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Abstract
The SMALLCLASSNR package provides access to finite groups with small class number. Currently, the
package contains the finite groups of class number at most 14.
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Chapter 1

Preface

The class number k(G) of a group G is the number of conjugacy classes of G. In 1903, Landau proved
in [Lan03] that for every n ∈ N, there are only finitely many finite groups with exactly n conjugacy
classes. The SMALLCLASSNR package provides access to the finite groups with class number at most
14.

These groups were classified in the following papers:

• k(G)≤ 5, by Miller in [Mil11] and independently by Burnside in [Bur11]

• k(G) = 6,7, by Poland in [Pol68]

• k(G) = 8, by Kosvintsev in [Kos74]

• k(G) = 9, by Odincov and Starostin in [OS76]

• k(G) = 10,11, by Vera López and Vera López in [VLVL85] (1)

• k(G) = 12, by Vera López and Vera López in [VLVL86] (2)

• k(G) = 13,14, by Vera López and Sangroniz in [VLS07]

(1) In [VLVL85], three distinct groups of the form (C5 ×C5)⋊C4 order 100 with class number 10
are given. However, only two such groups exist, being the ones with IdClassNr equal to [10,25]

and [10,26].
(2) In [VLVL86], only 48 groups with class number 12 are listed. The three missing groups

are provided in the appendix of [VLS07]. These are the groups with IdClassNr equal to [12,13],
[12,16] and [12,39].
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Chapter 2

The Small Class Number Library

2.1 Functions

2.1.1 SmallClassNrGroup

▷ SmallClassNrGroup(id) (function)

Returns the i-th finite group of class number k in the library. Alternatively, the pair [ k, i]

can be given as a single argument id . If the group is solvable, it is given as a PcGroup whose Pcgs
is a SpecialPcgs. If the group is not solvable, it will be given as a permutation group of minimal
permutation degree and with a minimal generating set.

Example
gap> G := SmallClassNrGroup( 6, 4 );

<pc group of size 18 with 3 generators>

gap> NrConjugacyClasses( G );

6

gap> IsDihedralGroup( G );

true

2.1.2 SmallClassNrGroupsAvailable

▷ SmallClassNrGroupsAvailable(k) (function)

Returns true if the finite groups of class number k are available in the library, and false other-
wise.

Example
gap> SmallClassNrGroupsAvailable( 14 );

true

gap> SmallClassNrGroupsAvailable( 15 );

false

2.1.3 AllSmallClassNrGroups

▷ AllSmallClassNrGroups(arg) (function)
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Returns all finite groups with certain properties as specified by arg . The arguments must come in
pairs consisting of a function and a value (or list of possible values). At least one of the functions must
be NrConjugacyClasses. Missing functions will be interpreted as NrConjugacyClasses, missing
values as true.

Example
gap> L1 := AllSmallClassNrGroups( [3..5], IsNilpotent );

[ <pc group of size 3 with 1 generator>,

<pc group of size 4 with 2 generators>,

<pc group of size 4 with 2 generators>,

<pc group of size 5 with 1 generator>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators> ]

gap> List( L1, NrConjugacyClasses );

[ 3, 4, 4, 5, 5, 5 ]

gap> L2 := AllSmallClassNrGroups( IsSolvable, true, NrConjugacyClasses, 6 );

[ <pc group of size 6 with 2 generators>,

<pc group of size 12 with 3 generators>,

<pc group of size 12 with 3 generators>,

<pc group of size 18 with 3 generators>,

<pc group of size 18 with 3 generators>,

<pc group of size 36 with 4 generators>,

<pc group of size 72 with 5 generators> ]

gap> ForAll( L2, G -> IsSolvable( G ) and NrConjugacyClasses( G ) = 6 );

true

2.1.4 OneSmallClassNrGroup

▷ OneSmallClassNrGroup(arg) (function)

Returns one finite group with certain properties as specified by arg . The arguments must come in
pairs consisting of a function and a value (or list of possible values). At least one of the functions must
be NrConjugacyClasses. Missing functions will be interpreted as NrConjugacyClasses, missing
values as true.

Example
gap> H := OneSmallClassNrGroup( 6, IsAbelian );

<pc group of size 6 with 2 generators>

gap> IsCyclic( H );

true

gap> K := OneSmallClassNrGroup( 10, IsSolvable, true, IsNilpotent, false );

<pc group of size 28 with 3 generators>

gap> NrConjugacyClasses( K ) = 10 and IsSolvable( K ) and not IsNilpotent( K );

true

2.1.5 IteratorSmallClassNrGroups

▷ IteratorSmallClassNrGroups(arg) (function)

Returns an iterator that iterates over the finite groups with properties as specified by arg . The
arguments must come in pairs consisting of a function and a value (or list of possible values). At



SmallClassNr 7

least one of the functions must be NrConjugacyClasses. Missing functions will be interpreted as
NrConjugacyClasses, missing values as true.

Example
gap> iter := IteratorSmallClassNrGroups( IsSolvable, false, 11 );

<iterator>

gap> for G in iter do Print( Size( G ), "\n" ); od;

336

720

720

1344

1344

1512

2448

29120

2.1.6 NrSmallClassNrGroups

▷ NrSmallClassNrGroups(k) (function)

Returns the number of finite groups with class number k .
Example

gap> NrSmallClassNrGroups( 14 );

92

2.1.7 IdClassNr (for IsGroup)

▷ IdClassNr(k) (attribute)

Returns the SMALLCLASSNR ID of G , i.e. a pair [k, i] such that G is isomorphic to
SmallClassNrGroup( k, i ).

Example
gap> IdClassNr( AlternatingGroup( 5 ) );

[ 5, 8 ]

gap> A := SmallClassNrGroup( 5, 8 );

Group([ (1,2,3), (1,4,5) ])

gap> IsAlternatingGroup( A );

true
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