Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

5 Cosets
 5.1 Intersection of cosets in PcpGroups
 5.2 Membership in double cosets in PcpGroups

  5.2-1 \in

5 Cosets

Please note that the functions below are implemented only for PcpGroups. They are (currently) very inefficient, so use with caution.

5.1 Intersection of cosets in PcpGroups

5.1-1 Intersection
‣ Intersection( C1, C2, ... )( function )
‣ Intersection( list )( function )
‣ Intersection2( C1, C2 )( operation )

Calculates the intersection of the (right) cosets C1, C2, ... Alternatively, list may be a list of (right) cosets. This intersection is either a new coset, or an empty list.

gap> G := ExamplesOfSomePcpGroups( 5 );;
gap> H := Subgroup( G, [ G.1*G.2^-1*G.3^-1*G.4^-1, G.2^-1*G.3*G.4^-2 ] );;
gap> K := Subgroup( G, [ G.1*G.3^-2*G.4^2, G.1*G.4^4 ] );;
gap> x := G.1*G.3^-1;;
gap> y := G.1*G.2^-1*G.3^-2*G.4^-1;;
gap> Hx := RightCoset( H, x );;
gap> Ky := RightCoset( K, y );;
gap> Intersection( Hx, Ky );
RightCoset(<group with 2 generators>,<object>)

5.2 Membership in double cosets in PcpGroups

5.2-1 \in
‣ \in( g, D )( operation )

Given an element g of a PcpGroup and a double coset D of that same group, this function tests whether g is an element of D.

gap> HxK := DoubleCoset( H, x, K );;
gap> G.1 in HxK;
false
gap> G.2 in HxK;
true
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML