Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

3 Multiple Twisted Conjugacy Problem
 3.1 The Multiple Twisted Conjugacy Problem

3 Multiple Twisted Conjugacy Problem

3.1 The Multiple Twisted Conjugacy Problem

Let H and G_1, \ldots, G_n be groups. For each i \in \{1,\ldots,n\}, let g_i,g_i' \in G_i and let \varphi_i,\psi_i\colon H \to G_i be group homomorphisms. The multiple twisted conjugacy problem is the problem of finding some h \in H such that g_i = \psi_i(h)g_i'\varphi_i(h)^{-1} for all i \in \{1,\ldots,n\}.

3.1-1 IsTwistedConjugateMultiple
‣ IsTwistedConjugateMultiple( hom1List[, hom2List], g1List[, g2List] )( function )

Verifies whether the multiple twisted conjugacy problem for the given homomorphisms and elements has a solution.

3.1-2 RepresentativeTwistedConjugationMultiple
‣ RepresentativeTwistedConjugationMultiple( hom1List[, hom2List], g1List[, g2List] )( function )

Computes a solution to the multiple twisted conjugacy problem for the given homomorphisms and elements, or returns fail if no solution exists.

gap> H := SymmetricGroup( 5 );;
gap> G := AlternatingGroup( 6 );;
gap> tau := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ],
>  [ (1,3)(4,6), () ] );;
gap> phi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ],
>  [ (1,2)(3,6), () ] );;
gap> psi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ],
>  [ (1,4)(3,6), () ] );;
gap> khi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ],
>  [ (1,2)(3,4), () ] );;
gap> IsTwistedConjugateMultiple( [ tau, phi ], [ psi, khi ],
>  [ (1,5)(4,6), (1,4)(3,5) ], [ (1,4,5,3,6), (2,4,5,6,3) ] );
true
gap> RepresentativeTwistedConjugationMultiple( [ tau, phi ], [ psi, khi ],
>  [ (1,5)(4,6), (1,4)(3,5) ], [ (1,4,5,3,6), (2,4,5,6,3) ] );
(1,2)
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML