The number of twisted conjugacy classes is called the Reidemeister number and is always a positive integer or infinity.
‣ ReidemeisterNumber ( hom1[, hom2] ) | ( function ) |
‣ NrTwistedConjugacyClasses ( hom1[, hom2] ) | ( function ) |
Returns: the Reidemeister number of ( hom1, hom2 ).
If \(G\) is abelian, this function relies on (a generalisation of) [Jia83, Thm. 2.5]. If \(G = H\), \(G\) is finite non-abelian and \(\psi = \operatorname{id}_G\), it relies on [FH94, Thm. 5]. Otherwise, it simply calculates the twisted conjugacy classes and then counts them.
The set of all Reidemeister numbers of automorphisms is called the Reidemeister spectrum and is denoted by \(\operatorname{Spec}_R(G)\), i.e.
\[\operatorname{Spec}_R(G) := \{\, R(\varphi) \mid \varphi \in \operatorname{Aut}(G) \,\}.\]
The set of all Reidemeister numbers of endomorphisms is called the extended Reidemeister spectrum and is denoted by \(\operatorname{ESpec}_R(G)\), i.e.
\[\operatorname{ESpec}_R(G) := \{\, R(\varphi) \mid \varphi \in \operatorname{End}(G) \,\}.\]
The set of all Reidemeister numbers of pairs of homomorphisms from a group \(H\) to a group \(G\) is called the coincidence Reidemeister spectrum of \(H\) and \(G\) and is denoted by \(\operatorname{CSpec}_R(H,G)\), i.e.
\[\operatorname{CSpec}_R(H,G) := \{\, R(\varphi, \psi) \mid \varphi,\psi \in \operatorname{Hom}(H,G) \,\}.\]
If H = G this is also denoted by \(\operatorname{CSpec}_R(G)\). The set of all Reidemeister numbers of pairs of homomorphisms from every group \(H\) to a group \(G\) is called the total Reidemeister spectrum and is denoted by \(\operatorname{TSpec}_R(G)\), i.e.
\[\operatorname{TSpec}_R(G) := \bigcup_{H} \operatorname{CSpec}_R(H,G).\]
Please note that the functions below are only implemented for finite groups.
‣ ReidemeisterSpectrum ( G ) | ( function ) |
Returns: the Reidemeister spectrum of G.
If \(G\) is abelian, this function relies on the results from [Sen23]. Otherwise, it relies on [FH94, Thm. 5].
‣ ExtendedReidemeisterSpectrum ( G ) | ( function ) |
Returns: the extended Reidemeister spectrum of G.
If \(G\) is abelian, this is just the set of all divisors of the order of G. Otherwise, this function relies on [FH94, Thm. 5].
‣ CoincidenceReidemeisterSpectrum ( [H, ]G ) | ( function ) |
Returns: the coincidence Reidemeister spectrum of H and G.
‣ TotalReidemeisterSpectrum ( G ) | ( function ) |
Returns: the total Reidemeister spectrum of H and G.
gap> Q := QuaternionGroup( 8 );; gap> D := DihedralGroup( 8 );; gap> ReidemeisterSpectrum( Q ); [ 2, 3, 5 ] gap> ExtendedReidemeisterSpectrum( Q ); [ 1, 2, 3, 5 ] gap> CoincidenceReidemeisterSpectrum( Q ); [ 1, 2, 3, 4, 5, 8 ] gap> CoincidenceReidemeisterSpectrum( D, Q ); [ 4, 8 ] gap> CoincidenceReidemeisterSpectrum( Q, D ); [ 2, 3, 4, 6, 8 ] gap> TotalReidemeisterSpectrum( Q ); [ 1, 2, 3, 4, 5, 6, 8 ]
generated by GAPDoc2HTML