Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

5 Reidemeister numbers and spectra
 5.1 Reidemeister numbers
 5.2 Reidemeister spectra

5 Reidemeister numbers and spectra

5.1 Reidemeister numbers

The number of twisted conjugacy classes is called the Reidemeister number and is always a positive integer or infinity.

5.1-1 ReidemeisterNumber
‣ ReidemeisterNumber( hom1[, hom2] )( function )
‣ NrTwistedConjugacyClasses( hom1[, hom2] )( function )

Returns: the Reidemeister number of ( hom1, hom2 ).

If \(G\) is abelian, this function relies on (a generalisation of) [Jia83, Thm. 2.5]. If \(G = H\), \(G\) is finite non-abelian and \(\psi = \operatorname{id}_G\), it relies on [FH94, Thm. 5]. Otherwise, it simply calculates the twisted conjugacy classes and then counts them.

5.2 Reidemeister spectra

The set of all Reidemeister numbers of automorphisms is called the Reidemeister spectrum and is denoted by \(\operatorname{Spec}_R(G)\), i.e.

\[\operatorname{Spec}_R(G) := \{\, R(\varphi) \mid \varphi \in \operatorname{Aut}(G) \,\}.\]

The set of all Reidemeister numbers of endomorphisms is called the extended Reidemeister spectrum and is denoted by \(\operatorname{ESpec}_R(G)\), i.e.

\[\operatorname{ESpec}_R(G) := \{\, R(\varphi) \mid \varphi \in \operatorname{End}(G) \,\}.\]

The set of all Reidemeister numbers of pairs of homomorphisms from a group \(H\) to a group \(G\) is called the coincidence Reidemeister spectrum of \(H\) and \(G\) and is denoted by \(\operatorname{CSpec}_R(H,G)\), i.e.

\[\operatorname{CSpec}_R(H,G) := \{\, R(\varphi, \psi) \mid \varphi,\psi \in \operatorname{Hom}(H,G) \,\}.\]

If H = G this is also denoted by \(\operatorname{CSpec}_R(G)\). The set of all Reidemeister numbers of pairs of homomorphisms from every group \(H\) to a group \(G\) is called the total Reidemeister spectrum and is denoted by \(\operatorname{TSpec}_R(G)\), i.e.

\[\operatorname{TSpec}_R(G) := \bigcup_{H} \operatorname{CSpec}_R(H,G).\]

Please note that the functions below are only implemented for finite groups.

5.2-1 ReidemeisterSpectrum
‣ ReidemeisterSpectrum( G )( function )

Returns: the Reidemeister spectrum of G.

If \(G\) is abelian, this function relies on the results from [Sen23]. Otherwise, it relies on [FH94, Thm. 5].

5.2-2 ExtendedReidemeisterSpectrum
‣ ExtendedReidemeisterSpectrum( G )( function )

Returns: the extended Reidemeister spectrum of G.

If \(G\) is abelian, this is just the set of all divisors of the order of G. Otherwise, this function relies on [FH94, Thm. 5].

5.2-3 CoincidenceReidemeisterSpectrum
‣ CoincidenceReidemeisterSpectrum( [H, ]G )( function )

Returns: the coincidence Reidemeister spectrum of H and G.

5.2-4 TotalReidemeisterSpectrum
‣ TotalReidemeisterSpectrum( G )( function )

Returns: the total Reidemeister spectrum of H and G.

gap> Q := QuaternionGroup( 8 );;
gap> D := DihedralGroup( 8 );;
gap> ReidemeisterSpectrum( Q );
[ 2, 3, 5 ]
gap> ExtendedReidemeisterSpectrum( Q );
[ 1, 2, 3, 5 ]
gap> CoincidenceReidemeisterSpectrum( Q );
[ 1, 2, 3, 4, 5, 8 ]
gap> CoincidenceReidemeisterSpectrum( D, Q );
[ 4, 8 ]
gap> CoincidenceReidemeisterSpectrum( Q, D );
[ 2, 3, 4, 6, 8 ]
gap> TotalReidemeisterSpectrum( Q );
[ 1, 2, 3, 4, 5, 6, 8 ]
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind

generated by GAPDoc2HTML