finitely generated, torsion-free, nilpotent group of rank 4 and nilpotency
class at most 3. Nilpotency class 1 is of course the crystallographic case, which was done in
Dekimpe et al. 2019a.

4.1 Nilpotency class 2

Let Γ be an almost-crystallographic group whose translation subgroup N is a nilpotent
group of rank 4 and nilpotency class 2. In Dekimpe 1996 it was shown that N can be given
the following presentation:〈

e1, e2, e3, e4

∣∣∣∣∣
[e2, e1] = 1 [e3, e2] = el11
[e3, e1] = 1 [e4, e2] = el21
[e4, e1] = 1 [e4, e3] = el31

〉
.

Moreover, let G be the Lie group that Γ is modelled on. By Dekimpe 1995, Theorem 4.1,
there exists a faithful affine representation λ : G⋊Aut(G) → Aff(R4) such that its restriction
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to Γ is again a faithful affine representation. In particular,

λ(e1) =


1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , λ(e2) =


1 0 − l1

2 − l2
2 0

0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

λ(e3) =


1 l1

2 0 − l3
2 0

0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 , λ(e4) =


1 l2

2
l3
2 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,

where the values of l1, l2 and l3 are determined by the relations [e3, e2] = el11 , [e4, e2] = el21
and [e4, e3] = el31 .

Lemma 3.3 tells us that the subgroup ⟨e1⟩ = N
√
γ2(N) is characteristic and the quotient

Γ′ := Γ/⟨e1⟩ is a 3-dimensional crystallographic group. Using corollary 2.2, we know that
if Γ′ has the R∞-property, then so does Γ. In Dekimpe 1996; Dekimpe and Eick 2002 the
almost-crystallographic groups were classified into families based on which crystallographic
group Γ′ is. Since only twelve 3-dimensional crystallographic groups do not have the R∞-
property, we need only consider the corresponding twelve families of 4-dimensional almost-
crystallographic groups.

Each of these families can be split in smaller subfamilies, determined by the action of
F on N

√
γ2(N): every A ∈ F acts on e1 by Ae1 = eϵA1 with ϵA ∈ {−1, 1}. The following

proposition quickly deals with the subfamilies where F does not act trivially on N
√

γ2(N).

Proposition 4.1. Let Γ be an almost-crystallographic group with translation subgroup N of
rank 4 and nilpotency class 2, and holonomy group F . If F acts non-trivially on N

√
γ2(N),

then Γ has the R∞-property.

Proof. Let A ∈ F arbitrary and φ = ξ(d,D) ∈ Aut(Γ). Since A acts on ⟨e1⟩ = N
√
γ2(N) by

Ae1 = eϵA1 with ϵA ∈ {−1, 1} and φ(e1) = eν1 with ν ∈ {−1, 1}, A∗ and D∗ must have the
following forms:

A∗ =


ϵA ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 , D∗ =


ν ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .

Thus, 14 −A∗D∗ is of the form

14 −A∗D∗ =


1− νϵA ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .

Now let us look at specific A ∈ F . First, let A be the neutral element of F , which necessarily
acts trivially on e1. The above matrix then has upper left entry 1−ν, hence det(14−D∗) ̸= 0
if and only if ν = −1.

Second, let A be an element of F for which ϵA = −1. Such element exists since we
assumed F acts non-trivially on N

√
γ2(N). Then the matrix 14−A∗D∗ has upper left entry

1 + ν, and det(14 −A∗D∗) ̸= 0 if and only if ν = 1.
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Family δ

1,2

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)

3,4

(
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

)

5

(
1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

)

143

(
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

)

146

 1 − k1
2 +k2+2k3 −k2+k3 0 0

0 1 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 0 0 0 1


Table 1: Conjugacy matrices between representations

As ν cannot be −1 and 1 at the same time, we always have some A ∈ F for which
det(14 − A∗D∗) = 0, and by theorem 3.4 this means that R(φ) = ∞. Since this holds for
any automorphism, Γ has the R∞-property.

From the proof of the theorem above, we can also conclude the following:

Proposition 4.2. Let Γ be an almost-crystallographic group with translation subgroup N
of rank 4 and nilpotency class 2, and let e1 be a generator of N

√
γ2(N). If φ ∈ Aut(Γ) has

finite Reidemeister number, then φ(e1) = e−1
1 .

