
TwistedConjugacy
Computation with twisted conjugacy

classes

2.4.0

5 December 2024

Sam Tertooy

Sam Tertooy
Email: sam.tertooy@kuleuven.be
Homepage: https://stertooy.github.io/
Address: Wiskunde

KU Leuven Kulak Kortrijk Campus
Etienne Sabbelaan 53
8500 Kortrijk
Belgium

mailto://sam.tertooy@kuleuven.be
https://stertooy.github.io/

TwistedConjugacy 2

Abstract
The TWISTEDCONJUGACY package provides methods to calculate Reidemeister classes, numbers, spectra
and zeta functions, as well as other methods related to homomorphisms, endomorphisms and automorphisms
of groups. These methods are, for the most part, designed to be used with finite groups and polycyclically
presented groups.

Copyright
© 2020-2024 Sam Tertooy

The TWISTEDCONJUGACY package is free software, it may be redistributed and/or modified under the
terms and conditions of the GNU Public License Version 2 or (at your option) any later version.

Acknowledgements

This documentation was created using the GAPDOC and AUTODOC packages.

 https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

Contents

1 Preface 4

2 Twisted Conjugacy 5
2.1 Twisted Conjugation Action . 5
2.2 Reidemeister Classes . 6
2.3 Reidemeister Spectra . 8
2.4 Reidemeister Zeta Functions . 9

3 Multiple Twisted Conjugacy Problem 11
3.1 The Multiple Twisted Conjugacy Problem . 11

4 Homomorphisms 13
4.1 Representatives of homomorphisms between groups 13
4.2 Coincidence and Fixed Point Groups . 14
4.3 Induced and restricted group homomorphisms . 14

5 Cosets 16
5.1 Intersection of cosets in PcpGroups . 16
5.2 Membership in double cosets in PcpGroups . 16

References 18

Index 19

3

Chapter 1

Preface

Let G,H be groups and ϕ,ψ : H → G group homomorphisms. Then the pair (ϕ,ψ) induces a (right)
group action on G given by

G×H → G : (g,h) 7→ g ·h = ψ(h)−1gϕ(h).

This group action is called (ϕ,ψ)-twisted conjugation, and induces an equivalence relation ∼ϕ,ψ on
G:

g1 ∼ϕ,ψ g2 ⇐⇒ ∃h ∈ H : g1 ·h = g2.

The equivalence classes (i.e. the orbits of the action) are called Reidemeister classes and the number
of Reidemeister classes is called the Reidemeister number R(ϕ,ψ) of the pair (ϕ,ψ). The stabiliser
of the identity 1G for this action is the coincidence group Coin(ϕ,ψ), i.e. the subgroup of H given by

Coin(ϕ,ψ) := {h ∈ H | ϕ(h) = ψ(h)}.

The TWISTEDCONJUGACY package provides methods to calculate Reidemeister classes, Rei-
demeister numbers and coincidence groups of pairs of group homomorphisms. These methods are
implemented for finite groups and polycyclically presented groups. If H and G are both infinite poly-
cyclically presented groups, then some methods in this package are only guaranteed to produce a result
if either G = H or G is nilpotent-by-finite. Otherwise, these methods may potentially throw an error:
"Error, no method found!"

Bugs in this package, in GAP or any other package used directly or indirectly, may cause
functions from this package to produce errors or even wrong results. You can set the variable
ASSERT@TwistedConjugacy to true, which will cause certain functions to verify the correctness
of their output. This should make results more (but not completely!) reliable, at the cost of some
performance.

When using this package with PcpGroups, you can do the same for POLYCYCLIC’s variables
CHECK_CENT@Polycyclic, CHECK_IGS@Polycyclic and CHECK_INTSTAB@Polycyclic.

4

Chapter 2

Twisted Conjugacy

2.1 Twisted Conjugation Action

Let G,H be groups and ϕ,ψ : H → G group homomorphisms. Then the pair (ϕ,ψ) induces a (right)
group action on G given by

G×H → G : (g,h) 7→ g ·h := ψ(h)−1gϕ(h).

This group action is called (ϕ,ψ)-twisted conjugation, and induces an equivalence relation on the
group G. We say that g1,g2 ∈ G are (ϕ,ψ)-twisted conjugate, denoted by g1 ∼ϕ,ψ g2, if and only if
there exists some element h ∈ H such that g1 ·h = g2, or equivalently g1 = ψ(h)g2ϕ(h)−1.

If ϕ : G → G is an endomorphism of a group G, then by ϕ-twisted conjugacy we mean
(ϕ, idG)-twisted conjugacy. Most functions in this package will allow you to input a single endo-
morphism instead of a pair of homomorphisms. The "missing" endomorphism will automatically be
assumed to be the identity mapping. Similarly, if a single group element is given instead of two, the
second will be assumed to be the identity.

2.1.1 TwistedConjugation

▷ TwistedConjugation(hom1[, hom2]) (function)

Implements the twisted conjugation (right) group action induced by the pair of homomorphisms (
hom1 , hom2) as a function.

2.1.2 RepresentativeTwistedConjugation

▷ RepresentativeTwistedConjugation(hom1[, hom2], g1[, g2]) (function)

Tests whether the elements g1 and g2 are twisted conjugate under the twisted conjugacy action of
the pair of homomorphisms (hom1 , hom2).

This function relies on the output of RepresentativeTwistedConjugation. Computes an ele-
ment that maps g1 to g2 under the twisted conjugacy action of the pair of homomorphisms (hom1 ,
hom2) or returns fail if no such element exists.

If G is abelian, this function relies on (a generalisation of) [DT21, Alg. 4]. If H is finite, it relies on
a stabiliser-orbit algorithm. Otherwise, it relies on a mixture of the algorithms described in [Rom16,
Thm. 3], [BKL+20, Sec. 5.4], [Rom21, Sec. 7] and [DT21, Alg. 6].

5

TwistedConjugacy 6

Example
gap> G := AlternatingGroup(6);;

gap> H := SymmetricGroup(5);;

gap> phi := GroupHomomorphismByImages(H, G, [(1,2)(3,5,4), (2,3)(4,5)],

> [(1,2)(3,4), ()]);;

gap> psi := GroupHomomorphismByImages(H, G, [(1,2)(3,5,4), (2,3)(4,5)],

> [(1,4)(3,6), ()]);;

gap> tc := TwistedConjugation(phi, psi);;

gap> g1 := (4,6,5);;

gap> g2 := (1,6,4,2)(3,5);;

gap> IsTwistedConjugate(psi, phi, g1, g2);

false

gap> h := RepresentativeTwistedConjugation(phi, psi, g1, g2);

(1,2)

gap> tc(g1, h) = g2;

true

2.2 Reidemeister Classes

The equivalence classes of the equivalence relation ∼ϕ,ψ are called the Reidemeister classes of (ϕ,ψ)
or the (ϕ,ψ)-twisted conjugacy classes. We denote the Reidemeister class of g ∈ G by [g]ϕ,ψ . The
number of Reidemeister classes is called the Reidemeister number R(ϕ,ψ) and is always a positive
integer or infinity.

2.2.1 ReidemeisterClass

▷ ReidemeisterClass(hom1[, hom2], g) (function)

▷ TwistedConjugacyClass(hom1[, hom2], g) (function)

If hom1 and hom2 are group homomorphisms from a group H to a group G, this method creates
the Reidemeister class of the pair (hom1 , hom2) with representative g . The following attributes and
operations are available:

• Representative, which returns g ,

• GroupHomomorphismsOfReidemeisterClass, which returns the list [hom1 , hom2],

• ActingDomain, which returns the group H,

• FunctionAction, which returns the twisted conjugacy action on G,

• Random, which returns a random element belonging to the Reidemeister class,

• \in, which can be used to test if an element belongs to the Reidemeister class,

• List, which lists all elements in the Reidemeister class if there are finitely many, otherwise
returns fail,

• Size, which gives the number of elements in the Reidemeister class,

• StabiliserOfExternalSet, which gives the stabiliser of the Reidemeister class under the
twisted conjugacy action.

TwistedConjugacy 7

2.2.2 ReidemeisterClasses

▷ ReidemeisterClasses(hom1[, hom2]) (function)

▷ TwistedConjugacyClasses(hom1[, hom2]) (function)

Returns a list containing the Reidemeister classes of (hom1 , hom2) if the Reidemeister number
R(hom1 ,hom2) is finite, or returns fail otherwise. It is guaranteed that the Reidemeister class of the
identity is in the first position.

If G is abelian, this function relies on (a generalisation of) [DT21, Alg. 5]. If G and H are finite
and G is not abelian, it relies on an orbit-stabiliser algorithm. Otherwise, it relies on (variants of)
[DT21, Alg. 7].

This function is only guaranteed to produce a result if either G = H or G is nilpotent-by-finite.

2.2.3 RepresentativesReidemeisterClasses

▷ RepresentativesReidemeisterClasses(hom1[, hom2]) (function)

▷ RepresentativesTwistedConjugacyClasses(hom1[, hom2]) (function)

Returns a list containing representatives of the Reidemeister classes of (hom1 , hom2) if the
Reidemeister number R(hom1 ,hom2) is finite, or returns fail otherwise. It is guaranteed that the
identity is in the first position.

The same remarks as for ReidemeisterClasses are valid here.

2.2.4 ReidemeisterNumber

▷ ReidemeisterNumber(hom1[, hom2]) (function)

▷ NrTwistedConjugacyClasses(hom1[, hom2]) (function)

Returns the Reidemeister number of (hom1 , hom2), i.e. the number of Reidemeister classes.
If G is abelian, this function relies on (a generalisation of) [Jia83, Thm. 2.5]. If G = H, G

is finite non-abelian and ψ = idG, it relies on [FH94, Thm. 5]. Otherwise, it uses the output of
ReidemeisterClasses.

This function is only guaranteed to produce a result if either G = H or G is nilpotent-by-finite.
Example

gap> tcc := ReidemeisterClass(phi, psi, g1);

(4,6,5)^G

gap> Representative(tcc);

(4,6,5)

gap> GroupHomomorphismsOfReidemeisterClass(tcc);

[[(1,2)(3,5,4), (2,3)(4,5)] -> [(1,2)(3,4), ()],

[(1,2)(3,5,4), (2,3)(4,5)] -> [(1,4)(3,6), ()]]

gap> ActingDomain(tcc) = H;

true

gap> FunctionAction(tcc)(g1, h);

(1,6,4,2)(3,5)

gap> Random(tcc) in tcc;

true

gap> List(tcc);

[(4,6,5), (1,6,4,2)(3,5)]

TwistedConjugacy 8

gap> Size(tcc);

2

gap> StabiliserOfExternalSet(tcc);

Group([(1,2,3,4,5), (1,3,4,5,2)])

gap> ReidemeisterClasses(phi, psi){[1..7]};

[()^G, (4,5,6)^G, (4,6,5)^G, (3,4)(5,6)^G, (3,4,5)^G, (3,4,6)^G, (3,5,4)^G]

gap> RepresentativesReidemeisterClasses(phi, psi){[1..7]};

[(), (4,5,6), (4,6,5), (3,4)(5,6), (3,4,5), (3,4,6), (3,5,4)]

gap> NrTwistedConjugacyClasses(phi, psi);

184

2.3 Reidemeister Spectra

The set of all Reidemeister numbers of automorphisms is called the Reidemeister spectrum and is
denoted by SpecR(G), i.e.

SpecR(G) := {R(ϕ) | ϕ ∈ Aut(G)}.

The set of all Reidemeister numbers of endomorphisms is called the extended Reidemeister spectrum
and is denoted by ESpecR(G), i.e.

ESpecR(G) := {R(ϕ) | ϕ ∈ End(G)}.

The set of all Reidemeister numbers of pairs of homomorphisms from a group H to a group G is called
the coincidence Reidemeister spectrum of H and G and is denoted by CSpecR(H,G), i.e.

CSpecR(H,G) := {R(ϕ,ψ) | ϕ,ψ ∈ Hom(H,G)}.

If H = G this is also denoted by CSpecR(G). The set of all Reidemeister numbers of pairs of homo-
morphisms from every group H to a group G is called the total Reidemeister spectrum and is denoted
by TSpecR(G), i.e.

