Let \(H\) and \(G_1, \ldots, G_n\) be groups. For each \(i \in \{1,\ldots,n\}\), let \(g_i,g_i' \in G_i\) and let \(\varphi_i,\psi_i\colon H \to G_i\) be group homomorphisms. The multiple twisted conjugacy problem is the problem of finding some \(h \in H\) such that \(g_i = \psi_i(h)g_i'\varphi_i(h)^{-1}\) for all \(i \in \{1,\ldots,n\}\).
‣ IsTwistedConjugateMultiple ( hom1List[, hom2List], g1List[, g2List] ) | ( function ) |
Verifies whether the multiple twisted conjugacy problem for the given homomorphisms and elements has a solution.
‣ RepresentativeTwistedConjugationMultiple ( hom1List[, hom2List], g1List[, g2List] ) | ( function ) |
Computes a solution to the multiple twisted conjugacy problem for the given homomorphisms and elements, or returns fail
if no solution exists.
gap> H := SymmetricGroup( 5 );; gap> G := AlternatingGroup( 6 );; gap> tau := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ], > [ (1,3)(4,6), () ] );; gap> phi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ], > [ (1,2)(3,6), () ] );; gap> psi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ], > [ (1,4)(3,6), () ] );; gap> khi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ], > [ (1,2)(3,4), () ] );; gap> IsTwistedConjugateMultiple( [ tau, phi ], [ psi, khi ], > [ (1,5)(4,6), (1,4)(3,5) ], [ (1,4,5,3,6), (2,4,5,6,3) ] ); true gap> RepresentativeTwistedConjugationMultiple( [ tau, phi ], [ psi, khi ], > [ (1,5)(4,6), (1,4)(3,5) ], [ (1,4,5,3,6), (2,4,5,6,3) ] ); (1,2)
generated by GAPDoc2HTML