We will number the twelve families under consideration according to the crystallographic
group Γ/ N

√
γ2(N), using the classification in the International Tables in Crystallography

Aroyo 2016: they are families 1-5, 16, 19, 22-24, 143 and 146. When we write Γn/m, we
mean the n-dimensional crystallographic group with IT-number m.

Using the techniques in Dekimpe 1996, Section 5.4, we find that for an almost-crystallo-
graphic group belonging to one of the families 16, 19 or 22-24, F acting trivially on N

√
γ2(N)

implies that the group is actually crystallographic. Therefore we may omit these families
and we are left with only 7 families to study.

Note that the presentations given in this paper may vary from those in Dekimpe 1996;
Dekimpe and Eick 2002. Let Γ and λ denote a group and its faithful representation as given
in this paper, and let Γ′ and µ be the corresponding group and representation as given by
Dekimpe 1996 or Dekimpe and Eick 2002. Table 1 contains a matrix δ such that

λ(Γ) = δµ(Γ′)δ−1,

hence λ(Γ) and µ(Γ′) are conjugate subgroups of Aff(R4) and therefore Γ and Γ′ are iso-
morphic.

Family 1. This family consists of the finitely generated, torsion-free, nilpotent groups of
nilpotency class 2 and rank 4. It was shown in Dekimpe et al. 2019b, Section 3.2 that these
groups do not have the R∞-property.
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Family 2. Every group in this family has a presentation of the form

〈
e1, e2, e3, e4, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α

[e3, e1] = 1 αe2 = ek4
1 e−1

2 α

[e4, e1] = 1 αe3 = ek5
1 e−1

3 α

[e3, e2] = ek1
1 αe4 = ek6

1 e−1
4 α

[e4, e2] = ek2
1 α2 = ek7

1

[e4, e3] = ek3
1

〉
,

and the faithful representation λ is given by

λ(α) =


1 k4 k5 k6

k7

2
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Set k := gcd(k1, k2, k3) and g := e
k3/k
2 e

−k2/k
3 e

k1/k
4 , then the centre Z(N) of the translation

subgroup is generated by e1 and g. Let φ : Γ → Γ be any automorphism. Since ⟨e1⟩ and
Z(N) are both characteristic in Γ, we have that φ(g) = gϵem1 for some ϵ ∈ {−1, 1} and
m ∈ Z. Consider the induced automorphism φ′ = ξ(d′,D′) on Γ/⟨e1⟩ ∼= Γ3/2. Then

φ′(g⟨e1⟩) = D′(g⟨e1⟩) = φ(g)⟨e1⟩ = gϵ⟨e1⟩.

Depending on the value of ϵ, D′
∗ has either eigenvalue 1, in which case det(13 − D′

∗) = 0,
or eigenvalue −1, in which case det(13 + D′

∗) = 0. Since the holonomy group of Γ3/2 is
{13,−13}, we obtain by theorem 3.4 that R(φ′) = ∞ and by lemma 2.1 that therefore
R(φ) = ∞. Since this holds for an arbitrary automorphism, Γ has the R∞-property.

Families 3, 4 and 5. Every group in one of these families has a presentation of the form

〈
e1, e2, e3, e4, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α
[e3, e1] = 1 αe2 = e2α

[e4, e1] = 1 αe3 = ek2
1 e−ν

2 e−1
3 α

[e3, e2] = 1 αe4 = ek3
1 e−1

4 α

[e4, e2] = 1 α2 = ek4
1 eµ2

[e4, e3] = ek1
1

〉
,

and the faithful representation λ is given by

λ(α) =


1 0 k2 k3

k4

2
0 1 −ν 0 µ

2
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Family 3 is given by µ, ν = 0, family 4 by µ = 1, ν = 0 and family 5 by µ = 0, ν = 1. Define
an automorphism φ = ξ(d,D) by

φ(e1) = e−1
1 ,

φ(e2) = e−1
2 ,

φ(e3) = ek1−k2−k3
1 eν2e3e

2
4,

φ(e4) = e3k1−k2−2k3
1 eν2e

2
3e

3
4,

φ(α) = e−k4
1 e−µ

2 α,
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then D∗ is of the form

D∗ =


−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 1 2
0 0 2 3

 .

We can apply theorem 3.4 to show that R(φ) < ∞ and hence Γ does not have the R∞-
property.

Families 143 and 146. Every group in one of these families has a presentation of the
form

〈
e1, e2, e3, e4, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α
[e3, e1] = 1 αe2 = e2α

[e4, e1] = 1 αe3 = ek2
1 e4α

[e3, e2] = 1 αe4 = ek3
1 eµ2e

−1
3 e−1

4 α

[e4, e2] = 1 α3 = ek4
1

[e4, e3] = ek1
1

〉
,

and the faithful representation λ is given by

λ(α) =


1 0 k2 −k1

2 + k3
k4

3
0 1 0 µ 0
0 0 0 −1 0
0 0 1 −1 0
0 0 0 0 1

 .

Family 143 is given by µ = 0 and family 146 by µ = 1. Using an argument identical to the
proof of Dekimpe and Penninckx 2011, Theorem 4.4, family 13, we may conclude that all
groups in these families have the R∞-property.

4.2 Nilpotency class 3

By an argument analogous to Gonçalves and Wong 2009, Example 5.2, a finitely-generated,
torsion-free, nilpotent group of nilpotency class 3 and rank 4 has the R∞-property. Apply-
ing corollary 2.2 then proves that every 4-dimensional almost-crystallographic group with
translation subgroup of nilpotency class 3 has the R∞-property.

5 The Reidemeister spectra of the 3-dimensional al-
most-crystallographic groups

Let Γ be an almost-crystallographic group whose translation subgroup N is a nilpotent
group of rank 3 and nilpotency class 2. Such N can be given the following presentation:〈

e1, e2, e3

∣∣∣ [e2, e1] = 1 [e3, e2] = el11
[e3, e1] = 1

〉
,

with l1 > 0. Moreover, let G be the Lie group that Γ is modelled on. By Dekimpe 1995,
Theorem 4.1, there exists a faithful affine representation λ : G ⋊ Aut(G) → Aff(R3) such
that its restriction to Γ is again a faithful affine representation. In particular,

λ(e1) =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 , λ(e2) =


1 0 − l1

2 0
0 1 0 1
0 0 1 0
0 0 0 1

 , λ(e3) =


1 l1

2 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,
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where the value of l1 is determined by the relation [e3, e2] = el11 . Like in section 4.1, we

have that the subgroup ⟨e1⟩ = N
√
γ2(N) is characteristic in Γ, and an automorphism φ must

satisfy φ(e1) = e−1
1 to have finite Reidemeister number.

As mentioned before, in Dekimpe and Penninckx 2011, Theorem 4.4 it was shown that
there are only 2 families of almost-crystallographic groups that do not admit the R∞-
property. We again number these families according to the IT-number of the quotient
Γ/ N
√
γ2(N).

Family 1. The groups in this family are exactly the finitely generated, torsion-free, nil-
potent groups of nilpotency class 2 and rank 3. In Roman’kov 2011, Section 3 it was shown
that these groups have Reidemeister spectrum 2N ∪ {∞}. This was shown specifically for
the case k1 = 1, but the argument holds for any k1 > 0.

Family 2. Every group in this family has a presentation of the form

〈
e1, e2, e3, α

∣∣∣∣∣
[e2, e1] = 1 αe1 = e1α

[e3, e1] = 1 αe2 = ek2
1 e−1

2 α

[e3, e2] = ek1
1 αe3 = ek3

1 e−1
3 α

α2 = ek4
1

〉
,

and the faithful representation λ is given by

λ(α) =


1 k2 k3

k4

2
0 −1 0 0
0 0 −1 0
0 0 0 1

 .