TSpecR(G) :=
⋃
H

CSpecR(H,G).

Please note that the functions below are only implemented for finite groups.

2.3.1 ReidemeisterSpectrum

▷ ReidemeisterSpectrum(G) (function)

Returns the Reidemeister spectrum of G .
If G is abelian, this function relies on the results from [Sen23].

2.3.2 ExtendedReidemeisterSpectrum

▷ ExtendedReidemeisterSpectrum(G) (function)

Returns the extended Reidemeister spectrum of G .

TwistedConjugacy 9

2.3.3 CoincidenceReidemeisterSpectrum

▷ CoincidenceReidemeisterSpectrum([H,]G) (function)

Returns the coincidence Reidemeister spectrum of H and G .

2.3.4 TotalReidemeisterSpectrum

▷ TotalReidemeisterSpectrum(G) (function)

Returns the total Reidemeister spectrum of G .
Example

gap> Q := QuaternionGroup(8);;

gap> D := DihedralGroup(8);;

gap> ReidemeisterSpectrum(Q);

[2, 3, 5]

gap> ExtendedReidemeisterSpectrum(Q);

[1, 2, 3, 5]

gap> CoincidenceReidemeisterSpectrum(Q);

[1, 2, 3, 4, 5, 8]

gap> CoincidenceReidemeisterSpectrum(D, Q);

[4, 8]

gap> CoincidenceReidemeisterSpectrum(Q, D);

[2, 3, 4, 6, 8]

gap> TotalReidemeisterSpectrum(Q);

[1, 2, 3, 4, 5, 6, 8]

2.4 Reidemeister Zeta Functions

Let ϕ,ψ : G → G be endomorphisms such that R(ϕn,ψn) < ∞ for all n ∈ N. Then the Reidemeister
zeta function Zϕ,ψ(s) of the pair (ϕ,ψ) is defined as

Zϕ,ψ(s) := exp
∞

∑
n=1

R(ϕn,ψn)

n
sn.

Please note that the functions below are only implemented for endomorphisms of finite groups.

2.4.1 ReidemeisterZetaCoefficients

▷ ReidemeisterZetaCoefficients(endo1[, endo2]) (function)

For a finite group, the sequence of Reidemeister numbers of the iterates of endo1 and endo2 ,
i.e. the sequence R(endo1 ,endo2), R(endo1 2,endo2 2), ..., is eventually periodic, i.e. there exist a
periodic sequence (Pn)n∈N and an eventually zero sequence (Qn)n∈N such that

∀n ∈ N : R(ϕn,ψn) = Pn +Qn.

This function returns a list containing two sublists: the first sublist contains one period of the se-
quence (Pn)n∈N, the second sublist contains (Qn)n∈N up to the part where it becomes the constant zero
sequence.

TwistedConjugacy 10

2.4.2 IsRationalReidemeisterZeta

▷ IsRationalReidemeisterZeta(endo1[, endo2]) (function)

Returns true if the Reidemeister zeta function of endo1 and endo2 is rational, and false other-
wise.

2.4.3 ReidemeisterZeta

▷ ReidemeisterZeta(endo1[, endo2]) (function)

Returns the Reidemeister zeta function of endo1 and endo2 if it is rational, and fail otherwise.

2.4.4 PrintReidemeisterZeta

▷ PrintReidemeisterZeta(endo1[, endo2]) (function)

Returns a string describing the Reidemeister zeta function of endo1 and endo2 . This is often more
readable than evaluating ReidemeisterZeta in an indeterminate, and does not require rationality.

