Let \(\varphi,\psi\colon G \to G\) be endomorphisms such that \(R(\varphi^n,\psi^n) < \infty\) for all \(n \in \mathbb{N}\). Then the Reidemeister zeta function \(Z_{\varphi,\psi}(s)\) of the pair \((\varphi,\psi)\) is defined as
\[Z_{\varphi,\psi}(s) := \exp \sum_{n=1}^\infty \frac{R(\varphi^n,\psi^n)}{n} s^n.\]
Please note that the functions below are only implemented for endomorphisms of finite groups.
‣ ReidemeisterZetaCoefficients ( endo1[, endo2] ) | ( function ) |
Returns: two lists of integers.
For a finite group, the sequence of Reidemeister numbers of the iterates of endo1 and endo2, i.e. the sequence \(R(\textit{endo1},\textit{endo2})\), \(R(\textit{endo1}^2,\textit{endo2}^2)\), ..., is eventually periodic. Thus there exist a periodic sequence \((P_n)_{n \in \mathbb{N}}\) and an eventually zero sequence \((Q_n)_{n \in \mathbb{N}}\) such that
\[\forall n \in \mathbb{N}: R(\varphi^n,\psi^n) = P_n + Q_n.\]
This function returns two lists: the first list contains one period of the sequence \((P_n)_{n \in \mathbb{N}}\), the second list contains \((Q_n)_{n \in \mathbb{N}}\) up to the part where it becomes the constant zero sequence.
‣ IsRationalReidemeisterZeta ( endo1[, endo2] ) | ( function ) |
Returns: true
if the Reidemeister zeta function of endo1 and endo2 is rational, otherwise false
.
‣ ReidemeisterZeta ( endo1[, endo2] ) | ( function ) |
Returns: the Reidemeister zeta function of endo1 and endo2 if it is rational, otherwise fail
.
‣ PrintReidemeisterZeta ( endo1[, endo2] ) | ( function ) |
Returns: a string describing the Reidemeister zeta function of endo1 and endo2.
This is often more readable than evaluating ReidemeisterZeta
in an indeterminate, and does not require rationality.
gap> khi := GroupHomomorphismByImages( G, G, [ (1,2,3,4,5), (4,5,6) ], > [ (1,2,6,3,5), (1,4,5) ] );; gap> ReidemeisterZetaCoefficients( khi ); [ [ 7 ], [ ] ] gap> IsRationalReidemeisterZeta( khi ); true gap> ReidemeisterZeta( khi ); function( s ) ... end gap> s := Indeterminate( Rationals, "s" );; gap> ReidemeisterZeta( khi )(s); (1)/(-s^7+7*s^6-21*s^5+35*s^4-35*s^3+21*s^2-7*s+1) gap> PrintReidemeisterZeta( khi ); "(1-s)^(-7)"
generated by GAPDoc2HTML