Let φ be an automorphism with finite Reidemeister number R(φ). Under the representation
λ, this automorphism will correspond to a matrix δ ∈ Aff(R4) such that

λ(φ(γ)) = δλ(γ)δ−1.

for all γ ∈ Γ. Since we assumed that R(φ) < ∞, we have that φ(e1) = e−1
1 . Moreover, φ

induces an automorphism φ′ on Γ′ := Γ/⟨e1⟩. Thus, δ must be of the form

δ =


−1 n1 n2 0
0 m1 m3 d1/2
0 m2 m4 d2/2
0 0 0 1

 ,

where the constants mi, dj are integers, m1m4 − m2m3 = −1 and n1, n2 ∈ R. Using a
computer, one can calculate the (unique) values of n1, n2 and l1, l2, l3 such that

δλ(e2)δ
−1 = λ(e1)

l1λ(e2)
m1λ(e3)

m2 ,

δλ(e3)δ
−1 = λ(e1)

l2λ(e2)
m3λ(e3)

m4 ,

δλ(α)δ−1 = λ(e1)
l3λ(e2)

d1λ(e3)
d2λ(α).

From the obtained values of l1, l2 and l3, we get

φ(e1) = e−1
1 ,

φ(e2) = e
k1
2 (m1m2+m1d2−m2d1)− k2

2 (m1+1)− k3
2 m2

1 em1
2 em2

3 ,

φ(e3) = e
k1
2 (m3m4+m3d2−m4d1)− k2

2 m3− k3
2 (m4+1)

1 em3
2 em4

3 ,

φ(α) = e
k1
2 d1d2− k2

2 d1− k3
2 d2−k4

1 ed1
2 ed2

3 α,
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where all exponents must be integers. This places four conditions on the mi and dj :

(a) k1(m1m2 +m1d2 −m2d1)− k2(m1 + 1)− k3m2 ≡ 0 mod 2,

(b) k1(m3m4 +m3d2 −m4d1)− k2m3 − k3(m4 + 1) ≡ 0 mod 2,

(c) k1d1d2 − k2d1 − k3d2 ≡ 0 mod 2,

(d) m1m4 −m2m3 = −1.

For ease of notation, let us set

M :=

(
m1 m3

m2 m4

)
∈ GL2(Z), d :=

(
d1
d2

)
∈ Z2.

We will determine R(φ) in a very similar way to the proof of Dekimpe et al. 2019a, Propos-
ition 5.11. Let [x]φ be a Reidemeister class of Γ, then for any k ∈ Z,

x = (e−k
1 )xe2k1 φ(e−k

1 )−1,

therefore x ∼φ xe2k1 for all k ∈ Z. Consider the quotient group Γ′ = Γ/⟨e1⟩ and let
φ′ = ξ(d/2,M) be the induced automorphism on this quotient. Since we assumed that
R(φ) < ∞, we have that R(φ′) < ∞ as well. Dekimpe et al. 2019a, Proposition 5.10 tells
us that R(φ′) = | tr(M)|+O(12 −M,d) with

O(A, a) := #
{
x̄ ∈ Z2

2 | Āx̄ = ā
}
,

where the bar-notation denotes the element-wise projection to Z2. A Reidemeister class
[x⟨e1⟩]φ′ of Γ′ will lift to at most 2 Reidemeister classes of Γ: [x]φ and [xe1]φ; so the number
of lifts is either 2 (when x ̸∼φ xe1) or 1 (when x ∼φ xe1). The latter happens if and only if

∃z ∈ Γ : xe1 = zxφ(z)−1. (1)

Projecting this to the quotient Γ′, we have

∃z ∈ Γ : x⟨e1⟩ = zxφ(z)−1⟨e1⟩. (2)

Since e1 is central in Γ and x appears exactly once on each side of the equality sign in (1),
the e1-component of x does not matter. Set x = ex2

2 ex3
3 αϵx and z = ez11 ez22 ez33 αϵz . Let us

first assume that ϵz = 0, then (2) is equivalent to

∃z2, z3 ∈ Z : (12 −AM)

(
z2
z3

)
= 0,

with A the holonomy part of x⟨e1⟩. As R(φ′) < ∞, we must have z2 = z3 = 0. But then
z = ez11 , and (1) then becomes xe1 = xe2z11 . As z1 is an integer, this is impossible. So,
let us assume that ϵz = 1. Writing out (1) component-wise, we find that this condition is
equivalent to the following:

There exist z1, z2, z3 ∈ Z such that:

(i) 2

(
x2

x3

)
= (12 − (−1)ϵxM)

(
z2
z3

)
− (−1)ϵxd,

(ii) k1z2z3 − k2z2 − k3z3 − k4 + 1 = 2z1.
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Condition (i) is independent of the e1-components, and hence can be interpreted in terms of
the quotient group Γ′. In the proof of Dekimpe et al. 2019a, Proposition 5.11 it was shown
that, for a fixed value of ϵx, the number of Reidemeister classes [x⟨e1⟩]φ′ for which a pair
(z2, z3) satisfying (i) exists is exactly O(12−M,d), i.e. the number of solutions (z̄2, z̄3) ∈ Z2

2

of the linear system of equations

(i’)
(
12 −M

)(z̄2
z̄3

)
= d̄.

Note that the above equation is exactly condition (i) taken modulo 2.
Since ϵx can take two values (1 and −1), there are in total 2O(12 −M,d) Reidemeister

classes [x⟨e1⟩]φ′ satisfying condition (i). On the other hand, there are | tr(M)|−O(12−M,d)
Reidemeister classes of Γ′ for which condition (i) does not hold (see Dekimpe et al. 2019a,
Section 5).

Recall that the variable z1 appears only in condition (ii). If we have a Reidemeister class
[x⟨e1⟩]φ′ and a pair (z2, z3) for which (i) holds, then we can find a z1 ∈ Z to make condition
(ii) hold if and only if

(ii’) k̄1z̄2z̄3 − k̄2z̄2 − k̄3z̄3 − k̄4 + 1̄ = 0̄,

which is exactly condition (ii) taken modulo 2.
We partition the solutions of (i’) into those that do not satisfy condition (ii’) and those

that do. Let S be the number of the former and T the number of the latter, then S + T =
O(12−M,d). Of the 2O(12−M,d) Reidemeister classes [x⟨e1⟩]φ′ satisfying condition (i), 2S
lift to two distinct Reidemeister classes [x]φ and [xe1]φ, and 2T lift to a single Reidemeister
class [x]φ. All together, we have

R(φ) = 2(| tr(M)| − S − T ) + 2(2S) + 2T

= 2(| tr(M)|+ S).

In particular, we get that R(φ) ∈ 2N. Taking the parity of tr(M) into account, we can
further determine the possible Reidemeister numbers:

R(φ) ∈

{
4N+ 2S if tr(M) ≡ 0 (mod 2),

4N+ 2S − 2 if tr(M) ≡ 1 (mod 2),

where

S ≤ O(12 −M,d) ≤

{
4 if tr(M) ≡ 0 (mod 2),

1 if tr(M) ≡ 1 (mod 2).

There is one special case, however. If M ≡ 12 mod 2 all entries of 12−M will be multiples
of 2; so |det(12 −M)| = | tr(M)| ∈ 4N and therefore R(φ) ∈ 8N+ 2S.

For a fixed group Γ in this family (i.e. a fixed 4-tuple of parameters (k1, k2, k3, k4)),
an automorphism φ ∈ Aut(Γ) is uniquely determined by the matrix M ∈ GL2(Z) and the
vector d ∈ Z2. Our goal is to find out, for each group in the family (or equivalently, for
each tuple (k1, k2, k3, k4)), which M and d satisfy conditions (a) - (d) and thus produce an
automorphism.

Conditions (a) - (c) are actually conditions over Z2, and none of the parameters ki appear
in condition (d). Therefore, only the parity of the ki will play a role, so we need to check
16 cases, each corresponding to an element of Z4

2. Furthermore, a group with parameters
(k1, k2, k3, k4) is isomorphic to the group with parameters (−k1, k3, k2, k4), which allows
us to omit the cases (0, 1, 0, 0), (0, 1, 0, 1), (1, 1, 0, 0) and (1, 1, 0, 1), leaving only 12 cases.
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Rather than trying to find all couples (M,d) (of which there are likely to be infinitely many),
we can start by finding all couples (M̄, d̄) ∈ GL2(Z2)× Z2

2 satisfying conditions (a)-(c).
The function MakeList defined in algorithm 1 does exactly this. Moreover, it assigns

to every couple a set R, which is the set of possible Reidemeister numbers the corresponding
automorphisms can have. The results can be found in tables 2 to 13. The Reidemeister
spectrum of a group is a subset of (or the entirety of) the union of all these sets R.

Next, for each quadruplet of parameters, we tried to find a family of automorphisms
whose Reidemeister numbers produce the union of these sets R. We succeeded in this for
every choice of parameters, hence the Reidemeister spectrum always equals the union of
the R. These automorphisms and their Reidemeister spectra, for all (k1, k2, k3, k4), can be
found in table 14. For the sake of brevity, we omitted ∞ from the spectra in this table.

We may thus conclude that, depending on the parity of the parameters k1, k2, k3 and k4,
the Reidemeister spectrum is 2N∪{∞}, 4N∪{∞}, (4N−2)∪{∞} or (2N+2)∪{∞}. Note
that all almost-Bieberbach groups have parameters with parities (0, 0, 0, 1) and therefore
have spectrum 2N ∪ {∞}.

Algorithm 1 MakeList function

1: function MakeList(k1, k2, k3, k4)
2: AutList := ∅
3: for M̄ ∈ GL2(Z2), d̄ ∈ Z2

2 do
4: if conditions (1), (2), (3) are met then
5: S := 0
6: for z̄ ∈ Z2

2 do
7: if z̄ satisfies (i’) but not (ii’) then
8: S := S + 1
9: end if

10: end for
11: if tr(M) ≡ 0 mod 2 then
12: if M ≡ 12 mod 2 then
13: R := 8N+ 2S
14: else
15: R := 4N+ 2S
16: end if
17: else
18: R := 4N+ 2S − 2
19: end if
20: AutList := AutList ∪

{
(M̄, d̄, R)

}
21: end if
22: end for
23: return AutList
24: end function

6 Spectra of 4D almost-Bieberbach groups

We already determined in section 4 which families of four-dimensional almost-crystallo-
graphic groups do not have the R∞-property. In Dekimpe 1996 it is determined which
groups among these families are almost-Bieberbach groups. We use the presentations from
section 4.
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Family 1. Every group in this family is a finitely generated, torsion-free, nilpotent group
of rank 4 and nilpotency class 2. In Dekimpe et al. 2019b, Section 3.2 it was shown that
the Reidemeister spectrum of such group is always 4N ∪ {∞}.

Family 3. The almost-Bieberbach groups in this family are those with (k1, k2, k3, k4) =
(2k, 0, 0, 1) for some k ∈ N. An automorphism φ = ξ(d,D) with R(φ) < ∞ must be of the
form

φ(e1) = e−1
1 ,

φ(e2) = el1e
−1
2 ,

φ(e3) = e
k(m1m2+m1d2−m2d1)
1 em1

3 em2
4 ,

φ(e4) = e
k(m3m4+m3d2−m4d1)
1 em3

3 em4
4 ,

φ(α) = ekd1d2−1
1 ed1

3 ed2
4 α,

with m1, m2, m3, m4, d1, d2, l ∈ Z and m1m4 −m2m3 = −1. Then D∗ is of the form

D∗ =


−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 m1 m3

0 0 m2 m4

 .

Using theorem 3.5, we find that R(φ) = 4|m1 + m4| ∈ 4N. Now, take the automorphism
φm given by

φm(e1) = e−1
1 , φm(e4) = ekm1 e3e

m
4 ,

φm(e2) = e−1
2 , φm(α) = e−1

1 α,

φm(e3) = e4,

with m ∈ N. Then R(φm) = 4m and hence SpecR(Γ) = 4N ∪ {∞}.

Family 4. The almost-Bieberbach groups in this family are those where either (k1, k2, k3,
k4) = (k, 0, 0, 0) with k ∈ N or (k1, k2, k3, k4) = (2k, 1, 0, 0) with k ∈ N. In the former case,
such almost-Bieberbach group can be seen as an internal semidirect product Hk ⋊Z, where
Hk = ⟨e1, e3, e4⟩ and Z = ⟨α⟩. Similarly, in the latter case, a group is an internal semidirect
product H2k ⋊ Z.

Both of these semidirect products were studied in Dekimpe et al. 2019b, Proposition
5.23, their Reidemeister spectra are respectively 4N ∪ {∞} and 8N ∪ {∞}.