Example
gap> khi := GroupHomomorphismByImages(G, G, [(1,2,3,4,5), (4,5,6)],

> [(1,2,6,3,5), (1,4,5)]);;

gap> ReidemeisterZetaCoefficients(khi);

[[7], []]

gap> IsRationalReidemeisterZeta(khi);

true

gap> ReidemeisterZeta(khi);

function(s) ... end

gap> s := Indeterminate(Rationals, "s");;

gap> ReidemeisterZeta(khi)(s);

(1)/(-s^7+7*s^6-21*s^5+35*s^4-35*s^3+21*s^2-7*s+1)

gap> PrintReidemeisterZeta(khi);

"(1-s)^(-7)"

Chapter 3

Multiple Twisted Conjugacy Problem

3.1 The Multiple Twisted Conjugacy Problem

Let H and G1, . . . ,Gn be groups. For each i ∈ {1, . . . ,n}, let gi,g′i ∈ Gi and let ϕi,ψi : H → Gi be group
homomorphisms. The multiple twisted conjugacy problem is the problem of finding some h ∈ H such
that gi = ψi(h)g′iϕi(h)−1 for all i ∈ {1, . . . ,n}.

3.1.1 IsTwistedConjugateMultiple

▷ IsTwistedConjugateMultiple(hom1List[, hom2List], g1List[, g2List]) (function)

Verifies whether the multiple twisted conjugacy problem for the given homomorphisms and ele-
ments has a solution.

3.1.2 RepresentativeTwistedConjugationMultiple

▷ RepresentativeTwistedConjugationMultiple(hom1List[, hom2List], g1List[,

g2List]) (function)

Computes a solution to the multiple twisted conjugacy problem for the given homomorphisms and
elements, or returns fail if no solution exists.

Example
gap> H := SymmetricGroup(5);;

gap> G := AlternatingGroup(6);;

gap> tau := GroupHomomorphismByImages(H, G, [(1,2)(3,5,4), (2,3)(4,5)],

> [(1,3)(4,6), ()]);;

gap> phi := GroupHomomorphismByImages(H, G, [(1,2)(3,5,4), (2,3)(4,5)],

> [(1,2)(3,6), ()]);;

gap> psi := GroupHomomorphismByImages(H, G, [(1,2)(3,5,4), (2,3)(4,5)],

> [(1,4)(3,6), ()]);;

gap> khi := GroupHomomorphismByImages(H, G, [(1,2)(3,5,4), (2,3)(4,5)],

> [(1,2)(3,4), ()]);;

gap> IsTwistedConjugateMultiple([tau, phi], [psi, khi],

> [(1,5)(4,6), (1,4)(3,5)], [(1,4,5,3,6), (2,4,5,6,3)]);

true

gap> RepresentativeTwistedConjugationMultiple([tau, phi], [psi, khi],

11

TwistedConjugacy 12

> [(1,5)(4,6), (1,4)(3,5)], [(1,4,5,3,6), (2,4,5,6,3)]);

(1,2)

Chapter 4

Homomorphisms

4.1 Representatives of homomorphisms between groups

Please note that the functions below are only implemented for finite groups.

4.1.1 RepresentativesAutomorphismClasses

▷ RepresentativesAutomorphismClasses(G) (function)

Let G be a group. This command returns a list of the automorphisms of G up to composition with
inner automorphisms.

4.1.2 RepresentativesEndomorphismClasses

▷ RepresentativesEndomorphismClasses(G) (function)

Let G be a group. This command returns a list of the endomorphisms of G up to composition with
inner automorphisms. This does the same as calling AllHomomorphismClasses(G,G), but should
be faster for abelian and non-2-generated groups. For 2-generated groups, this function takes its
source code from AllHomomorphismClasses.

4.1.3 RepresentativesHomomorphismClasses

▷ RepresentativesHomomorphismClasses(H, G) (function)

Let G and H be groups. This command returns a list of the homomorphisms from H

to G , up to composition with inner automorphisms of G . This does the same as calling
AllHomomorphismClasses(H,G), but should be faster for abelian and non-2-generated groups. For
2-generated groups, this function takes its source code from AllHomomorphismClasses.

