Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

6 Reidemeister zeta functions
 6.1 Reidemeister zeta functions

6 Reidemeister zeta functions

6.1 Reidemeister zeta functions

Let \(\varphi,\psi\colon G \to G\) be endomorphisms such that \(R(\varphi^n,\psi^n) < \infty\) for all \(n \in \mathbb{N}\). Then the Reidemeister zeta function \(Z_{\varphi,\psi}(s)\) of the pair \((\varphi,\psi)\) is defined as

\[Z_{\varphi,\psi}(s) := \exp \sum_{n=1}^\infty \frac{R(\varphi^n,\psi^n)}{n} s^n.\]

Please note that the functions below are only implemented for endomorphisms of finite groups.

6.1-1 ReidemeisterZetaCoefficients
‣ ReidemeisterZetaCoefficients( endo1[, endo2] )( function )

Returns: two lists of integers.

For a finite group, the sequence of Reidemeister numbers of the iterates of endo1 and endo2, i.e. the sequence \(R(\textit{endo1},\textit{endo2})\), \(R(\textit{endo1}^2,\textit{endo2}^2)\), ..., is eventually periodic. Thus there exist a periodic sequence \((P_n)_{n \in \mathbb{N}}\) and an eventually zero sequence \((Q_n)_{n \in \mathbb{N}}\) such that

\[\forall n \in \mathbb{N}: R(\varphi^n,\psi^n) = P_n + Q_n.\]

This function returns two lists: the first list contains one period of the sequence \((P_n)_{n \in \mathbb{N}}\), the second list contains \((Q_n)_{n \in \mathbb{N}}\) up to the part where it becomes the constant zero sequence.

6.1-2 IsRationalReidemeisterZeta
‣ IsRationalReidemeisterZeta( endo1[, endo2] )( function )

Returns: true if the Reidemeister zeta function of endo1 and endo2 is rational, otherwise false.

6.1-3 ReidemeisterZeta
‣ ReidemeisterZeta( endo1[, endo2] )( function )

Returns: the Reidemeister zeta function of endo1 and endo2 if it is rational, otherwise fail.

6.1-4 PrintReidemeisterZeta
‣ PrintReidemeisterZeta( endo1[, endo2] )( function )

Returns: a string describing the Reidemeister zeta function of endo1 and endo2.

This is often more readable than evaluating ReidemeisterZeta in an indeterminate, and does not require rationality.

gap> khi := GroupHomomorphismByImages( G, G, [ (1,2,3,4,5), (4,5,6) ],
>  [ (1,2,6,3,5), (1,4,5) ] );;
gap> ReidemeisterZetaCoefficients( khi );
[ [ 7 ], [  ] ]
gap> IsRationalReidemeisterZeta( khi );
true
gap> ReidemeisterZeta( khi );
function( s ) ... end
gap> s := Indeterminate( Rationals, "s" );;
gap> ReidemeisterZeta( khi )(s);
(1)/(-s^7+7*s^6-21*s^5+35*s^4-35*s^3+21*s^2-7*s+1)
gap> PrintReidemeisterZeta( khi );
"(1-s)^(-7)"
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind

generated by GAPDoc2HTML