Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

4 Twisted conjugacy classes
 4.1 Creating a twisted conjugacy class
 4.2 Operations on twisted conjugacy classes
 4.3 Calculating all twisted conjugacy classes

4 Twisted conjugacy classes

The orbits of the \((\varphi,\psi)\)-twisted conjugacy action are called the \((\varphi,\psi)\)-twisted conjugacy classes or the Reidemeister classes of \((\varphi,\psi)\). We denote the twisted conjugacy class of \(g \in G\) by \([g]_{\varphi,\psi}\).

4.1 Creating a twisted conjugacy class

4.1-1 TwistedConjugacyClass
‣ TwistedConjugacyClass( hom1[, hom2], g )( function )
‣ ReidemeisterClass( hom1[, hom2], g )( function )

Returns: the (hom1,hom2)-twisted conjugacy class of g.

4.2 Operations on twisted conjugacy classes

4.2-1 Representative
‣ Representative( tcc )( attribute )

Returns: the group element that was used to construct tcc.

4.2-2 ActingDomain
‣ ActingDomain( tcc )( attribute )

Returns: the group whose twisted conjugacy action tcc is an orbit of.

4.2-3 FunctionAction
‣ FunctionAction( tcc )( attribute )

Returns: the twisted conjugacy action that tcc is an orbit of.

4.2-4 \in
‣ \in( g, tcc )( operation )

Returns: true if g is an element of tcc, otherwise false.

4.2-5 Size
‣ Size( tcc )( attribute )

Returns: the number of elements in tcc.

This is calculated using the orbit-stabiliser theorem.

4.2-6 StabiliserOfExternalSet
‣ StabiliserOfExternalSet( tcc )( attribute )

Returns: the stabiliser of Representative(tcc) under the action FunctionAction(tcc).

4.2-7 List
‣ List( tcc )( function )

Returns: a list containing the elements of tcc.

If tcc is infinite, this will run forever. It is recommended to first test the finiteness of tcc using Size (4.2-5).

4.2-8 Random
‣ Random( tcc )( operation )

Returns: a random element in tcc.

4.2-9 \=
‣ \=( tcc1, tcc2 )( operation )

Returns: true if tcc1 is equal to tcc2, otherwise false.

4.3 Calculating all twisted conjugacy classes

4.3-1 TwistedConjugacyClasses
‣ TwistedConjugacyClasses( hom1[, hom2][, N] )( function )
‣ ReidemeisterClasses( hom1[, hom2][, N] )( function )

Returns: a list containing the (hom1, hom2)-twisted conjugacy classes if there are finitely many, or fail otherwise.

If the argument N is provided, it must be a normal subgroup of Range(hom1); the function will then only return the Reidemeister classes that intersect N non-trivially. It is guaranteed that the Reidemeister class of the identity is in the first position, and that the representatives of the classes belong to N if this argument is provided.

If \(G\) and \(H\) are finite, this function relies on an orbit-stabiliser algorithm. Otherwise, it relies on the algorithms in [DT21] and [Ter25].

4.3-2 RepresentativesTwistedConjugacyClasses
‣ RepresentativesTwistedConjugacyClasses( hom1[, hom2][, N] )( function )
‣ RepresentativesReidemeisterClasses( hom1[, hom2][, N] )( function )

Returns: a list containing representatives of the (hom1, hom2)-twisted conjugacy classes if there are finitely many, or fail otherwise.

If the argument N is provided, it must be a normal subgroup of Range(hom1); the function will then only return the representatives of the twisted conjugacy classes that intersect N non-trivially. It is guaranteed that the identity is in the first position, and that all elements belong to N if this argument is provided.

gap> tcc := TwistedConjugacyClass( phi, psi, g1 );
(4,6,5)^G
gap> Representative( tcc );
(4,6,5)
gap> ActingDomain( tcc ) = H;
true
gap> FunctionAction( tcc )( g1, h );
(1,6,4,2)(3,5)
gap> List( tcc );
[ (4,6,5), (1,6,4,2)(3,5) ]
gap> Size( tcc );
2
gap> StabiliserOfExternalSet( tcc );
Group([ (1,2,3,4,5), (1,3,4,5,2) ])
gap> TwistedConjugacyClasses( phi, psi ){[1..7]};
[ ()^G, (4,5,6)^G, (4,6,5)^G, (3,4)(5,6)^G, (3,4,5)^G, (3,4,6)^G, (3,5,4)^G ]
gap> RepresentativesTwistedConjugacyClasses( phi, psi ){[1..7]};
[ (), (4,5,6), (4,6,5), (3,4)(5,6), (3,4,5), (3,4,6), (3,5,4) ]
gap> NrTwistedConjugacyClasses( phi, psi );
184
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind

generated by GAPDoc2HTML