‣ SmallClassNrGroup ( id ) | ( function ) |
Returns the i-th finite group of class number k in the library. Alternatively, the pair [ k, i]
can be given as a single argument id. If the group is solvable, it is given as a PcGroup whose Pcgs is a SpecialPcgs. If the group is not solvable, it will be given as a permutation group of minimal permutation degree and with a minimal generating set.
gap> G := SmallClassNrGroup( 6, 4 ); <pc group of size 18 with 3 generators> gap> NrConjugacyClasses( G ); 6 gap> IsDihedralGroup( G ); true
‣ SmallClassNrGroupsAvailable ( k ) | ( function ) |
Returns true
if the finite groups of class number k are available in the library, and false
otherwise.
gap> SmallClassNrGroupsAvailable( 14 ); true gap> SmallClassNrGroupsAvailable( 15 ); false
‣ AllSmallClassNrGroups ( arg ) | ( function ) |
Returns all finite groups with certain properties as specified by arg. The arguments must come in pairs consisting of a function and a value (or list of possible values). At least one of the functions must be NrConjugacyClasses
. Missing functions will be interpreted as NrConjugacyClasses
, missing values as true
.
gap> L1 := AllSmallClassNrGroups( [3..5], IsNilpotent ); [ <pc group of size 3 with 1 generator>, <pc group of size 4 with 2 generators>, <pc group of size 4 with 2 generators>, <pc group of size 5 with 1 generator>, <pc group of size 8 with 3 generators>, <pc group of size 8 with 3 generators> ] gap> List( L1, NrConjugacyClasses ); [ 3, 4, 4, 5, 5, 5 ] gap> L2 := AllSmallClassNrGroups( IsSolvable, true, NrConjugacyClasses, 6 ); [ <pc group of size 6 with 2 generators>, <pc group of size 12 with 3 generators>, <pc group of size 12 with 3 generators>, <pc group of size 18 with 3 generators>, <pc group of size 18 with 3 generators>, <pc group of size 36 with 4 generators>, <pc group of size 72 with 5 generators> ] gap> ForAll( L2, G -> IsSolvable( G ) and NrConjugacyClasses( G ) = 6 ); true
‣ OneSmallClassNrGroup ( arg ) | ( function ) |
Returns one finite group with certain properties as specified by arg. The arguments must come in pairs consisting of a function and a value (or list of possible values). At least one of the functions must be NrConjugacyClasses
. Missing functions will be interpreted as NrConjugacyClasses
, missing values as true
.
gap> H := OneSmallClassNrGroup( 6, IsAbelian ); <pc group of size 6 with 2 generators> gap> IsCyclic( H ); true gap> K := OneSmallClassNrGroup( 10, IsSolvable, true, IsNilpotent, false ); <pc group of size 28 with 3 generators> gap> NrConjugacyClasses( K ) = 10 and IsSolvable( K ) and not IsNilpotent( K ); true
‣ NrSmallClassNrGroups ( arg ) | ( function ) |
Returns the number of finite groups with certain properties as specified by arg. The arguments must come in pairs consisting of a function and a value (or list of possible values). At least one of the functions must be NrConjugacyClasses
. Missing functions will be interpreted as NrConjugacyClasses
, missing values as true
.
gap> NrSmallClassNrGroups( 14 ); 93 gap> NrSmallClassNrGroups( [3..5], IsNilpotentGroup ); 6 gap> NrSmallClassNrGroups( IsSolvable, true, NrConjugacyClasses, 6 ); 7
‣ IteratorSmallClassNrGroups ( arg ) | ( function ) |
Returns an iterator that iterates over the finite groups with properties as specified by arg. The arguments must come in pairs consisting of a function and a value (or list of possible values). At least one of the functions must be NrConjugacyClasses
. Missing functions will be interpreted as NrConjugacyClasses
, missing values as true
.
gap> iter := IteratorSmallClassNrGroups( IsSolvable, false, 11 ); <iterator> gap> for G in iter do Print( Size( G ), "\n" ); od; 336 720 720 1344 1344 1512 2448 29120
‣ IdClassNr ( k ) | ( attribute ) |
Returns the SmallClassNr ID of G, i.e. a pair [k, i]
such that G is isomorphic to SmallClassNrGroup( k, i )
.
gap> IdClassNr( AlternatingGroup( 5 ) ); [ 5, 8 ] gap> A := SmallClassNrGroup( 5, 8 ); Group([ (1,2,3), (1,4,5) ]) gap> IsAlternatingGroup( A ); true
generated by GAPDoc2HTML