Family 5. The almost-Bieberbach groups in this family are those where (k1, k2, k3, k4) =
(k, 0, 0, 1) with k ∈ N. An automorphism φ = ξ(d,D) with R(φ) < ∞ must be of the form

φ(e1) = e−1
1 ,

φ(e2) = e−1
2 e

k(2m1m2+2m1d2−2m2d1−m2−d2)−2l
1 ,

φ(e3) = em1
2 e−1+2m1

3 em2
4 el1,

φ(e4) = em3
2 e2m3

3 e1+2m4
4 e

k(2m3m4+m3d2+m3−2m4d1−d1)
1 ,

φ(α) = ed1
2 e2d1

3 ed2
4 ekd1d2−1

1 α,
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with m1, m2, m3, m4, d1, d2, l ∈ Z and m1 −m4 +2m1m4 −m2m3 = 0. Then D∗ is of the
form

D∗ =


−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 −1 + 2m1 2m3

0 0 m2 1 + 2m4

 .

Using theorem 3.5, we find that R(φ) = 8|m1+m4| ∈ 8N∪{∞}. Now, take the automorph-
ism φm given by

φm(e1) = e−1
1 , φm(e4) = ekm1 em2 e2m3 e4,

φm(e2) = e
k(2m−1)
1 e−1

2 , φm(α) = e−1
1 α,

φm(e3) = em2 e2m−1
3 e4,

with m ∈ N. Then R(φm) = 8m and hence SpecR(Γ) = 8N ∪ {∞}.

7 Conclusion

We have determined which (non-crystallographic) almost-crystallographic groups of di-
mension 4 admit the R∞ property, and calculated the Reidemeister spectra of the non-
crystallographic 3-dimensional almost-crystallographic groups, as well as the spectra of the
non-crystallographic 4-dimensional almost-Bieberbach groups. Together with the results
of Dekimpe et al. 2019a, this completes the calculation of the Reidemeister spectra of the
3-dimensional almost-crystallographic groups and of the 4-dimensional almost-Bieberbach
groups.
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M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N

( 0 1
1 0 ) ( 01 ) 4N

( 0 1
1 0 ) ( 10 ) 4N

( 0 1
1 0 ) ( 11 ) 4N

( 0 1
1 1 ) ( 00 ) 4N− 2

( 0 1
1 1 ) ( 01 ) 4N− 2

( 0 1
1 1 ) ( 10 ) 4N− 2

( 0 1
1 1 ) ( 11 ) 4N− 2

( 1 0
0 1 ) ( 00 ) 8N

( 1 0
0 1 ) ( 01 ) 8N

( 1 0
0 1 ) ( 10 ) 8N

( 1 0
0 1 ) ( 11 ) 8N

( 1 0
1 1 ) ( 00 ) 4N

( 1 0
1 1 ) ( 01 ) 4N

( 1 0
1 1 ) ( 10 ) 4N

( 1 0
1 1 ) ( 11 ) 4N

( 1 1
0 1 ) ( 00 ) 4N

( 1 1
0 1 ) ( 01 ) 4N

( 1 1
0 1 ) ( 10 ) 4N

( 1 1
0 1 ) ( 11 ) 4N

( 1 1
1 0 ) ( 00 ) 4N− 2

( 1 1
1 0 ) ( 01 ) 4N− 2

( 1 1
1 0 ) ( 10 ) 4N− 2

( 1 1
1 0 ) ( 11 ) 4N− 2

Table 3: MakeList(0, 0, 0, 1)

M̄ d̄ R

( 1 0
0 1 ) ( 00 ) 8N+ 4

( 1 0
0 1 ) ( 10 ) 8N

( 1 1
0 1 ) ( 00 ) 4N+ 4

( 1 1
0 1 ) ( 10 ) 4N

Table 4: MakeList(0, 0, 1, 0)

M̄ d̄ R

( 1 0
0 1 ) ( 00 ) 8N+ 4

( 1 0
0 1 ) ( 10 ) 8N

( 1 1
0 1 ) ( 00 ) 4N

( 1 1
0 1 ) ( 10 ) 4N+ 4

Table 5: MakeList(0, 0, 1, 1)

M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N+ 4

( 0 1
1 0 ) ( 11 ) 4N

( 1 0
0 1 ) ( 00 ) 8N+ 4

( 1 0
0 1 ) ( 11 ) 8N

Table 6: MakeList(0, 1, 1, 0)
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M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N