Example
gap> G := SymmetricGroup(6);;

gap> Auts := RepresentativesAutomorphismClasses(G);;

gap> Size(Auts);

2

gap> ForAll(Auts, IsGroupHomomorphism and IsEndoMapping and IsBijective);

true

13

TwistedConjugacy 14

gap> Ends := RepresentativesEndomorphismClasses(G);;

gap> Size(Ends);

6

gap> ForAll(Ends, IsGroupHomomorphism and IsEndoMapping);

true

gap> H := SymmetricGroup(5);;

gap> Homs := RepresentativesHomomorphismClasses(H, G);;

gap> Size(Homs);

6

gap> ForAll(Homs, IsGroupHomomorphism);

true

4.2 Coincidence and Fixed Point Groups

4.2.1 FixedPointGroup

▷ FixedPointGroup(endo) (function)

Let endo be an endomorphism of a group G. This command returns the subgroup of G consisting
of the elements fixed under the endomorphism endo .

This function does the same as CoincidenceGroup(endo ,idG).

4.2.2 CoincidenceGroup

▷ CoincidenceGroup(hom1, hom2[, ...]) (function)

Let hom1 , hom2 , ... be group homomorphisms from a group H to a group G. This command returns
the subgroup of H consisting of the elements h for which h^hom1 = h^hom2 = ...

For infinite non-abelian groups, this function relies on a mixture of the algorithms described in
[Rom16, Thm. 2], [BKL+20, Sec. 5.4] and [Rom21, Sec. 7].

Example
gap> phi := GroupHomomorphismByImages(G, G, [(1,2,5,6,4), (1,2)(3,6)(4,5)],

> [(2,3,4,5,6), (1,2)]);;

gap> Set(FixedPointGroup(phi));

[(), (1,2,3,6,5), (1,3,5,2,6), (1,5,6,3,2), (1,6,2,5,3)]

gap> psi := GroupHomomorphismByImages(H, G, [(1,2,3,4,5), (1,2)],

> [(), (1,2)]);;

gap> khi := GroupHomomorphismByImages(H, G, [(1,2,3,4,5), (1,2)],

> [(), (1,2)(3,4)]);;

gap> CoincidenceGroup(psi, khi) = AlternatingGroup(5);

true

4.3 Induced and restricted group homomorphisms

4.3.1 InducedHomomorphism

▷ InducedHomomorphism(epi1, epi2, hom) (function)

TwistedConjugacy 15

Let hom be a group homomorphism from a group H to a group G, let epi1 be an epimorphism
from H to a group Q and let epi2 be an epimorphism from G to a group P such that the kernel of
epi1 is mapped into the kernel of epi2 by hom . This command returns the homomorphism from Q
to P induced by hom via epi1 and epi2 , that is, the homomorphism from Q to P which maps h^epi1
to (h^hom)^epi2 , for any element h of H. This generalises InducedAutomorphism to homomor-
phisms.

4.3.2 RestrictedHomomorphism

▷ RestrictedHomomorphism(hom, N, M) (function)

Let hom be a group homomorphism from a group H to a group G, and let N be subgroup of H such
that its image under hom is a subgroup of M . This command returns the homomorphism from N to M
induced by hom . This is similar to RestrictedMapping, but the range is explicitly set to M .

Example
gap> G := PcGroupCode(1018013, 28);;

gap> phi := GroupHomomorphismByImages(G, G, [G.1, G.3],

> [G.1*G.2*G.3^2, G.3^4]);;

gap> N := DerivedSubgroup(G);;

gap> p := NaturalHomomorphismByNormalSubgroup(G, N);

[f1, f2, f3] -> [f1, f2, <identity> of ...]

gap> ind := InducedHomomorphism(p, p, phi);

[f1] -> [f1*f2]

gap> Source(ind) = Range(p) and Range(ind) = Range(p);

true

gap> res := RestrictedHomomorphism(phi, N, N);

[f3] -> [f3^4]

gap> Source(res) = N and Range(res) = N;

true

Chapter 5

Cosets

Please note that the functions below are implemented only for PcpGroups. They are (currently) very
inefficient, so use with caution.

5.1 Intersection of cosets in PcpGroups

5.1.1 Intersection

▷ Intersection(C1, C2, ...) (function)

▷ Intersection(list) (function)

▷ Intersection2(C1, C2) (operation)

Calculates the intersection of the (right) cosets C1 , C2 , ... Alternatively, list may be a list of
(right) cosets. This intersection is either a new coset, or an empty list.