( 0 1
1 0 ) ( 11 ) 4N+ 4

( 1 0
0 1 ) ( 00 ) 8N+ 4

( 1 0
0 1 ) ( 11 ) 8N

Table 7: MakeList(0, 1, 1, 1)

M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N+ 2

( 0 1
1 1 ) ( 01 ) 4N− 2

( 1 0
0 1 ) ( 00 ) 8N+ 6

( 1 0
1 1 ) ( 01 ) 4N+ 2

( 1 1
0 1 ) ( 10 ) 4N+ 2

( 1 1
1 0 ) ( 10 ) 4N− 2

Table 8: MakeList(1, 0, 0, 0)

M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N+ 2

( 0 1
1 1 ) ( 01 ) 4N

( 1 0
0 1 ) ( 00 ) 8N+ 2

( 1 0
1 1 ) ( 01 ) 4N+ 2

( 1 1
0 1 ) ( 10 ) 4N+ 2

( 1 1
1 0 ) ( 10 ) 4N

Table 9: MakeList(1, 0, 0, 1)

M̄ d̄ R

( 0 1
1 0 ) ( 11 ) 4N+ 2

( 0 1
1 1 ) ( 10 ) 4N− 2

( 1 0
0 1 ) ( 00 ) 8N+ 6

( 1 0
1 1 ) ( 00 ) 4N+ 2

( 1 1
0 1 ) ( 10 ) 4N+ 2

( 1 1
1 0 ) ( 11 ) 4N− 2

Table 10: MakeList(1, 0, 1, 0)

M̄ d̄ R

( 0 1
1 0 ) ( 11 ) 4N+ 2

( 0 1
1 1 ) ( 10 ) 4N

( 1 0
0 1 ) ( 00 ) 8N+ 2

( 1 0
1 1 ) ( 00 ) 4N+ 2

( 1 1
0 1 ) ( 10 ) 4N+ 2

( 1 1
1 0 ) ( 11 ) 4N

Table 11: MakeList(1, 0, 1, 1)
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M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N+ 2

( 0 1
1 1 ) ( 00 ) 4N

( 1 0
0 1 ) ( 00 ) 8N+ 2

( 1 0
1 1 ) ( 00 ) 4N+ 2

( 1 1
0 1 ) ( 00 ) 4N+ 2

( 1 1
1 0 ) ( 00 ) 4N

Table 12: MakeList(1, 1, 1, 0)

M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N+ 2

( 0 1
1 1 ) ( 00 ) 4N− 2

( 1 0
0 1 ) ( 00 ) 8N+ 6

( 1 0
1 1 ) ( 00 ) 4N+ 2

( 1 1
0 1 ) ( 00 ) 4N+ 2

( 1 1
1 0 ) ( 00 ) 4N− 2

Table 13: MakeList(1, 1, 1, 1)

(k1, k2, k3, k4) M d R(φ) SpecR(Γ)

(0, 0, 0, 0) ( 0 1
1 2m ) ( 0

1 ) 4m 4N
(0, 0, 0, 1) ( 0 1

1 m ) ( 0
0 ) 2m 2N

(0, 0, 1, 0)
(

1 1
2m 2m−1

)
( 1
0 ) 4m 4N

(0, 0, 1, 1)
(

1 1
2m 2m−1

)
( 0
0 ) 4m 4N

(0, 1, 1, 0) ( 0 1
1 2m ) ( 1

1 ) 4m 4N
(0, 1, 1, 1) ( 0 1

1 2m ) ( 0
0 ) 4m 4N

(1, 0, 0, 0)
(
0 1
1 2m−1

)
( 0
1 ) 4m− 2 4N− 2

(1, 0, 0, 1)
(

1 1
m m−1

)
( 1
0 ) 2m+ 2 2N+ 2

(1, 0, 1, 0)
(
0 1
1 2m−1

)
( 1
0 ) 4m− 2 4N− 2

(1, 0, 1, 1) (m 1
1 0 ) ( 1

1 ) 2m+ 2 2N+ 2
(1, 1, 1, 0) ( 0 1

1 m ) ( 0
0 ) 2m+ 2 2N+ 2

(1, 1, 1, 1)
(
0 1
1 2m−1

)
( 0
0 ) 4m− 2 4N− 2

Table 14: Automorphisms and Reidemeister spectra and for all (k1, k2, k3, k4)
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