Example
gap> G := ExamplesOfSomePcpGroups(5);;

gap> H := Subgroup(G, [G.1*G.2^-1*G.3^-1*G.4^-1, G.2^-1*G.3*G.4^-2]);;

gap> K := Subgroup(G, [G.1*G.3^-2*G.4^2, G.1*G.4^4]);;

gap> x := G.1*G.3^-1;;

gap> y := G.1*G.2^-1*G.3^-2*G.4^-1;;

gap> Hx := RightCoset(H, x);;

gap> Ky := RightCoset(K, y);;

gap> Intersection(Hx, Ky);

RightCoset(<group with 2 generators>,<object>)

5.2 Membership in double cosets in PcpGroups

5.2.1 \in (for IsPcpElement, IsDoubleCoset)

▷ \in(g, D) (operation)

Given an element g of a PcpGroup and a double coset D of that same group, this function tests
whether g is an element of D .

Example
gap> HxK := DoubleCoset(H, x, K);;

gap> G.1 in HxK;

16

TwistedConjugacy 17

false

gap> G.2 in HxK;

true

References

[BKL+20] F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev, I. Rivin,
V. Shpilrain, A. Ushakov, and P. Weil. Complexity and Randomness in Group Theory.
De Gruyter, 2020. 5, 14

[DT21] K. Dekimpe and S. Tertooy. Algorithms for twisted conjugacy classes of polycyclic-by-
finite groups. Topology Appl., 293:107565, 2021. 5, 7

[FH94] A. Fel’shtyn and R. Hill. The Reidemeister zeta function with applications to Nielsen
theory and a connection with Reidemeister torsion. K-Theory, 8(4):367–393, 1994. 7

[Jia83] B. Jiang. Lectures on Nielsen fixed point theory, volume 14 of Contemp. Math. Amer.
Math. Soc., 1983. 7

[Rom16] V. Roman’kov. On solvability of equations with endomorphisms in nilpotent groups. Sib.
Elektron. Mat. Izv., 13:716–725, 2016. 5, 14

[Rom21] V. Roman’kov. Algorithmic theory of solvable groups. Prikl. Diskretn. Mat., 52:16–64,
2021. 5, 14

[Sen23] P. Senden. The Reidemeister spectrum of finite abelian groups. Proc. Edinburgh Math.
Soc., 66(4):940–959, 2023. 8

18

Index

\in

for IsPcpElement, IsDoubleCoset, 16

CoincidenceGroup, 14
CoincidenceReidemeisterSpectrum, 9

ExtendedReidemeisterSpectrum, 8

FixedPointGroup, 14

InducedHomomorphism, 14
Intersection, 16

for IsList, 16
Intersection2

for IsRightCoset, IsRightCoset, 16
IsRationalReidemeisterZeta, 10
IsTwistedConjugateMultiple, 11

NrTwistedConjugacyClasses, 7

PrintReidemeisterZeta, 10

ReidemeisterClass, 6
ReidemeisterClasses, 7
ReidemeisterNumber, 7
ReidemeisterSpectrum, 8
ReidemeisterZeta, 10
ReidemeisterZetaCoefficients, 9
RepresentativesAutomorphismClasses, 13
RepresentativesEndomorphismClasses, 13
RepresentativesHomomorphismClasses, 13
RepresentativesReidemeisterClasses, 7
RepresentativesTwistedConjugacy-

Classes, 7
RepresentativeTwistedConjugation, 5
RepresentativeTwistedConjugation-

Multiple, 11
RestrictedHomomorphism, 15

TotalReidemeisterSpectrum, 9
TwistedConjugacyClass, 6

TwistedConjugacyClasses, 7
TwistedConjugation, 5

19

	Preface
	Twisted Conjugacy
	Twisted Conjugation Action
	Reidemeister Classes
	Reidemeister Spectra
	Reidemeister Zeta Functions

	Multiple Twisted Conjugacy Problem
	The Multiple Twisted Conjugacy Problem

	Homomorphisms
	Representatives of homomorphisms between groups
	Coincidence and Fixed Point Groups
	Induced and restricted group homomorphisms

	Cosets
	Intersection of cosets in PcpGroups
	Membership in double cosets in PcpGroups

	References
	Index

